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Abstract

In this work, we develop a methodology for determining the communication re-
quired to implement various two-party functionalities non-interactively. In the partic-
ular setting on which we focus, the protocols are based upon somewhat homomorphic
encryption, and furthermore, they treat the homomorphic properties as a black box. In
this setting, we develop lower bounds which give a smooth trade-off between the com-
munication complexity and the “expressiveness” of the cryptosystem—the latter being
measured in terms of the depth of the arithmetic circuits that can be evaluated on
ciphertext. Given the current state of the art in homomorphic encryption, this trade-
off may also be viewed as one between communication and computation, since more
expressive cryptosystems are presently less efficient. We then apply this methodology
to place lower bounds on a number of cryptographic protocols including PIR-writing
and private keyword search.

While the hypotheses of our results preclude them from having universal applicabil-
ity, we hope that this work will nevertheless provide a valuable “litmus test” of feasibility
for use by other cryptographic researchers attempting to develop new protocols that
require certain levels of communication efficiency.

Lastly, we also answer an open question from the thesis of Rappe [Rap06] regarding
the construction of fully homomorphic encryption from group homomorphic encryption.

1 Introduction

1.1 Background and Motivation

Homomorphic encryption schemes offer an intriguing compromise between functionality and
security, and as such have played a vital role in the design of many cryptographic protocols
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over the years. To name but a few of the success stories, we mention oblivious transfer and
private information retrieval (PIR), private keyword search, voting protocols, and collision-
resistant hashing. Indeed, many novel protocols have been developed using homomorphic
encryption as building block, and in numerous instances, it is in fact the sole cryptographic
ingredient.

Motivated by these successes, many recent research efforts have focused on improv-
ing homomorphic encryption. In recent literature, we have seen numerous proposals of
schemes supporting increasingly rich homomorphic properties. In addition to schemes that
are homomorphic over abelian groups (e.g., [GM84, Gam85, Pai99, DJ03, KTX07]) there
have also been proposals to evaluate polynomials of small total degree on ciphertext (e.g.,
[BGN05, MGH08, GHV10]) as well as a large number of proposals for fully homomorphic
encryption [Gen09, vDGHV10, SV10, GH11, BV11, Gen11]. We now have public-key cryp-
tosystems which cover a broad spectrum of homomorphic properties—the simple XOR op-
eration lying on one end and arbitrary circuits on the other. Cryptosystems on the latter
end of the spectrum provide a powerful tool for manipulating encrypted data, however, this
added functionality does not come without a cost. As functionality requirements increase,
the richness of options is naturally diminished. Current techniques in fully homomorphic
encryption suffer from a number of drawbacks. Perhaps the most severe is that of com-
putational complexity. With the exception of [Gen11], all known FHE schemes require a
costly “bootstrapping” step, in which the scheme’s own decryption circuit is evaluated on
ciphertext. One such scheme has been implemented in [GH10] who report that on a modern
machine, the bootstrapping operation alone requires anywhere from 30 seconds to 30 minutes,
depending on the security parameters, which seems to be a major obstacle for most prac-
tical applications. Furthermore, most FHE schemes have relied on somewhat non-standard
intractability assumptions. Progress in this direction has been made in the recent works
of [Gen11, BV11] which present schemes based on LWE, rather than on ideal lattice prob-
lems. In the work of [Gen11], the bootstrapping step has also been removed, but not under
the standard LWE assumption. For many situations, the scheme of [Gen11] presents better
asymptotic efficiency than previously known FHE schemes, yet the practical significance of
these improvements has yet to be studied, and the authors warn that the constants hidden
the asymptotic notation are large. Other work in this direction includes that of [NLV11],
which considers the practicability of somewhat homomorphic encryption. A brief summary
of various homomorphic cryptosystems can be found in Table 1.

This situation presents a number of interesting trade offs between the various parameters
and assumptions for researchers and practitioners to consider when designing and implement-
ing protocols. One recurring question is of the following form. If functionality X is needed,
but also with computational efficiency requirements A and communication complexity re-
quirements B, what options are available? Furthermore, on what intractability assumptions
can the protocol be founded? In this work, we take steps toward answering this type of
question. In particular, we consider the case of black-box usage of homomorphic encryption,
and provide a simple “litmus test” for the feasibility of constructing protocols in this setting.
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Black-box usage of homomorphic encryption. Many useful protocols and primitives
have been derived from homomorphic schemes in a “black box” way, by manipulating the
homomorphic properties to construct various systems, but without regard to any particular
details of the representation of the plaintext or ciphertext elements. Prominent examples
include private keyword search protocols [OS07], private database writing [BKOS07], as
well as certain implementations of single-database private information retrieval and collision-
resistant hashing (see [KO97, Cha04, IKO05]). Black-box use of homomorphic encryption
has also been utilized in more general secure function evaluation settings, e.g., in the work
of [KSS09]. In this work, we demonstrate lower bounds for a variety of natural tasks when
constructed in a strictly black-box manner; in particular, we demonstrate precise trade-
offs between the completeness of the homomorphic properties of the cryptosystem and the
communication complexity. This is accomplished by analyzing one simple task, and showing
communication bounds for realizing this task via a restricted set of algebraic operations,
which correspond to the homomorphic properties of the cryptosystem. As we demonstrate,
this task is inherent in a number of the protocols listed above (e.g., private database writing)
and as such, the bounds for the simple task also apply to the protocol. This result yields a
simple “litmus test” for determining the feasibility of constructing black-box protocols from
homomorphic encryption under certain demands on the communication and computation
efficiency, and on the required hardness assumptions.

1.2 Our Results

Our results fall into two main categories. The first is a study of cryptographic protocols
based on the black box use of somewhat homomorphic encryption. In particular, we de-
velop techniques for lower bounding the communication complexity in such settings, where
the protocol messages are the result of some formulaic computation, rather than arbitrary
boolean functions.1 After developing lower bound criteria for generic, formula-based pro-
tocols (Proposition 4.6), we then explore a number of applications, including PIR-writing,
private keyword searching, and homomorphic PIR (Corollaries 5.1, 5.4, and 5.3).

The second category of our results concerns equivalences among various flavors of homo-
morphic encryption. We study in detail equivalences between homomorphic encryption over
certain non-abelian groups, and fully homomorphic encryption (over F2). We give an original
proof that homomorphic encryption over any finite non-abelian simple group is equivalent
to fully homomorphic encryption (Theorem 6.5 and Corollary 6.9), thereby answering an
open question posed by Rappe [Rap06]. We also revive an interesting piece of group theory
history, showing that several lesser-known results of Maurer et al. [MR65] not only have
the aforementioned equivalence among homomorphic encryption flavors as a consequence,
but also have the main results of Barrington [Bar86] as a trivial consequence. (The work
of [KMR66] even goes so far as to define Barrington’s permutation branching programs, albeit
with different notation and terminology.)

1Of course, the cases of interest are formulas over algebraic structures other than F2, since any boolean
function can be computed by an arithmetic circuit over a non-trivial ring.
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Cryptosystem
Homomorphic

properties
Practical space
requirements?

Practical
computational
requirements?

Assumptions

[GM84] (Z2,+)
≈ X

(Message space is
{0, 1})

X
Quadratic

Residuosity

[Pai99] (Zn,+) X X DCRA
[Gam85] (Zp, ·) X X DDH

[BGN05]

degree 2
polynomials over

ZO(poly)

≈ X
(O(1)-sized

message space)
X Bilinear Subgroup

Decision Problem

[GHV10]
degree 2

polynomials over
Zn

X X LWE

[MGH08]
instantiated with

[KTX07]

degree d
polynomials over

Zn

Only if d is small Only if d is small
uSVP over integer

lattices

[Gen09] (Z2,+, ·) No No
SVP over Ideal
Lattices; Sparse

Subset Sum

Table 1: List of homomorphic cryptosystems along with their functionality, efficiency and
required assumptions. When mentioned, κ denotes the security parameter.

1.3 Related Work

The lower bounds that we consider are most closely related to computational lower bounds
on number theoretic problems when algorithms are restricted only to underlying group opera-
tions. For example, Boneh and Lipton [BL96] examine the computational difficulty breaking
any algebraically homomorphic (over a field) cryptosystem. Other related works are those
of Shoup [Sho97] and Maurer and Wolf [MW98], which consider computational difficulty
of the discrete logarithm problem, and other number-theoretic problems in cyclic groups,
provided that the algorithms do not exploit any specific properties of the representation of
group elements. In contrast, our lower bounds are geared towards communication complex-
ity and program size, and furthermore, they apply to a wider variety of algebraic structures
(including arbitrary abelian groups and bounded degree polynomials over rings). Our re-
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sults are also related in some ways to the classic results of Yao [Yao79] and Abelson [Abe80].
Building upon their foundation, we develop and analyze yet another model of communication
complexity for protocols in which the messages between parties are the results of formulaic
computations.

1.4 Techniques

In order to study what can be accomplished with black box usage of somewhat homomorphic
encryption, we first develop a new model for algebraic communication complexity. The
model is based upon the classic works of Abelson [Abe80] and Yao [Yao79], which can both
be seen as specializations of a generic protocol pattern. [Abe80] uses continuous functions to
compute the protocol messages, while [Yao79] uses boolean functions; our instantiation of the
pattern restricts the computation of protocol messages to functions which arise from algebraic
formulas. We define such formulas precisely in Definition 4.1, but there is a simple intuition
behind the formalism: essentially, we are considering a straightforward generalization of
arithmetic circuits to algebraic structures other than F2 (e.g., non-commutative groups).

We then pursue lower bounds in this new model. In place of Yao’s combinatorial rectangles
and Abelson’s partial derivative matrix, we have the notion of “G-independent elements” over
an abelian group G. The notion of G-independence can be thought of as a natural analog of
linear independence over vector spaces, and although many vector space niceties are absent,
we are nevertheless able to establish a number of analogous results. For example, we show
in Theorem 3.6 that if a set of n, G-independent elements are in the range of an affine2 map,
then the domain must be of size exponential in n. Using these results on G-independent sets,
we then show (Proposition 4.6) that if a protocol is restricted to abelian group formulas, then
the communication complexity of any function with n G-independent elements in the range
is at least n− 1 bits.

We also generalize these basic results in a number of ways. We consider a common
setting in which the group in question is a direct product Gn, and the independent ele-
ments are “characteristic vectors,” meaning that only a small number of coordinates contain
non-identity elements of G. In this setting, we prove a smooth trade-off in communication
complexity as the number of non-identity elements in the characteristic vectors increases
(Corollary 3.11).

Lastly, we show (using a fairly straightforward linearization technique) that if we allow the
protocol messages to be total degree t polynomials over any ring R (instead of abelian group
formulas), then the communication is bounded by Ω( t

√
n) (cf. Corollary 3.12). Hence the

results we derive are applicable to a wide variety of homomorphic cryptosystems, including
[RSA78, GM84, Gam85, Pai99, BGN05, GHV10, MGH08]. See Table 1 for a brief summary.

2Affine maps over groups are simply translated homomorphisms, analogous to the case of linear spaces.
See Definition 3.3.
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1.5 Remarks

First, we note that while the premise of black box usage of homomorphic encryption may
seem restrictive, the results in this model are fairly complete: they apply to all finite abelian
groups, and to polynomials of total degree t over arbitrary finite rings. Furthermore, our re-
sults apply to arbitrary “affine maps,” (see Definition 3.3) which include functions that may
not be realized by formulaic means (e.g., arbitrary endomorphisms of an abelian group).
Additionally, we remark that there are numerous examples in the literature of effective cryp-
tocomputing protocols constructed in exactly this way.

Secondly, we note that in some sense, our results state the impossibility of representing
certain functions using abelian group formulas. From this perspective, it is not surprising
that many functions cannot be represented by such formulas: a simple counting argument
reveals that the number of m-variable formulas over G is far less than the number of G-
valued functions (as set maps) which depend on m variables. But what are these functions?
Furthermore, in what sense can they not be represented? The surprising aspect of our
results is that we find simple and natural classes of functions which cannot be represented
with classes of formulas over groups and rings, and furthermore that the non-existence of
these functions has impact on protocol design.

2 Background and Notation

2.1 Mathematical Notation

The natural numbers will be denoted N, and the integers by Z. For n ∈ Z, the symbol
Zn will denote the ring Z/nZ, or the group (Z/nZ,+). We will sometimes denote the set
of integers {1, 2, ..., n} by [n] for simplicity. For an abelian group G, we will generally use
additive notation, and denote the identity element by 0G. If G is not necessarily abelian,
multiplicative notation will be used and 1G will represent the identity element. The symbol
× will be used to denote a direct product (in sets, groups, rings, modules, etc.), and if X
is a set (or group, ring, module...) then Xn represents the direct product of n copies of X.
X q Y denotes the coproduct. Occasionally, if A is a subset of a group (ring, module, etc.)
the symbol 〈A〉 will denote the subgroup (sub-ring, sub-module, etc.) that is generated by
A. I.e., the intersection of all sub-structures containing A. However, we adhere to standard
notations in more specific situations. Let R be a ring and let M be an R-module. If A and
B are sub-modules of M , then we denote the sum of A and B as A + B. We will denote
the external direct sum of any two R-modules A,B by A ⊕ B. For any a ∈ M , Ra will
denote the submodule of M defined by Ra = {ra | r ∈ R}, so that if 1 ∈ R and M is unitary
then 〈{a}〉 = Ra. The set of all R-module homomorphisms from A to B will be denoted
by HomR(A,B). For an abelian group G, the ring of endomorphisms HomZ(G,G) will be
denoted by End(G). For any set X, F (X) will denote the free group generated by X.
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2.2 Private Information Retrieval

Recall the setting of private information retrieval, in which a user U wishes to retrieve
the i-th element of a database X, without revealing the index i to the database owner
(denoted DB). More formally, it is a two-party protocol consisting of a triple of algorithms
(Query,Reply,Reconstruct), such that

1. (Correctness.) For any database X and index i, Reconstruct(Reply(Query(i))) = Xi.

2. (Privacy.) For all i, j ∈ [n], the distributions of Query(i),Query(j) are computationally
indistinguishable.

Since the above can trivially be accomplished by setting Query(i) = ⊥ for all i, Reply(⊥) =
X, and Reconstruct(X, i) = Xi (that is, by simply communicating the entire database), a third
constraint is generally implicit:

3. (Communication efficiency.) The sum of the length of the messages passed between U
and DB is strictly less than3 n bits, where n is the size of X.

Definition 2.1. Let σ ∈ Z+ be a security parameter. A Encryption Scheme, or Cryp-
tosystem with message space M and ciphertext space C is a tuple of PPT algorithms
(KeyGen,Enc,Dec with the following descriptions.

• KeyGen takes a security parameter 1σ and outputs (PK, SK), encryption and decryption
keys.

• Enc takes input 1σ,PK and m ∈ M and outputs c ∈ C, an element of the ciphertext
space.

• Dec takes as input 1σ, SK and a ciphertext c ∈ C, and outputs an element m′ ∈ M
such that if c = Enc(1σ,PK,m) and (PK, SK) = KeyGen(1σ), then m = m′ with all but
negligible probability (as a function of σ, where the probability ranges over the internal
coins of the algorithms).

3 Independent Vectors Over Groups

3.1 Motivation: Generating Encryptions of Characteristic Vectors

This section provides a simple example of a task that cannot be implemented with small
communication using only abelian group algebra. Later, we show a variety of problems and
cryptographic protocols (usually related to PIR or PIR-writing) which would imply a low-
communication solution to this type of task. Hence, we will derive bounds on how well such
protocols can be implemented with “black-box” usage of somewhat homomorphic encryption.
First we will need a simple definition.

3Typically the communication is o(n), but there are theoretical results deriving PIR from minimal as-
sumptions which save only a constant number of bits (e.g., [KO00]).
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Definition 3.1. Let G be an abelian group and let {vi}ki=1 be elements of G. Analogously to
the case of linear spaces, we say that the vi are G-dependent (or simply dependent when
G is clear) if any of the vi = 0G, or if there exist αi ∈ Z such that

1.
∑k

i=1 αivi = 0G

2. ∃i ∈ [k] such that αivi 6= 0G.

We say that the vi are G-independent if they are not dependent.

Example 3.2. Again, borrowing terminology from linear algebra, we say that an n × m
matrix D = (dij) of elements of G is diagonal if dij 6= 0G ⇐⇒ i = j. (Note that we
demand all of the on-diagonal elements are not the identity.) It is easy to see that the n
rows (resp., m columns) of such a matrix will be G-independent if n ≤ m (resp., m ≤ n).
Moreover, any diagonalizable matrix (one which is diagonal upon left / right multiplication
by permutation matrices) will similarly have G-independent rows and columns. ♦

Of particular interest to us will be “formulas” over algebraic structures. A detailed
treatment can be found in Section 4, but we take note of the case of abelian groups here. For
abelian groups, any formula (see Definition 4.1) can be expressed via an affine map:

Definition 3.3. Let A,G be abelian groups. An affine map is a function of the form
F = f + c where F : A −→ G is a homomorphism of groups, and c ∈ G is a constant. That
is, F maps x 7→ f(x) + c.

An answer to the following question regarding such affine maps will provide us with a number
of the lower bounds we desire regarding protocols based on homomorphic encryption.

Question 3.4. (Informal) Let F : A −→ Gm be an affine map. If the image of F contains a
set of k independent elements in Gm, what can be said regarding the size of A? In particular,
how small can the domain of F be?

We will soon answer this question in a variety of contexts, but first we give a moti-
vational example which illustrates some of the complexities of the problem, as well as the
non-applicability of several straightforward (but näıve) approaches toward a solution.

One case of special interest is when F : G` −→ Gm for some group G. Given the apparent
similarity to linear spaces over a field, it is tempting to push the analogy further and attempt
an argument for lower bounding ` based on “dimension.” However, we cannot bound ` in
a non-trivial way—even if we restrict G to be a cyclic group. As the following example
demonstrates, it is possible to have a large set of independent vectors in the range with
` = 1. The key point, however, is that this necessarily comes at the cost of increasing the
size of G.

Example 3.5. Let n ∈ Z+, and let N =
∏n

i=1 pi, where pi is the i-th prime number. Define
G = ZN . Define integers {zi}ni=1 as follows:

zi =
∏
j 6=i

pj.
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Then, since all the primes were distinct, it is easy to verify that

(zizj 6= 0 mod N) ⇐⇒ (i = j).

Consider the homomorphism f = (f1, ..., fn) from G −→ Gn defined by fi(x) = zi · x, and
construct a matrix M having its i-th row equal to f(zi). It is easy to see that M is diagonal,
and hence each of the n rows are independent. ♦

However, notice that n different primes had to divide the order of G in the preceding example.
Hence, |G| > 2n is of exponential size in n. We will show that even using affine maps, this
is always the case: if an affine map is to have n independent elements in its range, then the
domain must be of exponential size in n.

3.2 A Basic Algebraic Result

Here we will make precise the relationship regarding the number of independent elements
in the range of an affine map and the size of its domain. Although the details differ, the
results are analogous to the case of vector spaces: a set of independent vectors will span
a large space, and translating such a set along a fixed vector cannot introduce too many
dependencies. Thus, the span of the translates is also large. Working with G-independent
sets instead of linear spaces introduces some complications, but we can nevertheless achieve
results that deliver the desired effect: if an affine map has n independent elements in the
image, then the domain must be of size exponential in n.

Theorem 3.6. Let A,G be abelian groups, and let V = {vi}ni=1 ⊂ G be any collection of
independent elements. If F = f + c is an affine map from A −→ G such that V ⊂ F (A),
then |A| ≥ 2n−1.

We will factor the proof into two simple, but useful observations about G-independent
sets which show that even after translation by a constant, a G-independent set will always
generate an exponentially large subgroup.

Observation 3.7. Let G be a finite abelian group, and suppose that V = {vi}ni=1 are G-
independent elements. Then |〈V 〉| ≥ 2n.

Proof. Let V = {vi}ni=1 satisfy the hypothesis, and consider the set of all binary vectors
(α1, . . . , αn). It is easy to see that each

∑n
i=1 αivi must be unique: if

∑n
i=1 αivi =

∑n
i=1 α

′
ivi

then
∑n

i=1(αi − α′i)vi yields a non-trivial dependence unless αi = α′i for all i (recall that
independence precludes vi = 0). This completes the proof. �

This observation shows that a set of n independent elements in the image of a homomor-
phism would require the domain to be large, but we need a similar result to hold for affine
maps. For this, we would like to analyze translates of an independent set by some fixed
constant c. The number of independent elements in such a translate is not as easy to reason
about as in the case of linear spaces over a field, yet we can still derive strong lower bounds
on the size.
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Lemma 3.8. Let G be a finite abelian group, c ∈ G an arbitrary element, and suppose that
{vi}ni=1 are G-independent. Then the set {vi + c}ni=1 will generate a subgroup of size at least
2n−1.

Proof. Let V = {vi}ni=1 be independent, and denote by vi the translated vectors vi + c.
Consider the set of (α1, . . . , αn) ∈ Zn satisfying

∑n
i=1 αi = 0. Notice that

n∑
i=1

αivi =
n∑
i=1

αivi + c

n∑
i=1

αi =
n∑
i=1

αivi.

But just as we have seen in Observation 3.7, each such binary vector must yield a unique
element. Constraining the first n − 1 coordinates to {0, 1}, and adjusting αn = −

∑n−1
i=1 αi

so that the sum remains 0, we see at once that |〈v1, . . . , vn〉| ≥ 2n−1 as desired. �

The proof of 3.6 now follows readily.

Proof. (Theorem 3.6) Recall that F = f + c was an affine map, and that V = {vi}ni=1

was a set of G-independent elements. Consider the translates of V by −c: vi = vi − c.
By Lemma 3.8, it follows that the {vi}ni=1 will generate a subgroup of order at least 2n−1.
However, each vi ∈ f(A), and f is a homomorphism. Hence |f(A)| ≥ 2n−1, which gives
|A| ≥ 2n−1 as desired. �

In our applications, we will generally be concerned with functions that have a range in
Gm, corresponding to a set of ciphertexts under a homomorphic encryption scheme. We now
establish a few corollaries specific to this case. First and foremost, we note the following
immediate consequence of Theorem 3.6 regarding diagonalizable matrices (see Example 3.2).

Corollary 3.9. Let F : A −→ Gm be an affine map. If {vi}ni=1 ⊆ F (A) are diagonalizable,
then |A| ≥ 2n−1.

In the diagonal case, independence is clear, but in our applications, diagonalizability often
proves too restrictive a criterion. We establish in what follows a simple technique to lower
bound the size of an independent set in Gm given only that each element of the set does not
have “too many” non-identity coordinates.

Lemma 3.10. Let G be an abelian group and let D = (dij) ∈ Gn×m such that

1. none of the columns d∗j are the zero vector

( 0G
...
0G

)
, and

2. no row di∗ has more than ` non-identity elements

then the there exists a subset of at least dm/`e rows which are G-independent.
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Proof. Let R be a minimal subset of the rows for which no column is the zero vector and
consider the subset X ⊆ [m] of column indexes j for which precisely one r ∈ R has a non-
identity element at position j. This produces a surjective mapping from X −→ R (else the
minimality of R would be contradicted). Choose a right inverse r 7→ jr to this mapping so
that row r is the unique member of R having a non-identity element in column jr. But now
it is easy to see R is diagonalizable: left multiplying by a permutation matrix P1 can sort
the rows of R according to the values of jr, and right multiplying by a permutation matrix
P2 can arrange X = {1, . . . , |R|}, resulting in a diagonal matrix:

P1RP2 =


g1 0G · · · 0G ∗ · · · ∗
0G g2 · · · 0G ∗ · · · ∗
...

. . .

0G · · · 0G g|R| ∗ · · · ∗

 .

As seen in Example 3.2, a nontrivial dependence (Definition 3.1) among the rows is clearly
impossible. By simply counting, we see that |R| ≥ dm/`e, which proves the result. �

Corollary 3.11. Let G be an abelian group and consider a matrix V = (vij) ∈ Gn×m. For
` ∈ Z+, suppose V is such that at most ` coordinates of each row differ from 0G, and that
V has k non-zero columns. Then for any affine map F : A −→ Gm, V ⊆ F (A) implies
|A| ≥ 2dk/`e−1.

Proof. By Lemma 3.10, we see that the sub-matrix consisting of the k non-zero columns of
V will satisfy the hypothesis. Thus, V contains at least dk/`e independent elements of Gm.
Direct application of Theorem 3.6 then yields the result. �

3.3 Arithmetic Circuits of Bounded Multiplicative Depth

There are a number of cryptosystems in the literature that provide homomorphic properties
which allow the computation of arithmetic circuits of bounded multiplicative depth on ci-
phertext (e.g., [BGN05, GHV10, MGH08, Gen09]). Here, we extend Theorem 3.6 to handle
these situations, providing a smooth trade-off between communication and circuit depth for
the characteristic vector problem. For convenience, we work with an equivalent formulation,
and consider polynomials with bounded total degree t over a ring R. Although the following
result will apply to the ring of polynomials over arbitrary R (it need not have an identity
or be commutative), this result has the most meaning in the case of commutative rings with
identity, since in this case the ring of multivariate polynomials coincides precisely with our
notion of “algebraic formula” (cf. Example 4.2).

Corollary 3.12. Let R, S be rings, and let t ∈ N. Let V ⊆ Sr be a set of n independent
elements over (Sr,+). Suppose also that ϕ : R −→ S is a ring homomorphism4 and F :
Sm −→ Sr is such that F = (F1, ..., Fr) with each Fi ∈ S[X1, ..., Xm] of total degree less than
or equal to t. Then V ⊂ F ◦ ϕ(Rm) implies

t
√
n ≤ m t

√
2 log(|R|) + 1.

4We will denote the product map ϕm : Rm −→ Sm also by ϕ when there is no risk of confusion.
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Proof. Let f ∈ S[X1, ..., Xm] be of total degree t. Let Nm,t denote the number of monomials
of f . Since we do not assume that S is commutative, our only bound is

Nm,t ≤
t∑

k=0

mk =

{
mt+1−1
m−1 , if m ≥ 2

t+ 1 if m = 1
(1)

Next observe that by increasing the number of variables, we can simulate the functionality of
f with a polynomial f ∈ S[Y1, ..., YNm,t ] of total degree 1 (i.e., an affine map abelian groups).
More precisely, if

f = s0 +
N∑
k=1

[
sk
∏
j

Xαk(j)

]
(2)

where αk : [t] −→ [m], then we set

f = s0 +
N∑
k=1

skYk. (3)

Finally, observe that

f(X1, ..., Xm) = f(
∏
j

Xα1(j), ...,
∏
j

XαN (j)). (4)

Hence any function on Sm which is realized via f , can also be realized by f . Observe
also that f is an affine map from (S,+)Nm,t −→ (S,+). Let F = (F1, ..., Fr) be as in the
theorem statement. Component-wise applying the transformation in (3) and composing with
ϕ yields an affine map F : (R,+)Nm,t −→ (S,+)r which can simulate the functionality of F .
Hence V ⊂ F ((R,+)Nm,t), and since (R,+), (S,+) are abelian groups, we can directly apply
Theorem 3.6 which yields

|R|Nm,t ≥ 2n−1. (5)

For the case of m ≥ 2, note that 2
m
≥ 1

m−1 , which combined with subadditivity of t
√
· gives

n− 1 ≤ mt+1 − 1

m− 1
log(|R|)

n ≤ 2mt log(|R|) + 1

t
√
n ≤ m t

√
2 log(|R|) + 1

as desired. For m = 1, since t
√
t+ 1 ≤ 2 for t ≥ 1, Equation (5) and subadditivity again yield

n− 1 ≤ (t+ 1) log(|R|)
t
√
n ≤ t

√
2 log(|R|) + 1 (6)

so that indeed for every integer m > 0, t
√
n ≤ m t

√
2 log(|R|) + 1. �
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4 Algebraic Two-Party Protocols

Here, we establish formal definitions for “black-box use of homomorphic encryption,” ex-
pressed as a certain type of two-party protocol. We derive our notion from the classic descrip-
tions of two-party protocols used in the study of communication complexity [Abe80, Yao79].
The work of [Abe80] and [Yao79] can be seen, respectively, as analytic and combinatorial
instantiations of a more generic protocol for computing a function for which the inputs are
spread across two disjoint sets of processors. We describe another natural variation here:
that of an algebraic protocol. To begin, we will first need to lay down some basic definitions
for what it means for a function to be “algebraic” in a sense that is aligned with our purpose
of studying black-box homomorphic encryption.

4.1 Algebraic Formulas as our “Black-Box”

Intuitively, our notion of “black-box” usage of homomorphic encryption is that given some
number of ciphertexts, the only meaningful way to combine them is via the homomorphic
properties of the cryptosystem. In most situations the homomorphic properties are natu-
rally expressed in some algebraic system, e.g., that of a group, or polynomials of bounded
total degree (arithmetic circuits of bounded depth) over a ring. In such cases, an arbitrary
“black-box” manipulation of the homomorphic property amounts to a “formula” in the al-
gebraic system. In this section, we provide a formal definition of this idea and show that it
matches our intuition in familiar settings. Furthermore, we show that the abstract definition
specializes to the formulas that were considered in the previous sections, thereby justifying
our choices.

For intuition, consider first the ring of polynomials R[x1, . . . , xn] over a commutative
ring R with identity. This seems to match our intuition of a generic algebraic formula in the
operations (+, ·). The key concept is that of an evaluation map, which takes an assignment of
elements to variables and yields a homomorphism from R[x1, . . . , xn] −→ R that “evaluates”
each polynomial using that assignment. The following encapsulates these ideas in an abstract
setting.5

Let A be a concrete category with U : A −→ Set the underlying (forgetful) functor. Consider
the following functor:

G = (IA × U) : A - A× Set

where IA is the identity functor. If G has a left adjoint F , we call the category AAdmissible,
and make the following definition.

5The rationale for employing elementary ideas from category theory is twofold. First, it is a rather
economical way to obtain the desired results—sophisticated machinery sweeps away many of the tedious
details. Second (and somewhat more subjective), we feel that the very fact that the definition is expressible
as a universal indicates that it is approaching “the right” definition, or at the very least, it is a natural
one. Indeed, a great many interesting mathematical constructions (especially formulaic constructions) are
expressible in terms of adjoints.
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Definition 4.1. For any pair of objects (A,X) ∈ A × Set, we call F (A,X) the set of all
A-algebraic formulas with scalars in A and variables in X. We denote F (A,X) by the
symbol A[X].

Most all of the categories we are interested in are admissible. As we show below, it suffices
for the category to have coproducts and free objects.

Existence and Uniqueness. More generally, it is easily shown that if H : A −→ B, K :
A −→ C are functors having left adjoints H̄, K̄ and if A has coproducts, then the product
functor H ×K has a left adjoint with object function (b, c) 7→ F̄ bq Ḡc. As shown in [ML98,
pp. 124], U will have a left adjoint for any category of small algebraic systems (including
commutative and non-commutative groups and rings, R-modules, and many others) which
sends a set X to the free object having X as generators. Applying this to our case of interest
(Def. 4.1), we see that A[X] will almost always exist, and that A[X] ∼= Free(X)qA. (Note
that the left adjoint of the identity functor is again the identity.) Since we have expressed
A[X] as an adjoint, the uniqueness (up to isomorphism) comes for free via the usual “abstract
nonsense.”

Evaluation Maps. It will often be convenient to view a formula f ∈ A[X] as a function
from AX −→ A′, corresponding to the evaluation of f at some tuple of points k ∈ AX . This
simple concept of evaluating a formula has a somewhat hard-to-parse description in terms
of our current notation; we thus introduce the following shorthand. For a fixed morphism
ψ : A −→ A′, and for f ∈ A[X], denote by f : AX −→ A′ the map sending

k 7→ϕ−1((Gψ)∗(IdA, k))(f)

= ψ(ϕ−1(IdA, k)(f))
(7)

where ϕ denotes the natural bijection A′F (A,X) ∼= (GA′)(A,X) from the adjunction. Simply
put, f plugs a tuple of elements of A into the variables of f , reduces the expression in the
algebra, and composes with ψ to arrive at the value in A′. The following diagram may also
be helpful in visualizing the situation.

A[X] (A,X)

A′ �
ξA′�

f

A′[UA′]
?

(A′, UA′)
?

〈h, k〉 = ϕ(f)

?

(8)

As the diagram shows, specifying a A-morphism h : A - A′ and a set map k : X −→ UA′

is both necessary and sufficient for specifying a A-morphism from A[X] −→ A′.
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4.2 Discussion and Examples

Although the existence and uniqueness for our settings of interest follows easily from general
categorical facts, we believe it is worthwhile to concretely present a few examples (and non-
examples). A brief list follows, demonstrating (hopefully) that the definition is tightly aligned
with our intuition.

Example 4.2 (Commutative Rings). If R is a commutative ring with identity, we have
that the set of all R-algebraic formulas on variables {xi}ni=1 is simply R[x1, . . . , xn]. ♦

It is well known that R[x1, . . . , xn] satisfies the required universal mapping property de-
picted in (8). This is not terribly surprising, considering that it was polynomials which guided
us toward definition 4.1 to begin with.

It is also interesting to consider the case of a field F. This is of course a commutative ring
with identity, so the formulas described by F [x1, . . . , xn] all make sense, but it seems like we
could accomplish more with division, so that perhaps rational functions would correspond
to algebraic formulas. But notice a critical difference in this case: if the denominator has
roots in F, then we cannot freely assign variables to values and evaluate such a function on
that assignment. Thinking categorically, indeed, there is no “free field.” This could have
implications in cryptocomputing protocols as well: for example, what if some computation
on ciphertext corresponded to a division by zero? The cryptocomputer should not be able to
differentiate from division by a unit, yet the former raises an exception that ought to prevent
any further computation.

Note that in non-commutative rings, the set of formulas is more complex than just
R[x1, . . . , xn] since coefficients and variables cannot always be written so concisely. Section 6
provides a (somewhat extreme) example of this complexity.

Example 4.3 (Groups). For a group G, the set of all G-algebraic formulas on a set of
variables X is Free(X) ∗ G, the free product of the free group on X with G. The elements
are arbitrary words in X, mixed with elements of G, which indeed embodies the most generic
formulas or straight-line programs that could be carried out using only the group operation.
♦

Example 4.4 (Abelian Groups). If G is an abelian group, the set of G-algebraic formulas
over n variables is simply Zn⊕G. Note that every element in Zn⊕G corresponds to an affine
map, which was the focus of a number of results in Section 3. This again validates our initial
intuition: a subset of affine maps play the very same role for abelian groups as polynomials
do for commutative rings. However, not every affine map comes from such a formula: for
a simple example, consider G = Zp × Zp and ϕ ∈ homZ(G,G) by (a, b) 7→ (b, a). Thinking
again of cryptographic application, such a non-formulaic affine map could still be computed
on ciphertext, simply by shuffling ciphertexts around. This highlights the importance of the
more general formulation of Theorem 3.6. ♦
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4.3 Algebraic Protocols

With Definition 4.1 in hand, we may now return attention to the main point of defining
an algebraic protocol. We introduce here yet another specialization of a “generic” model
underlying the works of [Abe80, Yao79] which restricts to algebraic functions.

A Generic Protocol. We first describe an abstract “protocol pattern” which can be seen
as a generalization of both [Abe80] and [Yao79]. Let X, Y be disjoint sets (not necessarily
finite), and consider a function Φ : X × Y −→ Z. Two players A and B will take turns
communicating information to each other to compute Φ. The protocol proceeds in rounds,
where each party computes a function of her input and the communication history from
prior rounds, and then sends the result to the other. We require that the output of these
intermediate functions all lie in Z, which serves as a unit of communication. More formally,
we have round functions ar, br:

ar : X × Zr−1 −→ Z, br : Y × Zr −→ Z.

Define functions αr(x, y), βr(x, y) to be the values at the internal nodes after r rounds of the
protocol. More formally, we can define α1(x, y) = a1(x), β1(x, y) = b1(y, a1(x)), and then
recursively define the others via

αr(x, y) = ar(x, β1(x, y), . . . , βr−1(x, y))

βr(x, y) = br(y, α1(x, y), . . . , αr(x, y)).
(9)

We say that the protocol implements Φ if Φ = αr or Φ = βr for some r.6 Note that we are
assuming synchronous communication, and that we assume A speaks first. The cost with
respect to Z of the protocol for the function Φ is defined to be the number of elements of
Z that have been transmitted, which is 2r− 2 in the case that A computes the final output,
and 2r − 1 if the computation ends with B. If Z is finite, then we define the concrete
cost to be log |Z| times the cost with respect to Z. The communication complexity is
defined to be the minimum cost ranging over all protocols implementing Φ, and the concrete
communication complexity is defined similarly. We remark that rather than forcing the
parties to alternate communicating single elements of Z, we could allow for an arbitrary
communication pattern. However, it is easy to see that this will reduce the communication
of any protocol by at most a factor of 2.

Adaptation to the Algebraic Setting. In the generic protocol above, Yao’s model sets
X = {0, 1}m , Y = {0, 1}n , Z = {0, 1}, and all the functions involved are boolean functions.
In Abelson’s model, X = Rm, Y = Rn, Z = R, and all functions involved are continuous
(usually in C2). For the purposes of studying the black box use of homomorphic encryption,
we present yet another adaptation.

6In many instantiations, we can force the worst-case behavior if the number of rounds is data-dependent
by simply echoing the output for the remaining rounds. However, for most of our situations of interest, the
number of rounds will be independent of the inputs.
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Definition 4.5. Let X, Y be sets, and let H,Z be a objects in an admissible category Ω.
An Ω-Algebraic two party protocol for a function Φ : X × Y −→ Z consists of two sets of
functions {ai}ri=1 , {bi}

r
i=1, an Ω-morphism ψ : H −→ Z, and a single bit q, such that

1. ∀i ∈ [r], ai : X −→ H[x1, . . . , xi−1] and bi : Y −→ H[x1, . . . , xi], with H[x1, . . . , xi] as
in Definition 4.1;

2. with α, β the iterated applications of the round functions as in (9),

Φ =

{
ψ ◦ αr, if q = 0

ψ ◦ βr, if q = 1.

Remarks and Discussion. Conceptually, our model of “black box” use of homomorphic
encryption is as follows: we suppose that the messages from the client consist of values en-
crypted under some homomorphic scheme, and furthermore, that there is nothing “useful”
that can be done with these encrypted values beyond the provisions offered by the homomor-
phic properties of the cryptosystem. Hence, the functions computed by the parties in the
protocol are restricted to formulas in the algebra. A straightforward analog of [Abe80] would
suggest that we require Z to be an object of an admissible category Ω, set X = Zm, Y = Zn,
and lastly force the function Φ to be an algebraic formula in Z[x1, . . . , xk] (see 4.1). How-
ever, we contend that such a model would be too restrictive for our setting. Thinking of
cryptocomputing protocols, focus in particular on the functions that a party computes based
on her own inputs. If these inputs are not encrypted, It seems unjustified to restrict the
computation to something algebraic. Moreover, it may be the case that the inputs do not
have a natural representation as elements of an algebraic structure to begin with (think for
example the database in a PIR protocol, or the list of keywords in a private searching pro-
tocol). To remedy this situation, we allow any function to be computed on a party’s own
input, and only restrict the functions of the history to be algebraic. As a final relaxation, we
allow the intermediate values to take on values in a different domain than Z. In particular,
we fix an Ω-morphism ψ : H −→ Z, so that H will be the unit of communication for the
protocol. We also remark that while it seems that a more general definition might include
different domains for the history at each stage, this is not a useful modification for most set-
tings. For example in the case of affine maps (the setting of our lower bounds), this would be
superfluous, as any such protocol implies a protocol as in Definition 4.5 with communication
complexity bounded above by the original. Moreover, in the case of finite groups, the order
of the homomorphic image of an element will divide the order of the original element. Thus
in information theoretic terms,7 when computing the k-th map as a function of the history,
it would have been be no less efficient to have communicated each element as coming from a
subgroup of Akk than to communicate an element of A1 × · · · × Ak.

We may now state and prove a general lower bound for algebraic protocols based the
results of Theorem 3.6.

7That is, assuming that we are afforded a dense representation for elements of any subgroup of Ak
k.
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Proposition 4.6. Let G be a finite abelian group, and let Φ : X × Y −→ G be such that
∃y ∈ Y for which Φ(X × {y}) contains a set of n G-independent elements. Then any
group-algebraic two-party protocol (Definition 4.5) implementing Φ necessarily has concrete
communication complexity of n− 1 bits.

Proof. The proof is a straightforward consequence of Theorem 3.6. Let Φ satisfy the hypothe-
ses of the proposition, and let {ai}ri=1 , {bi}

r
i=1 be the round functions of a group-algebraic

protocol implementing Φ. Consider the function bry, viewed as a function Hr −→ Z via the
correspondence in Equation (7). Since the protocol’s output factors through bry, it must be
the case that bry(H

r) also contains a n independent elements. Furthermore, note that in the
case of groups, any bry ∈ H[x1, . . . , xr] can be represented by an affine map. Theorem 3.6
then implies that |Hr| ≥ 2n−1 so that r log |H| ≥ n−1. This proves the result, since r log |H|
of course lower bounds the concrete complexity of the protocol for Φ, which must be at least
(2r − 1) log |H|. �

Remarks. Note that a symmetric argument may be made for the case of Φ({x} × Y )
containing a complete set of characteristic vectors. It may also be of interest to note that
the lower bounds in this model are actually above the trivial upper bounds shown for the
classical setting.

5 Applications

We begin with the observation that numerous cryptocomputing functionalities have natural
solutions in terms of algebraic protocols (Definition 4.5), citing a number of examples in
the literature. We then reason about the limitations of these natural, algebraic approaches,
deriving lower bounds on the communication complexity from Proposition 4.6. We hope
that these techniques will provide researchers and practitioners with a useful sanity check for
a protocol’s feasibility. Applying these bounds may not give an absolute impossibility, but
it can quickly eliminate a very large space of what might otherwise seem to be reasonable
approaches to a problem.

5.1 Private Database Modification (PIR Writing)

As seen in [BKOS07], the ability to privately modify an encrypted database in a commu-
nication efficient way could provide a valuable tool for private computation. One natural
approach to such a problem (and indeed, the one taken by [BKOS07]), is to proceed in a
manner analogous to many PIR protocols, and use homomorphic encryption as a building
block. Such a protocol could communicate encrypted values which encode the modification
to take place, and then the database owner would perform algebraic manipulations on the
encrypted database and the values from the client to update the database contents. Since
the communication consists solely of encrypted values, CPA-type security comes easily.

Ignoring security for a moment and focusing solely on a functional description, we can
model PIR writing as a two party protocol for Φ : X × Y −→ Y in which the client holds
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an index x ∈ X = {1, . . . , n}, the server holds a database y ∈ Y = Zn, and Φ satisfies
(Φ(x, y))i 6= yi ⇐⇒ i = x. That is, the protocol produces a new database which differs only
at position x. It is easy to see that Proposition 4.6 has the following consequence.

Corollary 5.1. The concrete communication complexity for any abelian-group-algebraic pro-
tocol for PIR writing is at least n− 1 bits.

Proof. Using the notation established above, we have the client’s input domain as X =
{1, . . . , n}, and the server’s input domain is Y = Zn. By our hypothesis, Z is an abelian group
(which would be natural if the protocol were implemented using homomorphic encryption).
The functionality of the protocol may now be expressed as Φ : X × Zn −→ Zn such that
Φ(x, y) = y + δi,x where δi,x 6= 0Z ⇐⇒ i = x. Now fix a database y = (0Z , . . . , 0Z) which
has the identity in every position. We see at once that Φ(X × {y}) is diagonalizable, and
thus contains a set of n independent elements. Hence, by Proposition 4.6, any abelian group
algebraic protocol implementing Φ must have concrete communication complexity n− 1. �

5.2 Algebraic and Homomorphic Protocols for PIR

As a second corollary, we consider “homomorphic” protocols for private information retrieval.
Roughly speaking, we call a PIR protocol “homomorphic” if the responses to queries are
encryptions of the desired database elements under a homomorphic encryption scheme.

Motivation. Such a protocol could be used to reduce communication complexity in a
number of non-interactive cryptocomputing settings. Consider a protocol between parties A
andB in which encrypted tags are associated to each element of a universe setX, and in which
only a small subset S ⊂ X are given non-identity tags. So that B may perform computations
on the tags, we would like them to be homomorphically encrypted. For example, in a natural
PIR-writing scheme based on homomorphic encryption (see 5.1), X = [n] and S is the small
set of indexes that A would like to update. To reduce communication, A can transmit
homomorphic PIR queries corresponding to S rather than the tags for the entire set X. B
will then construct databases “on the fly” against which the queries will be run. For PIR-
writing, the databases would be characteristic vectors for each index i ∈ [n], leaving B with a
homomorphically encrypted characteristic vector for S after executing the queries. A similar
technique was used in [OS07] for reducing the program size in private keyword search.

Examples and Intuition. There are a number of examples of homomorphic PIR in the
literature. Consider the PIR protocol of [KO97]. In their initial scheme, the database is
represented as a

√
n ×
√
n matrix X of bits, and a user’s query is a column vector of

√
n

ciphertexts (in a homomorphic encryption scheme over an abelian group). The server re-
sponds to a query by computing the product8 X · v and returning the resulting

√
n values.

In more detail, to query an index (i, j), the user supplies a vector which is an encryption

8To parse this statement algebraically, treat the bits of X as integers, and the ciphertexts as (abelian)
group elements. Then Xi,j · vj refers to the Z-module action.
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of a non-identity element at position j and the identity in all other locations. The vector
returned by the server is then an encryption of column j of the database, from which entry
(i, j) is easily retrieved. Notice that the response to a query contains an encryption, under a
homomorphic scheme, of the value Xi,j. However, it is important to note that the response
contains multiple encrypted values in addition to the desired encryption of Xi,j. To fur-
ther reduce the communication complexity, the authors then apply the scheme recursively,
treating the batches of results as databases for further queries. Note that responses in this
modified scheme are no longer homomorphic encryptions, but nested encryptions. Thus, we
are faced with a trade-off between having a succinct response (as in the recursive scheme
with nested encryption), or having a response in which algebraic structure is retained (as in
the initial scheme, where the response contains E(Xi,j), along with

√
n − 1 other “uninter-

esting” values). As discussed in the paragraph above, if we could find a PIR protocol which
combined both of these elements, it would have a number of applications in non-interactive
cryptocomputing protocols. In what follows, we present some evidence for the difficulty in
constructing such schemes with somewhat homomorphic encryption, showing for example
that if using somewhat homomorphic encryption in a black-box manner, the product of the
client’s and the server’s communication must be linear in the database size.

Rather than arguing the case of homomorphic PIR directly, we consider a weaker no-
tion regarding simple information retrieval, and prove bounds for any algebraic protocol
implementing this functionality, thus lower-bounding the efficacy of “natural” solutions to
homomorphic PIR, including all those presented in the literature. Background and notation
for general PIR schemes can be found in Section 2.2. Again, we let (Query,Reply,Reconstruct)
denote the 3 algorithms that comprise a PIR protocol.

In what follows we follow the notation established in Section 2.2.

Definition 5.2. A Multi-Information-Retrieval protocol (abbr. MIR) between a client U
and database DB consists of two algorithms, (Query,Reply) such that Reply(Query(i)) returns
a subset {Xα}α∈S(i) where S : [n] −→ P([n]) is such that i ∈ S(i).

A few remarks are in order. First, note that an algebraic multi-information-retrieval pro-
tocol together with a homomorphic encryption scheme for the given algebra gives rise to a
PIR protocol by simply encrypting the query, performing the actions of Reply via the homo-
morphic properties, and setting Reconstruct to perform decryption and select the appropriate
element from the resulting list.9 However, note that one must know the sequence in which
elements are returned to allow retrieval of the appropriate element, yet this was not speci-
fied in the definition, nor was the sequence even required to be a function of i alone. The
definition is left in this weak form primarily because the proof of Corollary 5.3 goes through
without additional constraints. Note also that for a PIR protocol constructed in this manner,
Reconstruct amounts only to decryption, and thus functions of PIR queries can be computed
without the secret key by simply multiplying the vector of ciphertexts. As discussed above,
this can be a useful tool in cryptocomputing protocols.

9Of course, the resulting PIR protocol may be trivial if the communication is large.
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Corollary 5.3. Let P be a non-interactive abelian-group-algebraic two party protocol which
implements multi-information-retrieval, and suppose that each query returns at most ` ele-
ments of the database. Then the concrete communication complexity of P will be at least
dn/`e − 1 bits.

Proof. Since Definition 5.2 mandates that the output is a subset of one of the inputs, we
see that in the algebraic setting, P implements a function Φ : X × Gn −→ G` where G
is an abelian group. For a particular database y, denote the database’s function in the
protocol by by. The by will always be affine maps which functionally take the history Hr to
an output element v ∈ G`. We now “open the box” of P , and construct a modified protocol
P ′ which outputs elements of Gn rather than G`. Denote by σ : G` −→ G the coproduct
map, which simply sums all ` coordinates together. Consider databases yi ∈ Gn defined by
yij 6= 0G ⇐⇒ i = j. For protocol P ′, we leave the client’s function(s) identical to those of
P , but for the database, we ignore the input, and define its output function b′∗ as

b′∗ = (σ ◦ by1 , . . . , σ ◦ byn).

That is, the database takes a query for j and then ranges over all yi, i ∈ [n], computing for
each, the output that P would have produced. It then collapses each output to a single value
of G by summing the coordinates, and finally outputs a single vector vj. By hypothesis, each
of the vj can have at most ` coordinates which are non-identity. But now by Corollary 3.11,
we see that P ′ is such that Φ(X × {y}) contains dn/`e independent elements, and so by
Proposition 4.6, the concrete communication complexity of P ′ must be dn/`e−1 bits. Noting
that the messages from the client were identical in both P ′ and P , we similarly have bounded
the concrete communication complexity of P , completing the proof. �

Using Corollary 3.12, we can generalize this result to cryptosystems that may have addi-
tional homomorphic properties, showing Ω( t

√
n) bounds if total degree t polynomials over a

ring R can be evaluated on ciphertext.
For example, if given a cryptosystem that allows polynomials of fixed total degree t to be

computed on ciphertext over some ring R, we can easily construct an algebraic PIR protocol
with sender-side communication Θ( t

√
n) and server-side complexity Θ(1) (see § 8 for details

of a simple example). However, this is in fact meets a lower bound: In general, if such a
protocol has sender-side complexity g(n) and server-side complexity h(n), then we can show
that g(n)h(n) = Ω( t

√
n), which is a simple consequence of Corollary 3.12.

5.3 Private Keyword Searching

As another relatively simple corollary, we partially resolve an open problem posed in [OS07]
regarding extending the query semantics for private searching on streaming data. In particu-
lar, we demonstrate lower bounds for a class of techniques built upon somewhat homomorphic
encryption, which includes the method of [OS07].
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The original protocol provided a means for “conditionally” encrypting documents match-
ing a query into a buffer, making use of additively homomorphic encryption. As it turns out,
we do not need many of the details of [OS07] in what follows, as a simple functional skeleton
of the protocol will suffice for our analysis. More specifically, we analyze a simplified version
of the protocol (which in fact was used as a subroutine of [OS07]) that outputs a non-identity
element for matching documents, and an identity element otherwise. We can phrase this sim-
plified protocol in terms of Definition 4.5 as follows. For a dictionary D ⊆ {0, 1}∗, we define
disjunctive keyword search functionality as a function Φ : P(D) × P(D) −→ {0, 1}
such that

Φ(x, y) = 0 ⇐⇒ x ∩ y = ∅. (10)

Similarly, we define conjunctive keyword search functionality as a function Φ : P(D)×
P(D) −→ {0, 1} such that

Φ(x, y) 6= 0 ⇐⇒ x ⊆ y. (11)

To make the protocols algebraic, say over an abelian group G, we replace 0 with 0G in (10)
and (11).10 Using the cryptosystem of [BGN05], it was shown how to perform a query
consisting of a single conjunction, but no general solution was known. Two of the primary
open questions from [OS07] were to

1. reduce the dictionary size;

2. perform conjunctive queries.

First, we note that these are equivalent questions to some extent: one can trivially perform
k-ary conjunctive queries by expanding the dictionary to

(|D|
k

)
elements, consisting of all

(lexicographically sorted) k-tuples of D, and performing a disjunctive search for the singleton
consisting of the original subset x. (The server of course must also be modified to parse
its document as a list of all subsets of size k.) Hence, if it were possible to reduce the
dictionary to k

√
|D|, then k-ary conjunctions could be evaluated without increasing the space

requirements beyond the original Õ(|D|) (although not without some performance cost in
parsing for the server). On the other hand, if one could perform conjunctive queries, then the
dictionary size could be reduced as well: consider a simplified setting in which every word
has exactly 2 syllables. In this case, a search for a single word could be implemented as a
search for a conjunction of the syllables (processing each word of the document separately).
The lack of entropy of most spoken languages makes the actual savings difficult to estimate,
but one could reasonably expect a reduction in the dictionary size whenever many words
have common syllables, or if a dense encoding is available.

We now show a partial negative answer to both questions, demonstrating that no algebraic
protocol over an abelian group can perform conjunctions or reduce dictionary size. Then,
by applying Corollary 3.12, we can show more generally that evaluating polynomials of total
degree t can at best perform t-ary conjunctions, or reduce the dictionary size to t

√
|D|.

10Note that 0 could be replaced with any other element of G, and Corollary 5.4 would still hold with only
minor modifications to the proof.
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Corollary 5.4. Any non-interactive abelian-group-algebraic protocol for k-ary conjunctive
keyword search (Equation (11)) relative to a dictionary D necessarily has concrete commu-
nication complexity

(|D|
k

)
− 1, where |D| denotes the number of words in D.

Proof. Similar to the proof of Corollary 5.3, we can open the box, and run a single query, say
for a subset S ⊆ D of size k, against many documents which range over all subsets of D of size
k. We then output the resulting vector, which by definition (see Eq. (11)) will have a single
non-identity coordinate. Now ranging the query over all

(|D|
k

)
possibilities manifestly produces

a diagonal matrix over G(|D|k ), so that Φ(X × {y}) contains
(|D|
k

)
independent elements.

Proposition 4.6 now yields the result. �

We believe that this example illustrates particularly well the utility of our results. The
method of [OS07] critically depends on the ability to produce encryptions of non-identity
elements conditioned upon whether or not a document matches some set of keywords. The
elementary observation that this functionality gives rise to many algebraically independent
elements at once gives insight as to how well it can be implemented with somewhat homo-
morphic encryption, and in fairly general terms. Indeed, it seems that improving the work
of [OS07] would require either a radically different approach, or the usage of homomorphic
encryption supporting a broader set of operations, which currently comes at a steep cost. It is
this type of information that we hope will save researchers time and effort in the future. The
hypothesis for bounds (large independent sets) are generally easy to recognize, and thus can
help quickly eliminate a large space of what might otherwise seem to be feasible approaches
to a problem.

6 FHE and Finite Non-Abelian Simple Groups

In this section, we show an equivalence between fully homomorphic encryption over a ring
(say Z2) and group homomorphic encryption for finite non-abelian simple groups. This result
resolves an open question posed by Rappe [Rap06]. Before getting into the details, we take a
moment to review the history of this, and related problems, and how they have been rediscov-
ered and recast over the years. The origins of the study appear to be a lesser known result by
Maurer and Rhodes [MR65], which actually gives the main result of Barrington [Bar86]—20
years earlier. Although the terminology of “branching programs” and NC1 circuits were not
yet in use, [MR65, KMR66] has, as an immediate consequence, the fact that every fan-in
2 circuit of depth d can be represented with a width 5 permutation branching program of
length `d for a constant `. Conversely (with sufficient massaging), [Bar86] can be seen to give
a result similar to [KMR66].

6.1 Representing Functions with Non-abelian Simple Groups

Krohn, Maurer and Rhodes. Let G be a finite non-abelian simple group, let F : Gn −→
G be an arbitrary function, and let X = {x1, . . . , xn} be a set of variables. In a nutshell, the

23



work of [MR65] states that
∃f ∈ G[X] | f = F (12)

where G[X] is as in Definition 4.1 and f is the induced function of the formula f (see Eq (7)).
The 1966 work of Krohn, Maurer and Rhodes [KMR66] takes this somewhat abstract result
and gives it a more computational flavor. They describe a special type of DFA which is
easily seen to be precisely the permutation branching programs of [Bar86]. In more modern
language, their main result is that any boolean function can be computed by a width 5
permutation branching program. Although bounds on length for certain circuit classes were
not explicitly stated, it is easy to see that the result implies that for a fan-in 2 circuit of depth
d, the branching program needs only length `d for some constant `, which is essentially the
main result of [Bar86]. The details are as follows. Let C be a circuit of depth d with fan-in
bounded by a constant c, and pick an encoding of {0, 1} ↔ {α, β} ∈ G. Using this encoding
we can view the standard arithmetic gates for ∧,∨,¬ as functions {α, β}c −→ {α, β}, and
thus by (12), we can implement each of them as formulas in G[X]. Since the fan-in is
bounded, each of these formulas will have some constant length. Let ` denote the maximum.
Then by starting at the output gate and recursively filling in the variables with the formulas
corresponding to the input wires, we can construct a branching program which has length
at most `d, and can compute F . The width w of the branching program corresponds to the
smallest w for which G has a faithful representation in the symmetric group Sw. Instantiating
the scheme with A5 of course gives the result for width 5.

Barrington’s Results. Barrington [Bar86] shows that permutation branching programs
can be used to represent boolean functions. In particular, let f : {0, 1}n −→ {0, 1} be any
boolean function. Then f can be modeled as a function α : [`] −→ [n] and a sequence

{p0i , p1i }
`
i=1 of S5 permutations as follows. f(x1, . . . , xn) = 0 if and only if

∏̀
i=1

p
xα(i)
i = e

where e denotes the identity element. Furthermore, it can be arranged so that f(x1, . . . , xn) =
1 is represented by the product evaluating to a specific 5-cycle. Some important remarks:

• In the construction, ` depends on the representation of f ; in particular, ` = 4d if f is
represented as a boolean circuit of depth d.

• The “internal wires” of the branching program do not have a uniform representation
of 0/1. As such, the construction requires that the entire branching program is known
in advance; one cannot concatenate additional instructions ad-hoc.

• From this result, it is not clear that an S5-homomorphic encryption would give rise to
FHE. On the surface, it seems that it would allow one to compute encrypted branching
programs (or NC1 circuits) on plaintext, a problem which already has a number of
solutions in the literature, e.g., [SYY99, Bea00, Rap06]. (However, with sufficient
massaging, [Bar86] can be converted into similar statements to [Rap06, MR65].)
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In contrast, our result shows at once that S5-homomorphic encryption (or homomorphic
encryption for any other group containing a finite non-abelian simple group) would give the
very same benefits as FHE. Moreover, it has as a simple corollary the main result of [Bar86]
(although with a few different constants).

Our Approach. We follow the approach of [Rap06] (which utilizes some techniques from
[BOC92]), but rather than focusing on an explicit group ([Rap06] makes use of SL3(F2)
and S7), we extend the techniques to any finite non-abelian simple group. Both our result
and that of [Rap06] can be thought of as specializations of [MR65]. Nevertheless, there
are some advantages of our work in contrast to [MR65]. The most prominent, perhaps, is
that our results provide a more direct, simple, and intuitive proof. Rather than attacking an
arbitrary boolean function head-on as was done in [MR65], we instead focus on a universal set
of gates—in particular, NAND. The following observation illustrates the high-level approach.

Observation 6.1 (Informal). Let G be a group and suppose that β, β−1 ∈ G can be
expressed as a products

β =
k∏
i=1

fi(β, β), β−1 =
∏̀
i=1

hi(β, β) (13)

where each fi, hi is a commutator of conjugates of its inputs. That is, each function maps
(x, y) 7→ [gxg−1, hyh−1] for some g, h ∈ G. Then, identifying 0↔ e and 1↔ β, the formula

AND(x, y) =
k∏
i=1

fi(x, y) (14)

behaves precisely like AND, and the formula

NEG(x) = β
k∏
i=1

hi(x, x) (15)

behaves precisely like boolean negation.

As we demonstrate below, any element β in a finite non-abelian simple group satisfies the
condition in (13). Note also that by the celebrated Feit-Thompson theorem [FT63], we can
choose β to have order 2. In this case, we can replace (15) with NEG(x) = βx. We also note
that the collapsing of certain commutator formulas when a single variable is the identity is
something of a common thread between all of the main results on this topic. The role of
simplicity is to ensure that commutator formulas are “expressive enough” to represent many
functions, and for this, simple groups seem ideal—intuitively, one could think of simple groups
(which are always perfect) as being as “non-commutative as possible.”

Lemma 6.2. Let G be a finite group and suppose that S ⊂ G is conjugation invariant ( i.e.,
∀s ∈ S, g ∈ G we have gsg−1 ∈ S). Then 〈S〉 C G.
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Proof. Let x ∈ 〈S〉. Then x = s1s2 · · · sk for some k ∈ Z. Let g ∈ G be an arbitrary element.
Observe that

gxg−1 = g(s1s2 · · · sk)g−1

= gs1(g
−1g)s2(g

−1g) · · · sk−1(g−1g)skg
−1

= (gs1g
−1)(gs2g

−1) · · · (gskg−1)
= s′1s

′
2 · · · s′k ∈ 〈S〉

since all s′i ∈ S by our assumption. Therefore, 〈S〉 C G as desired. �

For an element x ∈ G, we denote the conjugacy class by ClG(x) = {gxg−1 | g ∈ G}.
Recall that G acts naturally on ClG(x) by g ·s = gsg−1, and note that the action is transitive.

Lemma 6.3. Let G be a finite non-abelian simple group, and let α, β ∈ G with β 6= e.
Then there exist functions {fi(x, y)}ki=1, each of the form (x, y) 7→ [gxg−1, hyh−1] such that

α =
∏k

i=1 fi(β, β).

Proof. Let G be as in the lemma, and let β ∈ G. Let S = [ClG(β),ClG(β)], and consider
〈S〉. First note that since the set S is conjugation-invariant, 〈S〉 C G by Lemma 6.2. We
will furthermore show that |S| > 1. The action of G on ClG(β) induces a homomorphism
ϕ : G −→ Sm. ϕ is easily seen to be injective: m > 1 since Z(G) must be trivial; and since
the action is transitive, ker(ϕ) 6= G, and thus is trivial as G simple. Therefore, every element
of G acts non-trivially (by conjugation) on the set ClG(β). In particular, this shows that at
least two different conjugates of β do not commute, and hence S 6= {e}. Since G is simple,
we conclude that 〈S〉 = G, and the lemma now follows. �

We now formalize Observation 6.1 and apply it to finite non-abelian simple groups via
Lemma 6.3. First, we must make precise the notion of representing a boolean function
f : {0, 1}m −→ {0, 1} via a group formula f̃ ∈ G[x1, . . . , xm], as alluded to in the observa-
tion. There are a number of seemingly natural choices as to how one represents binary input
as group elements, but some are too weak to be of much use. For example, if we allow any
embedding ι : {0, 1}m −→ Gm for the representation, then it may be possible to push the

majority of the work of f into ι rather than f̃ . So at a minimum, we would like to fix a single
pair of group elements (g0, g1) which will represent (0, 1) in every coordinate. If we further-
more use the same (g0, g1) to represent bits in the output, then we gain additional advantage
in terms of modularity: we can then compose representations of different boolean functions
to obtain a representation of the composition. This is not only important for applications to
homomorphic encryption, but it also allows us to prove functional completeness results by
arguing about a small set of universal functions, e.g., NAND. Hence we make the following
definition.

Definition 6.4. A formula f̃ ∈ G[x1, . . . , xm] represents a boolean function f : {0, 1}m −→
{0, 1} if there exists a pair of elements g0, g1 ∈ G such that f = ι−1 ◦ f̃ ◦ ιm, where ι denotes
the map sending i 7→ gi for i ∈ {0, 1}.
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Note that in the above definition, f̃ is used synonymously with the function from Gm −→ G
coming from the evaluation map, as in Equation (7), and that ιm denotes the m-fold product
of the map ι, rather than repeated composition. We are now ready to state and prove the
following:

Theorem 6.5. Let G be a finite non-abelian simple group. Then any boolean function

f : {0, 1}m −→ {0, 1}

can be represented by a formula f̃ ∈ G[x1, . . . , xm] in the sense of Definition 6.4. Moreover,
the elements g0, g1 used to represent bits can be chosen independently of the function f .

Remarks. Note that as a simple corollary, any function f : {0, 1}m −→ {0, 1}n can also
be represented by a group formula by breaking f into component maps f = (f1, . . . , fn) and
applying the result to each component function.

To prove the theorem, we will show that the function NAND(a, b) can be represented by a
formula in G as described above, which suffices to prove the theorem since any such function
f : {0, 1}m −→ {0, 1}n can be written in terms of compositions of NAND alone. Since our
input/output representation is uniform (we always identify the same elements g0, g1 with 0
and 1) the composition will be consistent, letting us represent any function via a composition
of our representation of NAND.

Proof. Set g0 = e, the identity element of G, and let g1 ∈ G be of order 2 (such an element
is guaranteed to exist by the Feit-Thompson theorem). Denote by ι the map sending i 7→ gi
for i ∈ {0, 1}. By Lemma 6.3, we can find fi(x, y) as in Observation 6.1 such that g1 =∏k

i=1 fi(g1, g1). But now one may easily verify that for any a, b ∈ {0, 1}, we have

NAND(a, b) = ι−1

(
g1

k∏
i=1

fi(ι(a), ι(b))

)
.

�

6.2 Homomorphic Encryption

We now prove a straightforward corollary of Theorem 6.5, which asserts that constructing
a homomorphic encryption scheme over any finite non-abelian simple group is equivalent
to constructing a fully homomorphic encryption scheme. First, we need to establish a few
definitions.

At a high level, homomorphic encryption schemes provide facility for computing on en-
crypted data. That is, given encryptions of values x1, . . . , xn, and the public key alone, one
can compute encryptions of non-trivial functions of x1, . . . , xn. In most cases, the domain
for the plaintext and ciphertext are endowed with an algebraic structure, and the functions
that can be computed on encrypted data are algebraic formulas. If the binary operation of
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Figure 1: Possible G-circuit for the formula y(x1, x2) = hx1h
−1gx2g

−1. Bold edges correspond
to ω(e) = 0; i.e., they are the left inputs to a multiplication gate.

a group can be computed on encrypted data, we call the system “group homomorphic”, or
more simply, “homomorphic”. If both addition and multiplication for a ring with identity
can be computed, the system is called “fully homomorphic.” Intuitively what we would like
from our definition is that any formula can be computed on encrypted data, with only a small
additional cost in contrast with the effort required to compute the same function directly on
the plaintext. For commutative rings, we can use traditional arithmetic circuits to measure
of the cost, but the possible non-commutativity of groups introduces a slight complication
into our circuit definition. To define a G-Circuit, we begin as usual with a directed, acyclic
graph V,E in which every node has indegree less than or equal to 2. Nodes with indegree
0 are either variables or constants, nodes with indegree 1 correspond to inverse gates, and
nodes with indegree 2 are product gates. To specify the order of the operands to a multi-
plication gate, we add to our definition a function ω : E −→ {0, 1} such that for any edges
with common destination (v, w), (v′, w), it holds that ω(v, w) 6= ω(v′, w). Edges labeled 0
(resp. 1) will correspond to the left (resp. right) input of the gate, and naturally, ω(v, w)
has no meaning of w is an inverse gate (indegree 1). A G-circuit then computes a formula
(see Definition 4.1 and Equation (7)) in the same way as a classical arithmetic circuit, with
each gate’s output wire set to the product (or inverse) of its children. The size of a G-circuit
is defined to be the number of gates. An example G-circuit is depicted in Figure 1.

Lastly, we will be interested in functional equivalences between G-circuits and boolean
circuits. Suppose that a boolean circuit C has variable input gates x1, . . . , xn, and output
gates y1, . . . , ym. What is meant by a functional equivalence between C and a G-circuit
C̃, is that C̃ also has n input variables and m outputs, and that there exists a bijection
ι : {0, 1} −→ {g0, g1} ⊂ G such that for any assignment a : {x1, . . . , xn} −→ {0, 1}, the

assignment ι ◦ a in C̃ will yield outputs ỹ1, . . . , ỹm such that ι−1(ỹ1), . . . , ι
−1(ỹm) are the

outputs of C. That is, modulo relabeling {0, 1} with elements of G, both C, C̃ compute the
same function.

Lemma 6.6. For every finite non-abelian simple group G, there exists a constant γG such
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that for any boolean circuit C in ¬,∧,∨ of size N , there exists a functionally equivalent G-
circuit of size γGN . Moreover, the correspondence ι : {0, 1} ↔ {g0, g1} for the equivalence
can be chosen independently of the circuit C.

Proof. From Theorem 6.5, there exist f∧, f∨ ∈ G[x, y] and f¬ ∈ G[x] such that ι−1 ◦f∗ ◦ ι = ∗
for ∗ ∈ {¬,∧,∨}, where ι denotes a bijection {0, 1} ↔ {g0, g1}. Note that each f∗ is simply a
word in G and {x, y} (see Example 4.3). Let ` be the maximal length of the words f¬, f∧, f∨.
Then there exist G-circuits A¬, A∧, A∨, each of size at most 3` − 1 computing the same
functions, since each formula f∗ (without any optimizations) could be implemented with at
most `− 1 multiplication gates, ` inverse gates, and ` input gates. Now let C be a boolean
circuit of size N . Since each A∗ expects the same representation (g0, g1) for bits, we can
compose copies of A¬, A∧, A∨ in precisely the same way as C to produce a G-circuit with the
same functionality as C only with g0, g1 in place of 0 and 1. This circuit has size at most
N(3` − 1). Since γG = 3` − 1 is a constant which only depends on G, this completes the
proof. �

We now define group homomorphic encryption schemes and fully homomorphic encryption
schemes in terms of G-circuits and boolean circuits, and prove their equivalence when G is
finite, non-abelian and simple.

Definition 6.7. Let G be a finite group and let σ ∈ Z+ be a security parameter. A Group-
Homomorphic Cryptosystem over G is a cryptosystem (Definition 2.1) with plaintext
space G, and the following additional property. Suppose that (PK, SK) = KeyGen(1σ). Then

for any G-circuit A of size N with k input gates, there exists a boolean circuit Ã of size at
most σKN for a constant K such that for all h1, . . . , hk ∈ G,

Dec(Ã(PK,EncPK(h1), . . . ,EncPK(hk))) = A(h1, . . . , hk)

holds with all but negligible probability, ranging over the coins of KeyGen and Enc.

Definition 6.8. Let let σ ∈ Z+ be a security parameter. A Fully Homomorphic Cryp-
tosystem is a cryptosystem (Definition 2.1) with plaintext space {0, 1}, and the following
additional property. Suppose that (PK, SK) = KeyGen(1σ). Then for any boolean circuit A of

size N with k input gates, there exists a boolean circuit Ã of size at most σKN for a constant
K such that for any inputs x1, . . . , xk,

Dec(Ã(PK,EncPK(x1), . . . ,EncPK(xk))) = A(x1, . . . , xk)

holds with all but negligible probability, ranging over the coins of KeyGen and Enc.

Remarks. Classical definitions of homomorphic encryption define additional algorithms
which compute each of the operations of the algebraic structure (usually a group or a ring)
on encrypted data. However, such definitions have the following drawback: there is noth-
ing to prevent the ciphertexts which are the result of the computations on encrypted data
from growing significantly in size, thus pushing most of the “real work” into the decryption
algorithm in some sense. See for example [SYY99, MGH08]. Nevertheless, if appropriate
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constraints on ciphertext compactness are put in place, the definitions are easily seen to be
equivalent. Note also that since the same boolean circuit must work for all possible encryp-
tion keys, trivial solutions, such as hard-wiring the decryption key into the circuit, do not
satisfy the definition.

Corollary 6.9. Constructing a fully homomorphic encryption scheme (Definition 6.7) is
equivalent to constructing a group homomorphic encryption (Definition 6.8) over any finite
non-abelian simple group. In particular, it is equivalent to constructing a homomorphic en-
cryption scheme over A5, the smallest such group.

Proof. This follows directly from Lemma 6.6, which shows that (up to constant factors) G-
circuits for a finite non-abelian simple group G are equivalent to boolean circuits. Let G
be such a group, and suppose that (KeyGen,Enc,Dec) is a group homomorphic encryption
scheme over G. We define a fully homomorphic cryptosystem (KeyGen,Enc,Dec) as follows.
KeyGen is precisely the same as KeyGen. To define Enc,Dec, we simply right (resp. left)
compose Enc (resp. Dec) with ι (resp. ι−1), where ι : {0, 1} ↔ {g0, g1} is the correspondence
guaranteed by Lemma 6.6. Now let A be a boolean circuit of size N which is to be evaluated
on encrypted data. Using Lemma 6.6, we can first convert the circuit to a G-circuit C, which
will be at most size γGN . Now, using the homomorphic property of the scheme over G, there
exists a boolean circuit C̃ of size at most σγGKN such that for any h1, . . . , hk ∈ G,

Dec(C̃(PK,EncPK(h1), . . . ,EncPK(hk))) = C(h1, . . . , hk)

holds with all but negligible probability, ranging over the coins of KeyGen and Enc. Hence
by construction,

Dec(C̃(PK,EncPK(x1), . . . ,EncPK(xk))) = A(x1, . . . , xk)

also holds with all but negligible probability for any x1, . . . , xk ∈ {0, 1}k. Conversely, suppose
we are given a fully homomorphic encryption scheme and a binary representation of elements
of G. We encrypt elements of G bitwise. We can evaluate any circuit computing the group
operation of G on ciphertext.

�

Remarks. Note that we are actually free to choose any representation {0, 1} ↪→ G: for
α 6= β ∈ G, we can simply perform a change of variables x 7→ α−1x, y 7→ α−1y and use
the formula α

∏k
i=1 fi(α

−1x, α−1y), where β =
∏k

i=1 fi(α
−1β, α−1β), which is possible by

Lemma 6.3.

To better illustrate the proof, we provide an explicit construction for the smallest non-abelian
simple group, A5. So that inversion may be accomplished by a single multiplication, we use
an element β of order 2. Any element of order 2 can be used in the construction, e.g.,
β = (1, 2)(3, 4). We know that commutators of conjugates of β will generate all of A5, in
particular, β itself. But to simplify things a bit, we first construct standard generators of A5
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out of such commutators, and then write down β in terms of the standard generators. For
generators, we use A5 = 〈{X, Y }〉 with X = (1, 2, 3, 4, 5) and Y = (3, 4, 5). Note that

(3, 5, 4)(1, 2)(3, 4)(3, 4, 5) = (1, 2)(3, 5)

(2, 4, 3)(1, 2)(3, 4)(2, 3, 4) = (1, 4)(2, 3)

and that
[(1, 2)(3, 5), (1, 4)(2, 3)] = ((1, 2)(3, 5)(1, 4)(2, 3))2 = (1, 2, 3, 4, 5)

So, we set g1 = (3, 5, 4) and h1 = (2, 4, 3). Next, note that

(3, 4, 5)(1, 2)(3, 4)(3, 5, 4) = (1, 2)(4, 5)

and that
[(1, 2)(4, 5), (1, 2)(3, 4)] = ((1, 2)(4, 5)(1, 2)(3, 4))2 = (3, 4, 5)

So, we let g2 = (3, 4, 5) and h2 = e. Next we write β = (1, 2)(3, 4) in terms of our generators:

β = X−1Y −1X−1Y −1X2

Finally, using the simple observations that [x, y]−1 = [y, x], and that if group elements
a, b have order dividing 2 then they are their own inverses, we can write down an explicit
expression for a group formula representing NAND in terms of the group operation alone.
Again, identifying 0 ↔ e and 1 ↔ β, then (with a slight abuse of notation) we have the
following expression, where a, b ∈ {e, β}:

NAND(a, b) =
h1bh

−1
1 g1ag

−1
1 h1bh

−1
1 g1ag

−1
1 bg2ag

−1
2 bg2ag

−1
2 h1bh

−1
1 g1ag

−1
1 h1bh

−1
1 g1ag

−1
1 \

bg2ag
−1
2 bg2ag

−1
2 g1ag

−1
1 h1bh

−1
1 g1ag

−1
1 h1bh

−1
1 g1ag

−1
1 h1bh

−1
1 g1ag

−1
1 h1bh

−1
1 β.

7 Acknowledgments

This work was supported in part by NSF grant CNS 1117675 and DPST Research Fund Grant
number 041/2555. The authors would also like to thank Associate Professor Dr. Bunyarit
Uyyanonvara who has served as a mentor under DPST Research Fund.

References

[Abe80] Harold Abelson. Lower bounds on information transfer in distributed computa-
tions. Journal of the ACM (JACM), 27(2):384–392, 1980.

[Bar86] David A. Mix Barrington. Bounded-width polynomial-size branching programs
recognize exactly those languages in nc1. In STOC, pages 1–5, 1986.

[Bea00] Donald Beaver. Minimal-latency secure function evaluation. In EUROCRYPT,
pages 335–350, 2000.

31



[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on
ciphertexts. In TCC’05, pages 325–341, 2005.

[BKOS07] Dan Boneh, Eyal Kushilevitz, Rafail Ostrovsky, and William E. Skeith. Public
key encryption that allows PIR queries. In CRYPTO’07, pages 50–67, 2007.

[BL96] Dan Boneh and Richard J. Lipton. Algorithms for black-box fields and their
application to cryptography (extended abstract). In CRYPTO, pages 283–297,
1996.

[BOC92] Michael Ben-Or and Richard Cleve. Computing algebraic formulas using a con-
stant number of registers. SIAM Journal on Computing, 21(1):54–58, 1992.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic en-
cryption from (standard) lwe. Preliminary result., 2011.

[Cha04] Y. C. Chang. Single database private information retrieval with logarithmic
communication. In Austrailian Conference on Information Security and Privacy,
2004.

[DJ03] Ivan Damg̊ard and Mads Jurik. A length-flexible threshold cryptosystem with
applications. In ACISP, pages 350–364, 2003.

[Fre64] Peter Freyd. Abelian categories, volume 1964. Harper & Row New York, 1964.

[FT63] Walter Feit and John G. Thompson. Solvability of groups of odd order. Pacific
J. Math., 13:775–1029, 1963.

[Gam85] Taher El Gamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, 31(4):469–472,
1985.

[Gen09] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC ’09:
Proceedings of the 41st annual ACM symposium on Theory of computing, pages
169–178, New York, NY, USA, 2009. ACM.

[Gen11] Craig Gentry. Fully homomorphic encryption without bootstrapping. Cryptol-
ogy ePrint Archive, Report 2011/277, 2011. http://eprint.iacr.org/.

[GH10] Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic en-
cryption scheme. Cryptology ePrint Archive, Report 2010/520, 2010. http:

//eprint.iacr.org/.

[GH11] Craig Gentry and Shai Halevi. Fully homomorphic encryption without squashing
using depth-3 arithmetic circuits. Cryptology ePrint Archive, Report 2011/279,
2011. http://eprint.iacr.org/.

32

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/


[GHV10] Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. A simple bgn-type
cryptosystem from lwe. Cryptology ePrint Archive, Report 2010/182, 2010.
http://eprint.iacr.org/.

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. JCSS, 28(2):270–299,
1984.

[IKO05] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Sufficient conditions for
collision-resistant hashing. In TCC, pages 445–456, 2005.

[KMR66] Kenneth Krohn, WD Maurer, and John Rhodes. Realizing complex boolean
functions with simple groups. Information and Control, 9(2):190–195, 1966.

[KN06] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge
university press, 2006.

[KO97] Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed: Single
database, computationally-private information retrieval. In FOCS, pages 364–
373, 1997.

[KO00] Eyal Kushilevitz and Rafail Ostrovsky. One-way trapdoor permutations are
sufficient for non-trivial single-server private information retrieval. In Advances
in Cryptology2̆014EUROCRYPT 2000, pages 104–121. Springer, 2000.

[KSS09] V. Kolesnikov, A.R. Sadeghi, and T. Schneider. How to combine homomorphic
encryption and garbled circuits. In Signal Processing in the Encrypted Domain–
First SPEED Workshop–Lousanne, page 100, 2009.

[KTX07] A. Kawachi, K. Tanaka, and K. Xagawa. Multi-bit cryptosystems based on
lattice problems. In In Public Key Cryptography PKC 2007, volume 4450 of
Lecture Notes in Computer Science, pages 315–329, Berlin, 2007. Springer.

[MGH08] Carlos Aguilar Melchor, Philippe Gaborit, and Javier Herranz. Additively homo-
morphic encryption with d-operand multiplications. Cryptology ePrint Archive,
Report 2008/378, 2008. http://eprint.iacr.org/.

[ML98] Saunders Mac Lane. Categories for the Working Mathematician (Graduate Texts
in Mathematics). Springer, September 1998.

[MR65] W. D. Maurer and John L. Rhodes. A property of finite simple non-abelian
groups. Proceedings of The American Mathematical Society, 16:552–552, 1965.

[MW98] Ueli M. Maurer and Stefan Wolf. Lower bounds on generic algorithms in groups.
In EUROCRYPT, pages 72–84, 1998.

[NLV11] M. Naehrig, K. Lauter, and V. Vaikuntanathan. Can homomorphic encryption
be practical? In Proceedings of the 3rd ACM workshop on Cloud computing
security workshop, pages 113–124. ACM, 2011.

33

http://eprint.iacr.org/
http://eprint.iacr.org/


[OS07] R. Ostrovsky and W.E. Skeith. Private searching on streaming data. Journal
of Cryptology, 20(4):397–430, 2007.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In EUROCRYPT, pages 223–238, 1999.

[Rap06] Doerte K. Rappe. Homomorphic cryptosystems and their applications. Cryp-
tology ePrint Archive, Report 2006/001, 2006. http://eprint.iacr.org/.

[RSA78] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21:120–126, 1978.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In
EUROCRYPT, pages 256–266, 1997.

[SV10] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with
relatively small key and ciphertext sizes. In Public Key Cryptography, pages
420–443, 2010.

[SYY99] Tomas Sander, Adam Young, and Moti Yung. Non-interactive cryptocomputing

for NC1. In FOCS, pages 554–567, 1999.

[vDGHV10] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic
encryption over the integers. In EUROCRYPT, pages 24–43, 2010.

[Yao79] Andrew Chi-Chih Yao. Some complexity questions related to distributive com-
puting (preliminary report). In Proceedings of the eleventh annual ACM sym-
posium on Theory of computing, pages 209–213. ACM, 1979.

8 Appendix

8.1 Algebraic PIR from Degree t Polynomials

To see how to construct an algebraic PIR with constant11 server-side communication given
a cryptosystem that allows polynomials of total degree t to be computed on ciphertext, you
can see the work of [BGN05]. For completeness however, we sketch such a protocol below.
Proceed as follows. First, organize a database of bits in t-coordinate addresses. Now to
produce a query for an address (i∗1, i

∗
2, ..., i

∗
t ), create t vectors of length t

√
n according to the

formula (vk)j = δj,i∗k . Encrypt these vectors and send them to the server as a query. Label
the encrypted vectors as wk = E(vk) and suppose that the bits of the database have been

11“Constant” refers to the fact that a single, compact ciphertext is returned by the server; there is of course
logarithmic dependence of the security parameter on the size of the database.
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labeled X = {xi1,...,it}ik∈[0, t
√

(n)−1]. Then for any X ∈ {0, 1}n, define

FX(Y1,1, ..., Y1, t√n−1, ..., Yt,1, ..., Yt, t√n−1) =
n∑

i1,...,it∈[0, t
√

(n)−1]

[
t∏

k=1

Yk,ik

]xi1,...,it

which can of course be computed on ciphertext for any X ∈ {0, 1}n since the exponents
can be computed via the Z-module action and each term has degree t. So, there exists
F̃ , efficiently computable from public information such that if w = E(v) then D(F̃ (w)) =

F (v). So, the database algorithm simply computes F̃ ((w1)1, ..., (wt) t√n−1) as the response to
the query, which will clearly be an encryption of xi∗1,...,i∗t . Under the assumption that the
cryptosystem is CPA-secure, security of this PIR protocol comes from a standard hybrid
argument since the only information exchanged was a few arrays of ciphertext.
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