
Vectors and Arrays

William E. Skeith III

Section 1

Motivation

Consider the following problem: read integers from standard input, and print them back out
in reverse order. With the tools we’ve seen so far, we actually don’t have a good way to
do this! If you think about it, no fixed number of post-it notes would suffice, as we have
to store the entire input. Note that up until this point, the amount of space used by our
programs was essentially determined by the program source code itself, and was independent
of the input.1 For example, the final version of our Fibonacci sequence program used 5 post-it
notes, irrespective of the input n.

But now we need something different. No matter how many variables we declare (call
this number c), our program for reversing the input won’t work as soon as someone gives us
an input with a list of c+1 or more integers. We need to be able to create post-it notes “on
the fly”, as the program runs. One simple way to do this is through vectors. Vectors give
you an expandable container of post-it notes. Let’s see how to use them.

Section 2

Vector Basics

You can visualize a vector as a sequence of post-it notes, for example, something like this:

V = 34 42 59 125 145

Great! That certainly looks like it could be useful. And it will be, as soon as we get answers
to a few basic questions you are no doubt already asking. In particular, we need answers to
the following:

(Q1) What is the name of each little box / post-it note?
(Q2) How do I actually declare one of these in a C++ program?
(Q3) How can I add (or remove) something to a vector?

Let’s go through them one by one.

1The one exception you may have noticed was that string variables seem like they could be arbitrarily
long. It turns out that strings are just specialized vectors!

1



The name of each little box (Q1). They each get a number, starting at zero, like this:

V = V[0] V[1] V[2] V[3] V[4]

(Terminology: the little boxes are usually called elements and the number associated with
a box is called its index. So in our above example, the index of the element with the 59 would
be 2, and conversely the element at index 2 has value 59.)

How to declare a vector (Q2). This actually involves a new concept: templates. The
ability to make an expandable list of variables seems of general utility—it’s something we
might want to do for many different datatypes. We might want a vector of integers, or a
vector of characters (like a string), or perhaps even a vector of vectors! Good news: when
you declare a vector, you get to choose the type of the little boxes inside it. Examples:

vector<int> V; /* each V[i] of type int */

vector<char> C; /* each C[i] of type char */

vector<bool> B; /* each B[i] of type bool */

vector<vector<int>> M; /* each M[i] is a vector<int>! */

Note the angled brackets with a datatype inside. You can put any datatype you want
in there!2 And if you happen to know a list of values that you want your vector to contain
initially, you can declare it using the following syntax (if you have a recent-ish C++ compiler).

vector<int> V = {34,42,59,125,145};

Adding and removing elements (Q3). Upon first declaring a vector, it will be empty:

vector<int> V; V =

Important: trying to access the boxes that don’t exist will end badly! We can’t yet access
V[0], because there is no V[0]. To add an element, use the push back() function like so:

V.push_back(34); V = 34

As the name suggests, new values will be added to the “back” (the new element will have
the largest index):

V.push_back(42);

V.push_back(59);
V = 34 42 59

You can also remove elements from the end of a vector with pop back(). Applying it to the
vector above would remove the 59 from the end:

V.pop_back(); V = 34 42

2Technically, any data type that is instantiatable. So things like void of course won’t work.

2



Section 3

Examples

3.1 Reversing stdin

Let’s begin by solving the problem we listed as our original motivation: read all of stdin (as
integers), and print them back out in reverse order. As noted, we need to store the entire
input before printing anything. Here’s one way to do it:

int x; /* storage for single input */

while (cin >> x) {

V.push_back(x);

}

Nothing surprising, but perhaps a new question has popped into your head: how do we know
how many elements a vector has? Fortunately V knows its own size: you can get it via
V.size(), so the elements look like this, where n = V.size():

V[0] V[1] V[2] . . . V[n-2] V[n-1]

With that knowledge, this problem is as good as solved: just print V[V.size()-1..0]:

size_t n = V.size(); /* give V.size() a nicer name */

for (size_t i = 0; i < n; i++) {

cout << V[n-1-i] << "\n";

}

Note: You may be wondering why we didn’t use the following, perhaps more natural looking
loop, starting i at n-1 and counting backwards to 0:

for (size_t i = n-1; i >= 0; i--)

cout << V[i] << "\n";

The issue is that the use of the unsigned type size t (which seemed a good choice for storing
an index, since negative indexes make no sense) opened us up to some variation of the famous
“Gandhi bug”:3 for the datatype size t, −1 = 264−1 on a 64 bit computer. See for yourself:

size_t n = -1;

cout << n << "\n"; /* prints 18446744073709551615. Yikes! */

3In case you are unfamiliar, the game Civilization featured a character modeled after Indian civil rights
activist Mahatma Gandhi. Behind the scenes, each character had an aggression meter, stored as an unsigned
integer. The bug (feature?) was that actions which should make characters more peaceful had the opposite
effect on Gandhi: his aggression meter started out at 1, so if it were decremented twice, it would become
−1 ≡ 2k − 1 and suddenly he would set out to destroy all life on Earth x x

3



More to the point, the natural looking condition (i >= 0) is the same as the constant true.
Hence, the loop above is equivalent to the following (obviously wrong, infinite) loop:

for (size_t i = n-1; true; i--)

cout << V[i] << "\n";

Exercises. It is probably a good time to pause and test your understanding with a few
simple exercises. Before reading further, try to solve the following problems.

1. Write a function bool search(const vector<int>& V, int x); that searches vector
V for value x.

2. Write a function void reverse(vector<int>& V); that reverses the order of the ele-
ments of V.

3. Given a vector of integers V, write code that creates a new vector E which contains only
the even elements of V. That is, if V = {1,3,5,2,7,8}, then E should be {2,8}.

4. Given a vector V of sorted integers, write code that creates another vector U which is like
V, but without duplicate elements. For example, if the input is V = [1,2,2,3,3,3],
then U should be set to contain [1,2,3].

3.2 Sorting a vector

Let’s try to tackle a slightly more involved problem: rearranging the elements of a vector
(say of integers) so that they are in ascending order. For example, if the input was V =

{3,1,5,7,2}, then we would like to rearrange elements so that V = {1,2,3,5,7}. We will
use a very simple method called selection sort. You should be warned that it’s not a very
fast way to accomplish this task; we choose here it for its conceptual simplicity and ease of
implementation.4

The selection sort algorithm can be summarized as follows: for each index i = 0,...,n-1,
swap V[i] with the smallest element in V[i..n-1], where n is the size of the vector. In more
detail, we begin by finding the absolute smallest thing and placing it first (leaving whatever
was in the first position somewhere else in the vector). At this point, the value in V[0] has
reached its final destination—we never have to look at it again. Now we do the same thing
to the subvector V[1..n-1], and so on, until everything is in its right place. Before writing
a program, let’s sketch out a run of the algorithm in pictures. To show the value of i, which
tells how much of the vector we’ve got sorted, we’ll draw a blue line: everything left of the
blue line is in its right place.

4However, it may be worth noting that this same concept can be made efficient: the heap sort algorithm
is conceptually identical, with one building block (finding the smallest element) replaced by a more efficient
version.

4



3 1 5 7 2

1 3 5 7 2

1 2 5 7 3

1 2 3 7 5

1 2 3 5 7

With a clear picture in hand, I think we’re ready to start programming. Let’s start by making
a useful building block: find the location of the smallest element after the blue line. Note
that it is important that we find the location and not just the value, since we are rearranging
the elements. Here’s a plausible prototype for such a function:

size_t indexOfSmallest(const vector<int>& V, size_t start);

Naturally, this function will look quite similar to computing a maximal or minimal value—it’s
just that we don’t care about the value so much as we do about the index. This should be
not too difficult for the reader at this point, and makes for a good exercise. Try to write this
function right now before reading further (revisit lecture 1 if needed).

Here is one possible solution to the above. The invariants are listed in the comments.

size_t indexOfSmallest(const vector<int>& V, size_t start)

{

size_t iMin = start; /* meaning: index of smallest element we’ve

seen so far. (That is, from V[start..i]

in the loop below.) */

for (size_t i = start+1; i < V.size(); i++) {

if (V[i] < V[iMin]) /* found a smaller element! */

iMin = i; /* preserve intended meaning of iMin */

}

return iMin;

}

All that remains is to perform the appropriate swaps. For each index i, starting from 0, we
want V[i] ↔ V[s], where s is the index of the smallest element in the subvector V[i..n-1],
where n=V.size(). Taking a swap function for granted (you can find one in the STL’s
<algorithm>), our finished product might look like this:

5



void sort(vector<int>& V)

{

for (size_t i = 0; i < V.size()-1; i++)

swap(V[i],V[indexOfSmallest(V,i)]);

}

The program reads almost identically to our plain-English description of the process: for each
index i = 0,...,n-1, swap V[i] with the smallest element in V[i...n-1]. Note that we
stopped the loop one before the last element, since the last swap is guaranteed to pointless:
it would always swap V[n-1] ↔ V[n-1].

Exercises.

1. Try to write selection sort from scratch. Refer back to the picture if needed, but don’t
look at any of the code.

2. Would our sorting algorithm still work if in the main loop we started at V.size()-1
and went backwards to 0 like this?

void sort_maybe(vector<int>& V)

{

for (size_t i = V.size()-1; i != -1; i--)

swap(V[i],V[indexOfSmallest(V,i)]);

}

3. Write a main program to test your sort function. Read all of stdin (as integers) and
print it back out in sorted order.

4. Write a function that evaluates a polynomial f(x) =
∑d

i=0 cix
i at a given point x. Your

function should take as input a vector c for the coefficients (c[i] stores ci) and the
evaluation point x. Assume all ci and x are integers.

5. Write an efficient search function for a sorted vector. The idea is to perform a compar-
ison with an element in the middle of the vector, and then eliminate half of the vector
from the search based on the result of the comparison. Continue in the same manner,
but now acting on the remaining subvector. (This is called binary search.)

Section 4

Arrays (Vectors Behind the Scenes)

Note: for this section, we will need a tiny bit of knowledge about pointer variables. These
are covered in the first section of the next lecture. It would be a good idea to browse that
material right now, and then return. However, we essentially need only these two items for
our discussion:

6



• The address-of operator (&) gives you the memory address of its argument. For a
variable x, the expression &x will evaluate to the address of x.

• The dereference operator (*) takes a memory address, and gives the contents of that
memory location. For a variable p containing an address, the expression *p can be used
to read from or write to memory.

4.1 Arrays

Vectors are just a wrapper for a very simple data structure called an array. What’s an array,
you ask? It’s a contiguous block of memory. It’s the simplest thing that might warrant the
name “data structure”. Here’s how to declare an array of 5 integers, and what it might look
like in main memory:

int A[5]; /* A[0],...,A[4]

are integers */

...

A[0]0x7e1dba80

A[1]0x7e1dba84

A[2]0x7e1dba88

A[3]0x7e1dba8c

A[4]0x7e1dba90

...

Notice that A[i+1] is always four memory address away from A[i]. This is because each
value of type int takes 4 bytes to store, and main memory is byte-addressable (each address
corresponds to a unique byte). Had we declared A as char A[5], the addresses would have
jumped by just one instead, since sizeof(char) is 1. Let’s see what’s inside the variable A.
What happens if we print it out?

cout << A << "\n"; /* prints 0x7e1dba80 */

Interesting... We get a memory address. In particular, we get the memory address of the
first element of A:

cout << &A[0] << "\n"; /* prints 0x7e1dba80 */

So A seems synonymous with the address of the first element. There is one subtle caveat
to this5, but in many cases an array variable is quite simply a pointer to the first element.
Regardless, this intuition will hardly ever lead you astray, so you may as well use it. For
emphasis:

Array variable ≡ pointer to first element.

5The caveat is that there is no A for statically allocated arrays as shown above. Note that the elements
are stored, but there is actually no storage for the pointer A itself. This is the case since the address of
the first element can be computed as a fixed offset from a CPU register (stack frame pointer, like %rbp on
x86 64).

7



It turns out that the bracket notation for referencing elements of an array (A[i]) is just
syntactic sugar for the following: add i to the memory address A, and dereference. That is:

A[i] ≡ *(A+i).

Kind of fun consequence:

A[i] ≡ *(A+i) ≡ *(i+A) ≡ i[A]

Try it out! Write a bit of code using an array and then swap out A[i] with i[A]. Note that
it works, and then please never do it again, haha.

Given that A[i] does the right thing for arrays of char as well as arrays of int, one can
deduce the following fact regarding pointer arithmetic: the value of A+i (which is a memory
address) actually depends on the datatype of A. If we add 1 to a char pointer, the pointer
increases by 1. If we add 1 to an int pointer, it will actually increase by 4. In general, A+i
will of course be i*sizeof(A[0]) addresses ahead of A. Nothing complicated, but it is nice
that the compiler saves us that little bit of headache.

4.2 Remarks and Warnings

Here we quickly cover a few things worth mentioning to anyone just learning about arrays in
C/C++.

Writing out of bounds. There is nothing to stop you from referencing array elements
that don’t exist. More troubling still, is that an array (unlike a vector) typically doesn’t even
know its own size!6 So the programmer must be careful to keep track of these things. For
example, we could do the following:

int A[5];

A[1000] = 0; /* writing outside of the array! x_x */

The above may cause your program to crash, or it may write to some other part of your
program’s memory and keep on running. Yikes! Here’s a more explicitly spooky example:

int main()

{

int x = 99;

int y = 99;

const int n = 5;

int A[n];

for (size_t i = 0; i < 8; i++)

6For static arrays (all we’ve seen so far), the sizeof operator will tell you the total size in bytes, so
the number of elements could be recovered via sizeof(A)/sizeof(A[0]). But in the case of dynamically
allocated arrays (covered next lecture), sizeof(A) will just give you the size required to store a pointer on
your machine, irrespective of the size of the array to which it points.

8



A[i] = i; /* out of bounds for i=5,6,7 */

for (size_t i = 0; i < n; i++)

printf("A[%lu] = %i\n",i,A[i]);

printf("x == %i\n",x); /* prints "x == 7" o_O */

printf("y == %i\n",y); /* prints "y == 6" o_O */

return 0;

}

Notice that we never assigned anything to x or y after they were initialized to 99, and yet
both values had changed by the end of the program. We will postpone a full discussion of
this phenomenon for later, but it might not be too hard to imagine how those variables were
changed. The following picture of a possible memory layout7 for such a program might be
helpful:

...

A[0]0x7e1dba80

A[1]0x7e1dba84

A[2]0x7e1dba88

A[3]0x7e1dba8c

A[4]0x7e1dba90

n0x7e1dba94

y0x7e1dba98

x0x7e1dba9c

...

You can see that A[5], which is out of the bounds of A becomes a synonym for n, and
A[6],A[7] become synonyms for y,x respectively.

While it is every bit as possible to write out of bounds with vectors, they do make it
a little less likely. For one, the vector knows its own size, so you don’t have to keep track
of it separately (thus reducing the likelihood of mistakes). Also, vectors can help you catch
this kind of problem early on during testing: with GCC, for example, if you compile with
-D GLIBCXX DEBUG, a bit of extra code will run whenever you access an element to make sure
you are staying in bounds. Once you’re confident your program has no such bugs, you can
remove that flag, and the extra checks will disappear along with it.

Character arrays (C-strings). Arrays of char are specially interpreted by many func-
tions. They are the C-style way to store strings. For example, consider the following:

7Examples of this sort (relying on undefined behavior) can be kind of “fragile”. For what it’s worth, to
make this “work” on GCC 8.2 it had to be compiled with flags -O0 -fno-stack-protector.

9



int A[5] = {0,1,2,3,4};

cout << A << "\n"; /* prints 0x7ff... */

char C[5] = {’h’,’i’,’!’,’!’,0};

cout << C << "\n"; /* prints "hi!!" */

So, it seems that cout tries to print the elements when given a char array, but not so for
arrays of int. Note: there is an important convention when dealing with character arrays:
you should make sure that they end in a zero byte (not the character that displays a ’0’,
but the actual number 0, as shown above). This is the (dubious8) way that C-strings can
determine their own length: they scan for a zero (often called null character). Observe:

char s[7] = "oh hai"; /* quotes automatically add null char!

the 7 is not a typo! */

cout << s << "\n"; /* prints "oh hai" */

cout << (s+3) << "\n"; /* prints "hai" */

s[4] = 0; /* effectively reduces length of string to 4... */

cout << (s+1) << "\n"; /* prints "h h" */

4.3 Vector Internals

Finally, we take a quick look at how vectors are stored behind the scenes. Conceptually, a
vector consists of 3 parts:9

• data: a pointer to an array it uses for the elements
• size: an integer (type size t) for the size
• capacity: an integer (type size t) for the capacity.

The capacity is the size of the underlying array, pointed to by data. The capacity is guar-
anteed to be at least as big as size, which gives the number of elements actually in use by
the vector. Here is an illustration of what one might look like in main memory.

8It is easy to make mistakes, e.g., when copying strings of potentially different lengths. This was in fact
the source of many early software security vulnerabilities.

9Even further behind the scenes, one can see that the STL vector (as distributed with GCC 8.2) does not
actually store integers for the size and capacity, but rather stores pointers for the last element, and the end
of the allocated storage, and computes size and capacity when needed.

10



.

.

.

V.size0x7e1dba80

V.capacity0x7e1dba88

V.data0x7e1dba90

.

.

.

.

.

.

V[0]0xdeadbeef

V[1]0xdeadbef3

V[2]0xdeadbef7

.

.

.

We conclude by mentioning a few consequences of this array-based implementation.

Growing the vector. Note that the data pointer might change as the vector is used: once
the current capacity is exhausted, the underlying array may have to be relocated to a bigger
home, since

1. An array must be in a contiguous block of memory, and
2. The memory cells right after V[V.size()-1] might be occupied by something else

already.

As you can imagine, this move could be costly—it would involve copying every element of
the vector to new memory. Since this operation is so costly, the vector was designed so as to
do it infrequently. Let’s take a look at how a vector grows.10

void capacitytest()

{

/* watch how the vector grows: */

printf("testing capacity growth...\n");

vector<int> V;

size_t savedCapacity = V.capacity();

printf("initial capacity: %lu\n",savedCapacity);

for (size_t i = 0; i < 20; i++) {

V.push_back(i);

if (savedCapacity != V.capacity()) {

savedCapacity = V.capacity();

printf("size=%lu \tcapacity=%lu\n",V.size(),savedCapacity);

}

}

}

10Your computer may behave a little differently, but the capacity will always grow by some multiplicative
factor.

11



/* output:

testing capacity growth...

initial capacity: 0

size=1 capacity=1

size=2 capacity=2

size=3 capacity=4

size=5 capacity=8

size=9 capacity=16

size=17 capacity=32 */

The numbers on the left show the size which triggered a growth in capacity. Each time
more space is needed, the capacity seems to double, rather than growing by some additive
amount. Let’s do a quick bit of analysis to see why this makes sense. Consider a sequence
of n consecutive calls to the push back function. We’ll examine the cost of performing these
operations while growing the capacity according to a few different strategies. If the space is
available, push back is rather cheap, so let’s focus on the cost of all the copying. Call this
quantity C(n), measured in terms of the number of values that must be moved. First let’s
consider the extreme opposite strategy, in which we grow the array by one element each time.
In the worst case, each time we perform this operation the array has to find a new home.
Thus, if starting from an empty vector, the total cost of all the copying would be

C(n) =
n∑

i=1

i =
n(n+ 1)

2
.

That seems like a lot of work! You would hope that adding n things to a vector would cost
≈ n steps, and not ≈ n2. However, if we use the strategy suggested by our program’s output
and double the capacity each time, the cost drops dramatically. Notice that we perform
a copy just past each power of 2, or when n = 2i + 1. A bit of thought reveals that the
number of times we would have to copy the array during the sequence of push back calls is
⌊log2(n− 1)⌋+ 1. Since the i-th copy moves 2i elements (indexing from i = 0), we see that

C(n) =

⌊log2(n−1)⌋∑
i=0

2i = 2⌊log2(n−1)⌋+1 − 1

so that
n− 1 ≤ C(n) ≤ 2n− 3.

Much better! But perhaps you are wondering if the original additive strategy might be
salvaged by growing the capacity by a bigger constant, say by adding 10 to the capacity each
time instead of just 1? In general, this doesn’t really help. This would reduce the work by
around a factor of 10, but there is still a quadratic dependence on n, meaning this strategy
will burn us in the long run. Even if we chose a large step for the first strategy, and a small
factor for the second, the graph would still look like this at some point, with the second
strategy (shown in green) winning:

12



n

C(n)

Lastly, note that we could of course take an even more aggressive strategy (allocating even
more memory when the capacity is reached), but then we are increasing the expected amount
of wasted space, and without really helping performance: the cost of tacking on the elements
to the end of the array would begin to dwarf the cost of the copying. Using a small constant
factor strikes a nice balance.

Inefficient operations on vectors. Another consequence of the array-based implemen-
tation is that certain operations are inherently inefficient. In particular, there is only one
end of a vector for which insertion and removal are efficient: the “back” (the end with the
highest indexes). If you think about it, to add or remove something from the beginning or
middle of the vector will involve shifting all elements after it forward (insertion) or backward
(removal). For a large vector, this may be a nontrivial computation. Nevertheless, the STL
implementation does provide functions for such operations: namely insert and erase. If
you find yourself using these often, perhaps vector is not the right data structure. We’ll
learn others soon enough, but if the only issue is that you need to insert and remove things
frequently from both ends, there is a nice container called the deque.

13


	Motivation
	Vector Basics
	Examples
	Reversing stdin
	Sorting a vector

	Arrays (Vectors Behind the Scenes)
	Arrays
	Remarks and Warnings
	Vector Internals


