
A Practical Approach to Developing a Web-based Geospatial Workflow
Composition and Execution System

Jianting Zhang

Department of Computer Science
 The City College of the City University of New York

New York, NY, 10031
jzhang@cs.ccny.cuny.edu

ABSTRACT

Motivated by lacking the capability of supporting
geospatial workflow composition and execution in a Web
environment from leading GIS (such as ESRI ArcGIS), we have
developed a prototype by integrating mature open source and
commercial software packages in an innovative way. Our
prototype system includes a client module for visual and
interactive workflow editing based on Ptolemy II (a modeling
and design system), a geospatial actor library representing 500+
ArcGIS geoprocessing tools for drag-and-drop-based workflow
composition, a middleware as a workflow engine to schedule
and execute ArcGIS Geoprocessing tools based on composed
geospatial workflows, and, a Web-GIS to visualize original and
derived data along a workflow processing pipeline. By reusing
the mature software packages, we are able to complete the
prototype development within weeks instead of months or years.
A site selection problem that involves multiple geospatial
operations are used to demonstrate the functionality and features
of the prototype system.
Keywords: Geospatial, Workflow, Web, Middleware,
Integration, Reuse

1. INTRODUCTION
Visual modeling in Geographical Information Systems

(GIS) has become increasingly popular. ModelBuilder (and the
related Geoprocessing package) from ESRI ArcGIS [1] and
Spatial Modeler of ERDAS Imagine [2] have attracted
considerable application interests for a long time. These tools
allow users to drag and drop icons of both data sources and
processing units onto a canvas and then connect these icons
together to compose a model for execution. Such visual
geospatial modeling can be considered as a special type of
scientific workflow system. More recently, as geospatial data are
increasingly being published as Web services, including both
Open Geospatial Consortium (OGC) Web services [3] and W3C
WSDL (Web Service Description Language) based services [4],
there are more and more applications that build geospatial data
processing pipelines based on workflow technologies and use
Web services as the basic processing units.

While Web-based visual workflow composition and
execution are attractive due to its high usability, it is non-trivial
to develop such a system due to technical complexities. First,
enabling Web-based workflow composition and editing is
challenging. The current generation of Web browser
technologies does not provide high-performance 2-D graphics
primitives to support sophisticated workflow drawing and easy-
to-use event handling mechanisms to support highly interactive
user operations. The newly emerging Rich Internet Application
(RIA) frameworks [5], such as Adobe Flash and Microsoft
Silverlight as well as HTML 5, have eased the problems to a
certain extent. However, they are still not designed for
sophisticated Web-based applications that can achieve the same
level of user experiences as in a desktop computing environment
when composing, editing and executing workflow visually and

interactively. Practically, many of the existing Web-based
workflow editors, such as the open source Eclipse BPEL
Designer [6], provide only limited functionality when running in
a Web environment. It is not a surprise that even some recent
research prototypes still provide very preliminary visual and
graphical editing functionality.

Second, there are a large number of geospatial
operations in numerous applications and it is non-trivial to
formalize these operations as workflow components due to
various syntactic and semantic mismatches. Even within a single
GIS where operations are usually categorized in a relatively
coherent way, some operations may have complex input and
output parameters with ad-hoc or non-structured default values.
While they may be relative easy to specify using command lines,
it can be challenging to represent them visually in a Web-based
workflow editing environment. Although converting complex
parameter structures into strings and use only primitive data
types can certainly reduce the workflow software
implementation complexity in this regard, it is undesirable as the
semantics of the geospatial operations are often obscured due to
the simplification of syntax.

Third, unlike business data processing that is control
flow centric and requires relative insignificant computational
resources, geospatial data processing can be data intensive,
computation intensive, and, visualization intensive. Workflow
scheduling can play an important role in reducing end-to-end
completion time and improve workflow efficiency. However,
very few existing geospatial workflow systems have the
capability to schedule workflow executions based on different
computing environments and available computing resources.

While these technical complexities are more related to
software implementation engineering, they are critical in
practical workflow applications. Without solving these problems
properly to pave the roads for wide adoptions, much of the
scientific workflow research becomes irrelevant to practical
applications. Due to recourse constraints, it is unlikely that small
research groups like ours can develop a highly usable research
system of geospatial processing workflow in a short time by
developing various components from scratch. In this research,
we report our design and development of a Web-based
geospatial processing workflow system in a quick manner by
reusing and integrating mature open source and commercial
software. More specifically, we use the open source Ptolemy II
modeling and design system [7] developed by the Center for
Hybrid and Embedded Software Systems (CHESS) at UC
Berkeley for workflow editing and scheduling. We then extract
the syntax of ESRI ArcGIS Geoprocessing tools [1] from their
documentations and format them so that these Geoprocessing
tools can be used as workflow components for visual
composition. By hacking the Ptolemy II source code, we are
able to pass a composed workflow to our middleware for remote
execution. The middleware is implemented as an Apache
Tomcat [8] Web application module to communicate with the
workflow composer that runs at the client side and the ArcGIS

Geoprocessing engines that run at the server side. Once the
workflow is passed to the middleware, the execution plan of the
workflow can be calculated by Ptolemy II library and the tasks
in the execution plan can be passed to ArcGIS Geoprocessing
engines for real executions. We have also setup a Web-GIS
system using open source MapServer [9] and OpenLayers [10]
software so that Web clients can visualize original, intermediate
and resulting geospatial data. All the software involved in our
system, including Ptolemy II, Apache Tomcat, ArcGIS,
MapServer and OpenLayers, have long development histories
and play leading roles in their respective application domains.
By reusing and integrating these mature software systems, we
eliminate the significant development burdens to achieve our
goals in developing a Web-based workflow system to support
environmental and social-economic research. With the previous
knowledge and experiences the author have gained in the
respective software packages, a robust and demonstrable
prototype system has been developed in weeks instead of
months or years.

The rest of the paper is organized as the following.
Section 2 introduces background and related works. Section 3
overviews Ptolemy II features that are relevant to geospatial
workflow composition and execution. Section 4 presents the
details of the system design and implementations. Section 5
provides a running example for demonstration purposes and
discusses a few technical issues during evaluations. Finally
Section 6 is the conclusion and future work directions.

2. BACKGROUND AND RELATED
WORKS

Workflow technologies become increasingly popular
in the past decade in both the business and scientific applications.
Scientific applications of workflow technologies, or Scientific
Workflow (SWF) for short, is an indispensible component of
Cyberinfrastructure or eScience and we refer readers to review
articles [11, 12, 13] for detailed information. The wide adoption
of Web services technologies and the availability of Web
services further have made workflow technologies practically
useful and desirable. While considerable research has been
focusing on automatic workflow composition based on
semantics and some research proposed to use workflow for
automatic data archiving and provenance, the basic functionality
of drag-and-drop based visual modeling (or interactive
workflow composition) is still an important feature (and
sometimes the primary feature) to attract end users. Indeed,
visual workflow composition relieves the burdens of end users
from learning programming/scripting languages that often have
steep learning curves and are error-prone. Quite a few scientific
workflow systems, such as Kepler [14], VisTrail [15], Triana
[16] and Taverna [17] are currently available and many of them
are released as open source software to serve the research
communities. On the business data processing side, major
software vendors such as Oracle, Microsoft and IBM have
provided software products based on the WSDL, Business
Process Execution Language (BPEL) [18] and other industrial
standards.

There have been significant research interests in
applying workflow technologies to geospatial data processing.
OPERA [19] and WASA [20] are two early scientific workflow
systems that have been extended for processing geospatial data.
In the context of Kepler scientific workflow applications, we
have proposed a scientific workflow approach to distributed

geospatial data processing using Web services [21]. The
approach has been applied to species distribution modeling [22],
biodiversity explorations [23] and storm tracking [24].
Additional geospatial applications using the Kepler SWF system
have been reported in [25, 26]. The GeoBrain group at the
George Mason University has published extensively on applying
semantic web and workflow technologies for satellite and sensor
data processing [27, 28, 29, 30, 31]. Many of these applications
use BPEL based business workflow technologies. Geospatial
workflow applications based on BPEL have also been reported
in [32, 33].

The development of Ptolemy II system dated back to
early 2000 based on the previous developments at UC Berkeley.
Ptolemy II is written in Java and uses a Java software
infrastructure called Diva to render workflow components (or
directors, actors, ports and parameters in Ptolemy II
terminologies) and interact with users. While Ptolemy II is
primarily developed for modeling, simulation, and design of
concurrent, real-time, embedded systems, many of its features
meet the requirements of scientific workflow systems and was
chosen as the base for the development of Kepler scientific
workflow system [14]. However, as Kepler is designed to be a
desktop system and is too voluminous for Web applications (by
using Java Web Start technology [34]), in this study, we use
Ptolemy II directly for workflow composition and scheduling.
While the details of Ptolemy II and its suitability for Web-based
geospatial workflow design are provided in the next section, we
would like to stress that the robustness of graphics editing and
the extensibility of the whole system are the primary reasons
that we have chosen to use Ptolemy II.

There are a few attempts to extend desktop based
scientific workflow systems to the Web environment, mostly for
workflow viewing and editing purposes. The Kflex system
presented in [35] is an attempt to re-implement Kepler’s
workflow composition functionality using Adobe Flex so that
Kepler workflows can be composed over the Web using a Flash
plug-in. Our preliminary evaluation reveals that, while the plug-
in runs smoothly in many Web browsers, it is often awkward
when connecting ports among workflow processing units. The
implementation does not allow customized context menus and
many essential functions that are available in desktop Kepler are
not available in Kflex. More importantly, Kflex is designed to
reuse Kepler’s existing actors and no actors representing the
Geoprocessing tools are available for composing geospatial
workflows. Another noticeable work is the GeoPW framework
that includes a web-based workflow designer called
GeoPWDesigner and a set of GRASS and GeoStar GIS modules
wrapped as Web services [31]. A composed geoprocessing
workflow is then executed using a BPEL engine.

ESRI ArcGIS is an industrial leading GIS and has a
large user community. Recent ArcGIS releases (especially
version 10) have extensive supports for Web services and
geoprocessing. For example, in addition to C/C++ and .NET
languages, ArcGIS 10 also provides Java and Python languages
for Geoprocessing tools. The Geoprocessing Java APIs are more
robust than user-developed wrappers and are easier to be
integrated with third-party Java-based packages, including
Ptolemy II and Apache Tomcat. Unfortunately, the popular
ArcGIS ModelBuilder tool [2] is still only available to desktop
computing environments. Enabling geospatial workflow
composition and execution over the Web is practically useful to
many applications across domains.

3 PTOLEMY II FOR WORKFLOW
APPLICATIONS: AN OVERVIEW

Ptolemy controls the execution of a workflow via so-
called directors that represent models of computation. Individual
workflow steps are implemented as reusable actors that can
represent data sources, sinks, data transformers, analytical steps,
or arbitrary computational steps. An actor can have multiple
input and output ports. We refer readers to [36, 37] for more
formal descriptions of the actor-oriented workflow design.
Different from event-driven and control-flow driven business
workflow systems, Ptolemy (and hence Kepler) is based on
dataflow process networks [38] that have built-in support for
stream-based and concurrent execution. In Ptolemy/Kepler, due
to the dataflow and actor-oriented design, actors interact only
via their communication channels (i.e., by data passed between
their connections) and do not directly communicate with other
actors [7, 37]. This approach leads to greater reusability of
actors, and decouples actors from the overall workflow
execution semantics. While we only use the simplest SDF
(Synchronous Data Flow) director, where processing tasks can
be statically scheduled on a serial machine or a parallel system,
in our current study, it is also possible to use more complex
directors (such as the Process Network [38] – PN director) to
accommodate more heterogeneous computing environments.

 In Ptolemy II, in addition to allowing an output port
of an actor to be linked to the input port of another actor, a
relation instance can be explicitly created to link among multiple
ports as shown in Fig. 1. Internally, the direct link between two
ports is represented as two links between the two ports and an
implicit relation. A link serves as data channel where tokens can
pass through and metered. The existence of Relation in Ptolemy
II allows formally modeling sophisticated data flow scenarios
such as feeding one token to multiple ports, a feature that is
missing in many other workflow systems. Another feature in
Ptolemy II is the notion of multiport where multiple data
channels (links) can be connected to a single port. This is very
useful when a port expects an array of values from output ports
of multiple actors, such as Intersect and Union tools in ArcGIS
Geoprocessing where one parameter requires a list of shapefiles.
The notion of ParameterPort is also useful for geospatial
workflows. A ParameterPort has a PortParameter whose value
can be either derived from a predefined expression or be derived
from the data token that is fed to the ParameterPort. Naturally,
we can model default values in ArcGIS Geoprocessing tools as
PortParameters and associate them with ParameterPorts.
Another useful feature in Ptolemy II is its type checking system
that allows to determine structural compatibility among ports
[39]. For example, if the output of port has a string type while its
connecting regular input port requires an array of strings then an
error can be reported to identify potential problems in workflow
design. We have explored the idea for geospatial data processing
[40].

Above all of the useful features we have discussed, we
found the Modeling Markup Language (MoML) that is
supported by Ptolemy II particularly useful for creating and
editing workflows. Since both directors, actors and workflows
are internally represented as MoML segments, adding actors to a
new workflow through drag-and-drop or removing actors from
an existing workflow are reduced to modifying MoML
documents. Once editing of a workflow is completed, the
resulting MoML document can be immediately streamed to

other modules for further process. In our case, as detailed in the
next section, the MoML document can be sent back to a Web
server for remote execution. Users can also modify the MoML
representations of actors that are typically Java classes. By
adding ports or modifying parameters, actors that are used in
workflows can be different from their original forms without
reprogramming, a feature is desirable in many cases. In this
study, as detailed in the Section 4.1, we utilize this feature to
configure a generic geoprocessing actor into 500+ actors by
providing module specific properties using MoML
representation. The similar approach has been applied to
designing “conceptual” actors and “abstract” workflows [41]
and semantic workflow validation [42].

Fig. 1 Illustration of Basic Components in Ptolemy II

4 SYSTEM DESIGN AND
IMPLEMENTATIONS

Our system has four major components, including a
Java applet based geospatial workflow composition environment,
a geospatial actor library representing 500+ ArcGIS
geoprocessing tools for drag-and-drop-based workflow
composition, a middleware to execute composed geospatial
workflows and a Web-GIS application to visualize original,
intermediate and result data. Before providing details of the
implementations of individual components, we next briefly
explain the high-level design and the communications among
the components (also see Fig. 5 in Section 4.4).

The Java applet for geospatial workflow composition
is developed on top of Ptolemy II code base. In order to expose
the interfaces of ArcGIS geospatial processing tools to workflow
users, we have decided to represent these interfaces as Ptolemy
II actors so that they can be used as workflow processing units
through drag-and-drop based composition, in a way similar to
using other Ptolemy II actors. Towards this end, we have
developed a Java program to extract the syntax of hundreds of
ArcGIS processing tools semi-automatically from ArcGIS
Geoprocessing manual and online resources. We have also
modified Ptolemy II graph editor by adding a new top-level
button (as shown in Fig. 6 in Section 5). When the button is
triggered, instead of executing the workflow at the client side as
Ptolemy II Web Start programs do, the workflow is sent back to
a middleware implemented as a Java servlet residing in Apache
Tomcat Web server for remote execution. The middleware,
which also serves as a workflow execution engine, then parses
the composed workflow and invokes Ptolemy II APIs to
schedule the execution of the workflow. For each scheduled task

 IO Port

Parameter
Port

Link

Consumer
Actor

Director

Producer
Actor

Relation

Consumer
Actor

Parameters

represented as an actor, the middleware derives input values
from the output ports of connecting actors and formulate proper
APIs to executable the modules, including ArcGIS processing
tools, using the input values. Since all of the original,
intermediate and resulting geospatial data are stored as well-
accepted geospatial data formats, they can be accessed over the
Web by using a Web-GIS. The URLs of Web-GIS applications
to visualize these data are then output to a dynamic Web page
which will be sent back to Web clients when executions of the
geospatial workflows are completed. Web users then can follow
the links in the result summary page to visualize the data that are
involved in any step of workflow executions.

4.1 Generating Geoprocessing Actors
We have found that the ArcGIS Geoprocessing Quick

Guide has the most succinct syntax to express different types of
parameters of the tools and is suitable for expert users. However,
the explanations of the parameters are missing in the Quick
Guide. On the other hand, the online resources have detailed
information on the parameters but the syntax of the tools seems
to be not sufficiently informative. For example, the options of
parameters are provided in the parameter section instead of the
tool syntax section. We thus combine the two resources by
creating two tables, one for tool level syntax and one for
parameter level annotations and join them based on the tool
names and parameter names. An example of the Intersect tool in
the Overlay toolset of the Analysis toolbox is shown in Fig. 2.

We use the following rules to formulate various types
of information associated with ArcGIS Geoprocessing tools into
Ptolemy actors. (1) The mandatory inputs and outputs are

mapped to ptolemy.actor.TypedIOPort (2) The non-mandatory
categorical parameters are mapped to actor properties. (3) The
non-mandatory numeric parameters are mapped to
ptolemy.actor.ParameterPort. (4) For categorical inputs (mostly
non-mandatory), ptolemy.actor.gui.style.ChoiceStyle is used to
enumerate the lists of options. (5) Description of a tool is
represented as a property of an actor using
ptolemy.kernel.util.StringAttribute. (6) Description of a
parameter is represented as a property of the parameter also
using ptolemy.kernel.util.StringAttribute. The development of
the parsing tool is straightforward based on the following well-
accepted notation adopted in ArcGIS Geoprocessing
documentation: parameters within <> are mandatory while
parameters within {} are non-mandatory. For each parameter, if
the expression is separated by semicolons then it is a
collection/array type parameter otherwise it is a singular type
parameter. An expression separated by | denotes a list of
mutually exclusive options and the parameter is considered
categorical. As an example, the MoML representation of the
Intersect tool after the formulation process is listed in Fig. 3 with
key elements highlighted or underscored. Fig. 4 shows the
corresponding graphic representation of the ArcGIS Intersect
actor (upper-right part) and the configuration interface of its
parameters. Note that a black triangle represents a regular port, a
gray triangle represents a parameter port and a white triangle
represents a multi-port. As a PortParameter, cluster_tolerance
can receive values from either the configuration dialog or from
its parameter port.

Fig. 2 Command syntax and documentation of ArcGIS Geoprocessing Tools using the Intersect tool as an example

4.2 Customizing Workflow GUI
Despite a powerful system, the code base of Ptolemy

II remains small. The Java jar file for Ptolemy II 4.01 is less
than three megabytes which makes it suitable to run Ptolemy II
graphical applications as Java Web Start applications, as
demonstrated in the Ptolemy II website [7]. However, Ptolemy
II Web Start applications run entirely at the client side which is
not suitable for geospatial workflow applications. The primary
reason is that, while ArcGIS Geoprocessing tools can be
executed as Web services conveniently (especially the most
recent release 10), many geospatial processes are data intensive
and it is not efficient to stream huge amount of data as tokens

within Java applets at the Web client side. Alternatively, we
want to send the composed workflows for remote execution at
the server side to reduce I/O costs. Towards this end, we have
added a top-level button by modifying a class called
RunnableGraphController (under ptolemy.vergil.basic package)
in Ptolemy II. A class called RemoteExecAction is also created
by extending FigureAction class to respond to the triggering of
the button. After users have completed a workflow and submit it
for remote execution, the workflow is exported to a string in
MoML format and sent back to our middleware by opening an
URL connection. The execution results are also written to the
URL connection. If the execution is successful, the URL of an
HTML page summarizing execution results will be sent back to

Intersect: creates an output feature class containing features that fall within the area common to both input
datasets

Intersect <features{Ranks};features{Ranks}...> <out_feature_class> {ALL | NO_FID | ONLY_FID}
{cluster_tolerance} {INPUT | LINE | POINT}

<in_features {Ranks};in_features {Ranks}...> A list of the input feature classes or layers. …
<out_feature_class> The feature class to which the results will be written. …
{NO_FID | ONLY_FID | ALL} Determines which attributes from the Input Features will be transferred
to the Output Feature …
{cluster_tolerance} Cluster tolerance is the distance range in which all vertices and boundaries in a
feature class are considered identical or coincident. …
{INPUT | LINE | POINT} Choose what type of intersection you want to find. …

Web clients. Subsequently users can follow the links in the
summary page for further visualization and exploration. We note
it is possible to launch a new browser window within the
workflow GUI environment. Fig. 5 illustrates the interactions
among different components during the process. It is obvious
that the development of workflow GUI is the key to the success
of our fast system prototyping. Fortunately, Ptolemy II provides
a solid basis for the extension.

4.3 Executing Geospatial workflows using
Geoprocessing Tools

After the middleware receives the workflow in MoML
representation, it can call Ptolemy II APIs to parse the MoML
documentation back to internal workflow representation without
any GUI involvement. For each director (e.g., SDF), Ptolemy II
can compute an execution schedule by simply call the
getScheduler() function of the director. While it is possible to
simply execute the workflow within Ptolemy II if ArcGIS
Geoprocessing tools are wrapped as executable actors, we have

decided to develop our own execution module for the following
practical considerations. First, there is a semantic mismatch
between the definition of inputs and outputs in Ptolemy II and
ArcGIS Geoprocessing tools. In ArcGIS Geoprocessing tools,
names (including physical file paths) of data files, instead of
geospatial data themselves, are used as inputs. As such, the
names of output data files are considered as inputs rather than
outputs. Literally there are no output parameters in ArcGIS
Geoprocessing Tools (but there are output files). We could have
designed actors in this way by following the interpretation
strictly. However, the logics of processing pipelines are rather
obscure in this case. Second, in order to execute actors within
Ptolemy II, we would have to wrap ArcGIS Geoprocessing tools
as Ptolemy II actors physically (note that we have only exposed
the interfaces of ArcGIS Geoprocessing tools as conceptual
actors as described in Section 4.1). It is highly inefficient to
initialize ArcGIS Arcobjects engine every time a wrapped
Geoprocessing tool is invoked. It would be much more efficient
if the initialization is performed only once per workflow.

Fig. 3 MoML representation of the Intersect tool interfaces (with excerpt for clarity)

<entity name="Intersect" class="ArcGISActor">
 <property name="desc" class="ptolemy.kernel.util.StringAttribute" value="… ">
 <property name="style" class="ptolemy.actor.gui.style.LineStyle"/>
 </property>
 ……
 <property name="output_type " class="ptolemy.data.expr.StringParameter" value="INPUT">
 <property name="style" class="ptolemy.actor.gui.style.ChoiceStyle">
 <property name="C0" class="ptolemy.kernel.util.StringAttribute" value="INPUT"/>
 <property name="C1" class="ptolemy.kernel.util.StringAttribute" value="LINE"/>
 <property name="C2" class="ptolemy.kernel.util.StringAttribute" value="POINT"/>
 </property>
 </property>
 <port name="features" class="ptolemy.actor.TypedIOPort">
 <property name="input"/>
 <property name="multiport"/>
 <property name="type" class="ptolemy.actor.TypeAttribute" value="string"/>
 <property name="desc" class="ptolemy.kernel.util.StringAttribute" value="A list of the input feature classes or
layers">
 <property name="style" class="ptolemy.actor.gui.style.NotEditableLineStyle"/>
 </property>
 <property name="_showName" class="ptolemy.kernel.util.SingletonAttribute"/>
 </port>
 <port name="out_feature_class" class="ptolemy.actor.TypedIOPort">
 <property name="output"/>
 <property name="type" class="ptolemy.actor.TypeAttribute" value="string"/>
 <property name="desc" class="ptolemy.kernel.util.StringAttribute" value="The feature class to which the
results will be written">
 <property name="style" class="ptolemy.actor.gui.style.NotEditableLineStyle"/>
 </property>
 <property name="_showName" class="ptolemy.kernel.util.SingletonAttribute"/>
 </port>

…
</entity>

Fig. 4 Illustration of the GUI of the configuration dialog for the Intersect Actor

While our design is more efficient for geospatial

workflows that require multiple geoprocessing tools and is more
intuitive in understanding the workflow logics (see more
discussion in Section 5), we need to propagate output values of a
prior actor to the input ports of the connecting actors according
to the actor execution plan provided by Ptolemy II. While this
sounds trivial, we have found that the implementation needs
some careful thoughts. First, as discussed in Section 3, Ptolemy
II workflow graph model does not connect ports directly. Instead,
the edges of graphs are actually the connections between ports
and relations. Although this makes it possible to send a same
output data token to multiple input ports based on some well-
founded formalism, it is nontrivial to program the token
propagation mechanism when programming from scratch. To do
so essentially requires simulating Ptolemy II workflow
execution process outside the system. Second, the output data
file names, which are now represented as the values of output
parameters, should be derived from inputs according to Ptolemy
II. However, in geospatial modeling practices, these output data
file names are either provided by users or assigned to unique
identifiers automatically generated by a system and have nothing
to do with inputs. The semantic mismatch needs to be addressed
properly.

Our solution to the first issue relies on a hash table
data structure. For each actor in the schedule to be executed, we
find its input ports. We look up the value of all the input ports in
the hash table by using the combination of the actor name and its
port name as the key. Once all the values of the mandatory
parameters are retrieved and validated and the values of non-
mandatory parameters are checked and updated, the
Geoprocessing tool corresponding to the name of the actor can
be executed. Upon the successful completion of execution, we
need to send the values of the output ports to the input ports of
connecting actors for next steps of executions. The procedure is
as the following. First, for each of the output port of the actor,
we retrieve its connecting input ports of the next actor in the
workflow graph. We then add entries to the hash table by using
the combinations of the name of the connecting actor and the
names of the input ports of the connecting actors as the key and

the value that are supposed to send to the output port of the
current actor as the value. We note that there are source actors
(with no input ports) and sink actors (with no output ports). As
the execution of a workflow begins with source actors and ends
with sink actors, the above hash table looking processes are
guaranteed to be successful.

Our solution to the second issue relies on a novel use
of PortParameter in the context of geospatial workflow
composition. By adding input ParameterPort(s) for actors that
need to specify output file names, users are allowed to provide
constant string values or to provide expressions that can be
evaluated to string values in runtime through the actor
configuration interface (c.f. Fig. 4). The string values
representing output file names can also be provided by actors
that output string values through their output ports when these
ports are connected to the ParameterPorts. A unique file name
will be generated if the PortParameter is not configured and its
ParameterPort is not connected.

4.4 Developing a Web-GIS to visualize
workflow execution results

As workflows are executed remotely in our prototype
system, it is important to have the capabilities to visualize the
original, intermediate and final results in a Web environment
conveniently. Using a Web-GIS for this purpose is a natural
solution. As shown in Fig. 5, our design enables visualization
and explorations through a dynamically generated HTML page
that summarize a workflow execution. The relevant file paths
are mapped to URLs in the HTML page. When the URLs are
accessed at the client side, the corresponding data will be served
by a WebGIS and visualized in browser windows. While it is
natural to use ArcGIS Server as the Web-GIS for this purpose,
we have found that automatically publishing Web services for
the dynamically generated geospatial datasets in an ArcGIS
Server is more difficult than we have expected. To speed up the
development process, we have decided to use the open source
MapServer and OpenLayers instead.

It is fairly straightforward to publish geospatial data as
OGC Web services in MapServer and use OpenLayers to

visualize these services, provided that necessary metadata of the
geospatial data are already defined in MapServer map
configuration files. We have made such publishing and
visualization process dynamic by using MapServer PHP APIs
and the key-value mechanism supported by the HTTP GET
protocol. Basically we append layer names to URLs to be
visualized while they are being generated by geoprocessing tools
(as described in Section 4.3) so that the layer names can be
passed to OpenLayers Javascript code when OGC Web services
requests are being formulated. When the OGC Web services
requests are processed by a MapServer PHP script at the server
side, the layer names are then parsed from the requesting URL
to the PHP script. Subsequently a dynamic MapServer layer is
created by the PHP script. After the dynamic layer is created, all
OGC Web services requests can be served in the same way as if
the layers are statically set.

Fig. 5 Illustration of component interactions in our
prototype system

5 DEMONSTRATIONS AND
EVALUATIONS

A snapshot of the Java applet window for geospatial
workflow composition is shown in Fig. 6. Under the “actor
library” list at the top-left of the figure, actors representing four
ArcGIS processing tools, i.e., Buffer, Union, Intersect and Clip,
are used for demonstration purposes. A typical site selection
geospatial processing workflow using the four actors/tools has
been composed. The workflow works as the following. Given a
point dataset representing the sites of thermal springs
(sthermals), we wish to find suitable places to build facilities
that are not only close to the thermal springs, but are also close

to either cities (scities) or major roads (sroads). As such, we
build a 10-mile (16000 meters) buffer around each thermal
spring and a 5-mile (8000 meters) buffer around cities and roads.
The buffers of the cities and roads are unioned before
intersecting with the buffers of thermal springs. Finally we clip
the intersection result by the county boundary dataset (scounty)
to highlights the suitable places that are within a set of
preselected counties. The names of the original input datasets
and the buffer sizes are specified by using a StringConst actor.
In addition, the top-level button to execute composed geospatial
workflows is highlighted at the top of Fig. 6. The workflow
execution summary page and the Web-GIS interface to visualize
the final result (i.e., dataset var5) are shown in Fig. 7. To put the
result into context, we also display the map of the original
datasets at the right side of Fig. 7. While our Web-GIS
application currently still lacks the capability of conveniently
customizing layer combinations and symbolization (as a typical
desktop GIS does), we have planned to improve the
functionality in the future.

We next provide some preliminary evaluations on the
prototype system we have developed. As we have discussed
previously, we have adopted a fast prototyping deign principle
by reusing and integrating existing software components. Due to
the maturity and robustness of Ptolemy II workflow composition
and scheduling infrastructure, compositing and editing
geospatial workflows are intuitive, highly interactive and user
friendly. Using the workflow system essentially eliminates the
needs to program ArcGIS directly. While programming ArcGIS
Geoprocessing tools is relatively straightforward due to the
coarse-grained design of the tools, it is non-trivial to initialize
Arcobjects and get through license validation process
programmatically which involve considerable technical hurdles
as we have experienced. More importantly, our workflow
composition system can run over the Web from any web
browsers that support Java applet. In contrast, as of the time of
writing, ArcGIS ModelBuilder can only run within ArcGIS
desktop environment. We believe our prototype system is the
first to facilitate visual chaining ArcGIS Geoprocessing tools
over the Web and provide a similar functionality of desktop
based ModelBuilder.

Despite the close relationship between our prototype
system and ArcGIS ModelBuilder, we next discuss a few
differences between the two. We argue that our system has
certain advantages over ArcGIS ModelBuilder. For comparison
purposes, we have built the same site selection workflow in
ArcGISBuilder which is shown in Fig. 8. From the figure, it is
clear that the inputs and outputs of processing units and the data
communications in ModelBuilder are not as formally modeled
and represented as in Ptolemy II. All the inputs and outputs of a
processing tool in ArcGIS need to be configured in a dialog
associated with the tool. The connections between the outputs of
a tool and their connecting tool(s) are just “symbolic” links for
visualization purposes. For example, in the left part of Fig. 9,
while the file names should be combined to form a single input
parameter according to the syntax of the Intersect tool (c.f. Fig.
2), they are represented as two separate inputs in ArcGIS
ModelBuilder. On the contrary, Ptolemy II faithfully represents
the ArcGIS tool syntax as shown in the right part of Fig. 9. The
process of combining multiple output ports to a single input port
is through the multi-port mechanism that has been formally
defined in Ptolemy II. During workflow composition, while
ArcGIS ModelBuilder requires connecting a data source to a

Deployed HTML page,
e.g., http://192.168 .1.106
:9090/GWF/GWF.html

JNLP file with
associated jar
libraries

Client initialization
(HTML)

Workflow
composition
(applet)

Workflow
remote
execution
interface

Apache Tomcat Servlet
middleware ,e.g.,
http://192.168.1.106:909
0/GWFServ/

ArcGIS
Geoprocessing
engines

Execution summary HTML page

Data
repositories

Web-GIS

e.g., http://192.168.1.106 /
ws/showmap?d=cities

Geoprocessing tool followed by selecting a parameter among all
the parameters of the tool, Ptolemy II allows to connect ports
directly, which, based on our evaluations, is more intuitive.

While ModelBuilder in ArcGIS 10 has been improved
significantly, we hope our evaluations can help further improve
its functionality and usability.

Fig. 6 Snapshot of the workflow composition environment (with remote execution trigger at top)

Fig. 7 Snapshots of workflow execution summary page and Web-GIS visualization interface
 (with overlaid original data displayed on the right)

There are plenty room left for improvements for our
prototype system as well. First of all, we currently use a very
preliminary mapping convention between the input data file
names used in workflow compositions and the data files residing
on remote servers. It would be much more useful if users are
allowed to drag-and-drop a data source actor to select proper
datasets by interacting with the data source actor in a way
similar to the EMLDataSource actor that we have used in the
Kepler workflow system [23]. As the resulting data source in
this case can be any addressable URI instead of plain file names

residing on the same sever hosting the middleware and ArcGIS
Geoprocessing tools, it becomes possible to advance our
prototype system to fully utilize distributed computing
environments. Second, our Web-GIS application is very
preliminary at present. While we plan to allow visualizing
multiple layers simultaneously and customizing the
symbolizations of the layers on the flay using open source GIS,
we are also investigating the possibilities of dynamically
publishing geospatial data as ArcGIS Web services and visualize
the data using standard ArcGIS Server Web APIs.

Fig. 8 Snapshot of the example geospatial processing workflow in ArcGIS ModelBuilder

Fig. 9 Comparisons of modeling inputs and outputs of processing units in ArcGIS ModelBuilder (left) and Ptolemy II (Right)

7 CONCLUSION AND FUTURE WORK
Motivated by the reality that a Web-based geospatial

workflow composition system is missing to use ArcGIS
Geoprocessing tools conveniently in a way similar to ArcGIS
desktop-based ModelBuilder, we have developed such a
prototype system by reusing and integrating various software
packages. Instead of developing the Web-based geospatial
workflow composition system from scratch which may take
years, our prototype is developed in weeks with many desirable
features including Web-enabled, highly usable and robust. A site
selection example has been used to demonstrate the utilization
of the prototype system. With the ability to fully utilize the
geospatial processing power of the most popular commercial
GIS system in a workflow environment, our initial vision on the
scientific workflow approach to distributed geospatial data
processing [21] is a step further to make the vision a reality.

For future work, in addition to what have been
discussed in the evaluations, we plan to apply the prototype
system for online collaborative modeling in multiple disciplines,
including social-economic analysis of water resources and trip
purpose identification from large-scale taxi trips. We also plan
to add ontology-based semantic validation to the prototype by

extending our previous works on geospatial workflow
validations in the desktop Kepler scientific workflow system
[42].

REFERENCES
1. ESRI ArcGIS ModelBuilder.

http://help.arcgis.com/en/arcgisdesktop/10.0/help/
2. ERDAS Imagine Spatial Modeler.

http://www.erdas.com/service/support/SpatialModels/Spati
al_Models.aspx

3. OGC Web Services Standards.
http://www.opengeospatial.org/standards/common

4. W3C Web Services Description Language (WSDL)
standard. http://www.w3.org/TR/wsdl

5. Rich Internet Application.
http://en.wikipedia.org/wiki/Rich_Internet_application

6. Eclipse BPEL Designer. http://www.eclipse.org/bpel/
7. Ptolemy Project. http://ptolemy.berkeley.edu/ptolemyII/
8. Apache Tomcat. http://tomcat.apache.org/
9. MapServer. http://mapserver.org/
10. OpenLayers. http://openlayers.org/

11. Yu, J. and R. Buyya (2005). A taxonomy of scientific
workflow systems for grid computing. ACM SIGMOD
Record 34(3): 44-49.

12. Davidson, S. B. and J. Freire (2008). Provenance and
scientific workflows: challenges and opportunities.
Proceedings of ACM SIGMOD Conference. 1345-1350

13. Deelman, E., D. Gannon, et al. (2009). Workflows and e-
Science: An overview of workflow system features and
capabilities. Future Generation Computer Systems 25(5):
528-540.

14. Kepler Scientific Workflow System. http://www.kepler-
project.org/

15. VisTrail Scientific Workflow System.
http://www.vistrails.org

16. Triana Problem Solving Environment.
http://www.trianacode.org/

17. Taverna Workflow Management System.
http://www.taverna.org.uk/

18. Business Process Execution Language (BPEL).
http://en.wikipedia.org/wiki/Business_Process_Execution_
Language

19. Medeiros, C. B. , G. Vossen, et al. (1995). WASA: A
Workflow-Based Architecture to Support Scientific
Database Applications. Proceedings of International
Conference on Database and Expert Systems Applications
(DEXA): 574-583.

20. Alonso,G. and C. Hagen (1997). Geo-Opera: Workflow
Concepts for Spatial Processes. Proceedings of the
International Symposium on Advances in Spatial Databases
(SSD), LNCS, 1262: 238-258.

21. Jaeger, E., I. Altintas, et al. (2005). A Scientific Workflow
Approach to Distributed Geospatial Data Processing using
Web Services. Proceedings of the International Conference
on SSDBM.

22. Zhang, J. T., D. D. Pennington, et al. (2005). Using web
services and scientific workflow for species distribution
prediction modeling. Proceedings of Advances in Web-Age
Information Management (WAIM), LNCS 3739: 610-617.

23. Zhang, J., I. Altintas, et al. (2006). Integrating Data Grid
and Web Services for E-Science Applications: A Case
Study of Exploring Species Distributions. Proceedings of
EEE International Conference on e-Science and Grid
Computing.

24. Zhang, J. (2006). Tracking Dynamics of Geospatial
Phenomena in Distributed and Heterogeneous
Environments Using Scientific Workflow and Web
Services Technologies. Proceedings of the Fifth
International Conference on Grid and Cooperative
Computing.

25. Pratt, A., Peters, C., Siddeswara, G., Lee, B., Terhorst, A.
2010. Exposing the Kepler Scientific Workflow System as
an OGC Web Processing Service. iEMSs. Ottawa, Canada.

26. Migliorini, S., M. Gambini, et al. (2011). Workflow
technology for geo-processing: the missing link.
Proceedings of Com.Geo.

27. Yue, P., L. Di, et al. (2007). Semantics-based automatic
composition of geospatial Web service chains. Computers
& Geosciences 33(5): 649-665.

28. Han, W., L. Di, et al. (2008). Design and Implementation
of GeoBrain Online Analysis System (GeOnAS).
Proceedings of Web and Wireless Geographical

Information Systems (W2GIS), Springer LNCS 5373: 27-
36.

29. Chen, N., L. Di, et al. (2010). Geo-processing workflow
driven wildfire hot pixel detection under sensor web
environment." Computers and Geosciences 36(3): 362-372.

30. Yue, P., J. Gong, et al. (2010). GeoPW: Laying Blocks for
the Geospatial Processing Web. Transactions in GIS 14(6):
755-772.

31. Sun, Z., P. Yue, et al. To Appear. GeoPWTManager: a
task-oriented web geoprocessing system. Computers and
Geosciences.

32. Hobona, G., D. Fairbairn, et al. (2007). Semantically-
assisted geospatial workflow design. Proceedings of the
ACM-GIS Conference.

33. Hobona, G., D. Fairbairn, et al. (2010). "Orchestration of
Grid-Enabled Geospatial Web Services in Geoscientific
Workflows." IEEE Transactions on Automation Science
and Engineering 7(2): 407-411.

34. Java Web Start.
http://en.wikipedia.org/wiki/Java_Web_Start

35. Tuot, C. J., M. Sintek, et al. (2008). IVIP --- A Scientific
Workflow System to Support Experts in Spatial Planning of
Crop Production. Proceedings SSDBM.

36. Bowers, S. and Ludäscher, B. (2005). Actor-Oriented
Design of Scientific Workflows. International Conference
on Conceptual Modeling (ER), LNCS, 3716: 369-384

37. Ludäscher, B., I. Altintas, et al. (2006). Scientific workflow
management and the Kepler system. Concurrency and
Computation: Practice and Experience 18(10): 1039-1065.

38. Lee, E. A. and Parks, T. M. (1995). Dataflow process
networks. Proceedings of the IEEE, 83(5): 773-801

39. Zhao, Y., Y. Xiong, et al. (2010). The design and
application of structured types in Ptolemy II. International
Journal of Intelligent Systems 25(2): 118-136.

40. Zhang, J., D. D. Pennington, et al. (2005). Validating
compositions of geospatial processing Web services in a
scientific workflow environment. Proceedings of IEEE
International Conference on Web Services (ICWS).

41. Zhang, J., Pennington, D. D., et al. (2006). Automatic
Transformation from Geospatial Conceptual Workflow to
Executable Workflow Using GRASS GIS Command Line
Modules in Kepler. Proceedings of ICCS.

42. Zhang, J. (2006). Ontology-Driven Composition and
Validation of Scientific Grid Workflows in Kepler: a Case
Study of Hyperspectral Image Processing. Proceedings of
GCCW.

