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ABSTRACT 

Motivated by lacking the capability of supporting 
geospatial workflow composition and execution in a Web 
environment from leading GIS (such as ESRI ArcGIS), we have 
developed a prototype by integrating mature open source and 
commercial software packages in an innovative way. Our 
prototype system includes a client module for visual and 
interactive workflow editing based on Ptolemy II (a modeling 
and design system), a geospatial actor library representing 500+ 
ArcGIS geoprocessing tools for drag-and-drop-based workflow 
composition, a middleware as a workflow engine to schedule 
and execute ArcGIS Geoprocessing tools based on composed 
geospatial workflows, and, a Web-GIS to visualize original and 
derived data along a workflow processing pipeline. By reusing 
the mature software packages, we are able to complete the 
prototype development within weeks instead of months or years. 
A site selection problem that involves multiple geospatial 
operations are used to demonstrate the functionality and features 
of the prototype system.  
Keywords: Geospatial, Workflow, Web, Middleware, 
Integration, Reuse 

1. INTRODUCTION 
Visual modeling in Geographical Information Systems 

(GIS) has become increasingly popular. ModelBuilder (and the 
related Geoprocessing package) from ESRI ArcGIS [1] and 
Spatial Modeler of ERDAS Imagine [2] have attracted 
considerable application interests for a long time. These tools 
allow users to drag and drop icons of both data sources and 
processing units onto a canvas and then connect these icons 
together to compose a model for execution. Such visual 
geospatial modeling can be considered as a special type of 
scientific workflow system. More recently, as geospatial data are 
increasingly being published as Web services, including both 
Open Geospatial Consortium (OGC) Web services [3] and W3C 
WSDL (Web Service Description Language) based services [4], 
there are more and more applications that build geospatial data 
processing pipelines based on workflow technologies and use 
Web services as the basic processing units.  

While Web-based visual workflow composition and 
execution are attractive due to its high usability, it is non-trivial 
to develop such a system due to technical complexities. First, 
enabling Web-based workflow composition and editing is 
challenging. The current generation of Web browser 
technologies does not provide high-performance 2-D graphics 
primitives to support sophisticated workflow drawing and easy-
to-use event handling mechanisms to support highly interactive 
user operations. The newly emerging Rich Internet Application 
(RIA) frameworks [5], such as Adobe Flash and Microsoft 
Silverlight as well as HTML 5, have eased the problems to a 
certain extent. However, they are still not designed for 
sophisticated Web-based applications that can achieve the same 
level of user experiences as in a desktop computing environment 
when composing, editing and executing workflow visually and 

interactively. Practically, many of the existing Web-based 
workflow editors, such as the open source Eclipse BPEL 
Designer [6], provide only limited functionality when running in 
a Web environment. It is not a surprise that even some recent 
research prototypes still provide very preliminary visual and 
graphical editing functionality.  

Second, there are a large number of geospatial 
operations in numerous applications and it is non-trivial to 
formalize these operations as workflow components due to 
various syntactic and semantic mismatches. Even within a single 
GIS where operations are usually categorized in a relatively 
coherent way, some operations may have complex input and 
output parameters with ad-hoc or non-structured default values. 
While they may be relative easy to specify using command lines, 
it can be challenging to represent them visually in a Web-based 
workflow editing environment. Although converting complex 
parameter structures into strings and use only primitive data 
types can certainly reduce the workflow software 
implementation complexity in this regard, it is undesirable as the 
semantics of the geospatial operations are often obscured due to 
the simplification of syntax.  

Third, unlike business data processing that is control 
flow centric and requires relative insignificant computational 
resources, geospatial data processing can be data intensive, 
computation intensive, and, visualization intensive. Workflow 
scheduling can play an important role in reducing end-to-end 
completion time and improve workflow efficiency. However, 
very few existing geospatial workflow systems have the 
capability to schedule workflow executions based on different 
computing environments and available computing resources.  

While these technical complexities are more related to 
software implementation engineering, they are critical in 
practical workflow applications. Without solving these problems 
properly to pave the roads for wide adoptions, much of the 
scientific workflow research becomes irrelevant to practical 
applications. Due to recourse constraints, it is unlikely that small 
research groups like ours can develop a highly usable research 
system of geospatial processing workflow in a short time by 
developing various components from scratch. In this research, 
we report our design and development of a Web-based 
geospatial processing workflow system in a quick manner by 
reusing and integrating mature open source and commercial 
software. More specifically, we use the open source Ptolemy II 
modeling and design system [7] developed by the Center for 
Hybrid and Embedded Software Systems (CHESS) at UC 
Berkeley for workflow editing and scheduling. We then extract 
the syntax of ESRI ArcGIS Geoprocessing tools [1] from their 
documentations and format them so that these Geoprocessing 
tools can be used as workflow components for visual 
composition. By hacking the Ptolemy II source code, we are 
able to pass a composed workflow to our middleware for remote 
execution. The middleware is implemented as an Apache 
Tomcat [8] Web application module to communicate with the 
workflow composer that runs at the client side and the ArcGIS 



Geoprocessing engines that run at the server side. Once the 
workflow is passed to the middleware, the execution plan of the 
workflow can be calculated by Ptolemy II library and the tasks 
in the execution plan can be passed to ArcGIS Geoprocessing 
engines for real executions. We have also setup a Web-GIS 
system using open source MapServer [9] and OpenLayers [10] 
software so that Web clients can visualize original, intermediate 
and resulting geospatial data. All the software involved in our 
system, including Ptolemy II, Apache Tomcat, ArcGIS, 
MapServer and OpenLayers, have long development histories 
and play leading roles in their respective application domains. 
By reusing and integrating these mature software systems, we 
eliminate the significant development burdens to achieve our 
goals in developing a Web-based workflow system to support 
environmental and social-economic research. With the previous 
knowledge and experiences the author have gained in the 
respective software packages, a robust and demonstrable 
prototype system has been developed in weeks instead of 
months or years.  

The rest of the paper is organized as the following. 
Section 2 introduces background and related works. Section 3 
overviews Ptolemy II features that are relevant to geospatial 
workflow composition and execution. Section 4 presents the 
details of the system design and implementations. Section 5 
provides a running example for demonstration purposes and 
discusses a few technical issues during evaluations. Finally 
Section 6 is the conclusion and future work directions. 

2. BACKGROUND AND RELATED 
WORKS 

Workflow technologies become increasingly popular 
in the past decade in both the business and scientific applications.  
Scientific applications of workflow technologies, or Scientific 
Workflow (SWF) for short, is an indispensible component of 
Cyberinfrastructure or eScience and we refer readers to review 
articles [11, 12, 13] for detailed information. The wide adoption 
of Web services technologies and the availability of Web 
services further have made workflow technologies practically 
useful and desirable. While considerable research has been 
focusing on automatic workflow composition based on 
semantics and some research proposed to use workflow for 
automatic data archiving and provenance, the basic functionality 
of drag-and-drop based visual modeling (or interactive 
workflow composition) is still an important feature (and 
sometimes the primary feature) to attract end users. Indeed, 
visual workflow composition relieves the burdens of end users 
from learning programming/scripting languages that often have 
steep learning curves and are error-prone. Quite a few scientific 
workflow systems, such as Kepler [14], VisTrail [15], Triana 
[16] and Taverna [17] are currently available and many of them 
are released as open source software to serve the research 
communities. On the business data processing side, major 
software vendors such as Oracle, Microsoft and IBM have 
provided software products based on the WSDL, Business 
Process Execution Language (BPEL) [18] and other industrial 
standards.  

There have been significant research interests in 
applying workflow technologies to geospatial data processing. 
OPERA [19] and WASA [20] are two early scientific workflow 
systems that have been extended for processing geospatial data. 
In the context of Kepler scientific workflow applications, we 
have proposed a scientific workflow approach to distributed 

geospatial data processing using Web services [21]. The 
approach has been applied to species distribution modeling [22], 
biodiversity explorations [23] and storm tracking [24]. 
Additional geospatial applications using the Kepler SWF system 
have been reported in [25, 26]. The GeoBrain group at the 
George Mason University has published extensively on applying 
semantic web and workflow technologies for satellite and sensor 
data processing [27, 28, 29, 30, 31]. Many of these applications 
use BPEL based business workflow technologies. Geospatial 
workflow applications based on BPEL have also been reported 
in [32, 33].  

The development of Ptolemy II system dated back to 
early 2000 based on the previous developments at UC Berkeley. 
Ptolemy II is written in Java and uses a Java software 
infrastructure called Diva to render workflow components (or 
directors, actors, ports and parameters in Ptolemy II 
terminologies) and interact with users. While Ptolemy II is 
primarily developed for modeling, simulation, and design of 
concurrent, real-time, embedded systems, many of its features 
meet the requirements of scientific workflow systems and was 
chosen as the base for the development of Kepler scientific 
workflow system [14]. However, as Kepler is designed to be a 
desktop system and is too voluminous for Web applications (by 
using Java Web Start technology [34]), in this study, we use 
Ptolemy II directly for workflow composition and scheduling. 
While the details of Ptolemy II and its suitability for Web-based 
geospatial workflow design are provided in the next section, we 
would like to stress that the robustness of graphics editing and 
the extensibility of the whole system are the primary reasons 
that we have chosen to use Ptolemy II.  

There are a few attempts to extend desktop based 
scientific workflow systems to the Web environment, mostly for 
workflow viewing and editing purposes. The Kflex system 
presented in [35] is an attempt to re-implement Kepler’s 
workflow composition functionality using Adobe Flex so that 
Kepler workflows can be composed over the Web using a Flash 
plug-in. Our preliminary evaluation reveals that, while the plug-
in runs smoothly in many Web browsers, it is often awkward 
when connecting ports among workflow processing units. The 
implementation does not allow customized context menus and 
many essential functions that are available in desktop Kepler are 
not available in Kflex. More importantly, Kflex is designed to 
reuse Kepler’s existing actors and no actors representing the 
Geoprocessing tools are available for composing geospatial 
workflows. Another noticeable work is the GeoPW framework 
that includes a web-based workflow designer called 
GeoPWDesigner and a set of GRASS and GeoStar GIS modules 
wrapped as Web services [31]. A composed geoprocessing 
workflow is then executed using a BPEL engine.  

ESRI ArcGIS is an industrial leading GIS and has a 
large user community. Recent ArcGIS releases (especially 
version 10) have extensive supports for Web services and 
geoprocessing. For example, in addition to C/C++ and .NET 
languages, ArcGIS 10 also provides Java and Python languages 
for Geoprocessing tools. The Geoprocessing Java APIs are more 
robust than user-developed wrappers and are easier to be 
integrated with third-party Java-based packages, including 
Ptolemy II and Apache Tomcat. Unfortunately, the popular 
ArcGIS ModelBuilder tool [2] is still only available to desktop 
computing environments. Enabling geospatial workflow 
composition and execution over the Web is practically useful to 
many applications across domains. 



3 PTOLEMY II FOR WORKFLOW 
APPLICATIONS: AN OVERVIEW 

Ptolemy controls the execution of a workflow via so-
called directors that represent models of computation. Individual 
workflow steps are implemented as reusable actors that can 
represent data sources, sinks, data transformers, analytical steps, 
or arbitrary computational steps. An actor can have multiple 
input and output ports. We refer readers to [36, 37] for more 
formal descriptions of the actor-oriented workflow design. 
Different from event-driven and control-flow driven business 
workflow systems, Ptolemy (and hence Kepler) is based on 
dataflow process networks [38] that have built-in support for 
stream-based and concurrent execution. In Ptolemy/Kepler, due 
to the dataflow and actor-oriented design, actors interact only 
via their communication channels (i.e., by data passed between 
their connections) and do not directly communicate with other 
actors [7, 37]. This approach leads to greater reusability of 
actors, and decouples actors from the overall workflow 
execution semantics. While we only use the simplest SDF 
(Synchronous Data Flow) director, where processing tasks can 
be statically scheduled on a serial machine or a parallel system, 
in our current study, it is also possible to use more complex 
directors (such as the Process Network [38] – PN director) to 
accommodate more heterogeneous computing environments.  

 In Ptolemy II, in addition to allowing an output port 
of an actor to be linked to the input port of another actor, a 
relation instance can be explicitly created to link among multiple 
ports as shown in Fig. 1. Internally, the direct link between two 
ports is represented as two links between the two ports and an 
implicit relation. A link serves as data channel where tokens can 
pass through and metered. The existence of Relation in Ptolemy 
II allows formally modeling sophisticated data flow scenarios 
such as feeding one token to multiple ports, a feature that is 
missing in many other workflow systems. Another feature in 
Ptolemy II is the notion of multiport where multiple data 
channels (links) can be connected to a single port. This is very 
useful when a port expects an array of values from output ports 
of multiple actors, such as Intersect and Union tools in ArcGIS 
Geoprocessing where one parameter requires a list of shapefiles. 
The notion of ParameterPort is also useful for geospatial 
workflows. A ParameterPort has a PortParameter whose value 
can be either derived from a predefined expression or be derived 
from the data token that is fed to the ParameterPort. Naturally, 
we can model default values in ArcGIS Geoprocessing tools as 
PortParameters and associate them with ParameterPorts. 
Another useful feature in Ptolemy II is its type checking system 
that allows to determine structural compatibility among ports 
[39]. For example, if the output of port has a string type while its 
connecting regular input port requires an array of strings then an 
error can be reported to identify potential problems in workflow 
design. We have explored the idea for geospatial data processing 
[40].  

Above all of the useful features we have discussed, we 
found the Modeling Markup Language (MoML) that is 
supported by Ptolemy II particularly useful for creating and 
editing workflows. Since both directors, actors and workflows 
are internally represented as MoML segments, adding actors to a 
new workflow through drag-and-drop or removing actors from 
an existing workflow are reduced to modifying MoML 
documents. Once editing of a workflow is completed, the 
resulting MoML document can be immediately streamed to 

other modules for further process. In our case, as detailed in the 
next section, the MoML document can be sent back to a Web 
server for remote execution. Users can also modify the MoML 
representations of actors that are typically Java classes. By 
adding ports or modifying parameters, actors that are used in 
workflows can be different from their original forms without 
reprogramming, a feature is desirable in many cases. In this 
study, as detailed in the Section 4.1, we utilize this feature to 
configure a generic geoprocessing actor into 500+ actors by 
providing module specific properties using MoML 
representation. The similar approach has been applied to 
designing “conceptual” actors and “abstract” workflows [41] 
and semantic workflow validation [42]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Illustration of Basic Components in Ptolemy II  

4 SYSTEM DESIGN AND 
IMPLEMENTATIONS 

Our system has four major components, including a 
Java applet based geospatial workflow composition environment, 
a geospatial actor library representing 500+ ArcGIS 
geoprocessing tools for drag-and-drop-based workflow 
composition, a middleware to execute composed geospatial 
workflows and a Web-GIS application to visualize original, 
intermediate and result data. Before providing details of the 
implementations of individual components, we next briefly 
explain the high-level design and the communications among 
the components (also see Fig. 5 in Section 4.4).  

The Java applet for geospatial workflow composition 
is developed on top of Ptolemy II code base. In order to expose 
the interfaces of ArcGIS geospatial processing tools to workflow 
users, we have decided to represent these interfaces as Ptolemy 
II actors so that they can be used as workflow processing units 
through drag-and-drop based composition, in a way similar to 
using other Ptolemy II actors. Towards this end, we have 
developed a Java program to extract the syntax of hundreds of 
ArcGIS processing tools semi-automatically from ArcGIS 
Geoprocessing manual and online resources. We have also 
modified Ptolemy II graph editor by adding a new top-level 
button (as shown in Fig. 6 in Section 5). When the button is 
triggered, instead of executing the workflow at the client side as 
Ptolemy II Web Start programs do, the workflow is sent back to 
a middleware implemented as a Java servlet residing in Apache 
Tomcat Web server for remote execution. The middleware, 
which also serves as a workflow execution engine, then parses 
the composed workflow and invokes Ptolemy II APIs to 
schedule the execution of the workflow. For each scheduled task 
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represented as an actor, the middleware derives input values 
from the output ports of connecting actors and formulate proper 
APIs to executable the modules, including ArcGIS processing 
tools, using the input values. Since all of the original, 
intermediate and resulting geospatial data are stored as well-
accepted geospatial data formats, they can be accessed over the 
Web by using a Web-GIS. The URLs of Web-GIS applications 
to visualize these data are then output to a dynamic Web page 
which will be sent back to Web clients when executions of the 
geospatial workflows are completed. Web users then can follow 
the links in the result summary page to visualize the data that are 
involved in any step of workflow executions. 

4.1 Generating Geoprocessing Actors 
We have found that the ArcGIS Geoprocessing Quick 

Guide has the most succinct syntax to express different types of 
parameters of the tools and is suitable for expert users. However, 
the explanations of the parameters are missing in the Quick 
Guide. On the other hand, the online resources have detailed 
information on the parameters but the syntax of the tools seems 
to be not sufficiently informative. For example, the options of 
parameters are provided in the parameter section instead of the 
tool syntax section. We thus combine the two resources by 
creating two tables, one for tool level syntax and one for 
parameter level annotations and join them based on the tool 
names and parameter names. An example of the Intersect tool in 
the Overlay toolset of the Analysis toolbox is shown in Fig. 2. 

We use the following rules to formulate various types 
of information associated with ArcGIS Geoprocessing tools into 
Ptolemy actors.  (1) The mandatory inputs and outputs are 

mapped to ptolemy.actor.TypedIOPort (2) The non-mandatory 
categorical parameters are mapped to actor properties. (3) The 
non-mandatory numeric parameters are mapped to 
ptolemy.actor.ParameterPort. (4) For categorical inputs (mostly 
non-mandatory), ptolemy.actor.gui.style.ChoiceStyle is used to 
enumerate the lists of options. (5) Description of a tool is 
represented as a property of an actor using 
ptolemy.kernel.util.StringAttribute. (6) Description of a 
parameter is represented as a property of the parameter also 
using ptolemy.kernel.util.StringAttribute. The development of 
the parsing tool is straightforward based on the following well-
accepted notation adopted in ArcGIS Geoprocessing 
documentation: parameters within <> are mandatory while 
parameters within {} are non-mandatory. For each parameter, if 
the expression is separated by semicolons then it is a 
collection/array type parameter otherwise it is a singular type 
parameter. An expression separated by | denotes a list of 
mutually exclusive options and the parameter is considered 
categorical. As an example, the MoML representation of the 
Intersect tool after the formulation process is listed in Fig. 3 with 
key elements highlighted or underscored. Fig. 4 shows the 
corresponding graphic representation of the ArcGIS Intersect 
actor (upper-right part) and the configuration interface of its 
parameters. Note that a black triangle represents a regular port, a 
gray triangle represents a parameter port and a white triangle 
represents a multi-port. As a PortParameter, cluster_tolerance 
can receive values from either the configuration dialog or from 
its parameter port.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Command syntax and documentation of ArcGIS Geoprocessing Tools using the Intersect tool as an example 
 

4.2 Customizing Workflow GUI 
Despite a powerful system, the code base of Ptolemy 

II remains small. The Java jar file for Ptolemy II 4.01 is less 
than three megabytes which makes it suitable to run Ptolemy II 
graphical applications as Java Web Start applications, as 
demonstrated in the Ptolemy II website [7]. However, Ptolemy 
II Web Start applications run entirely at the client side which is 
not suitable for geospatial workflow applications. The primary 
reason is that, while ArcGIS Geoprocessing tools can be 
executed as Web services conveniently (especially the most 
recent release 10), many geospatial processes are data intensive 
and it is not efficient to stream huge amount of data as tokens 

within Java applets at the Web client side. Alternatively, we 
want to send the composed workflows for remote execution at 
the server side to reduce I/O costs. Towards this end, we have 
added a top-level button by modifying a class called 
RunnableGraphController (under ptolemy.vergil.basic package) 
in Ptolemy II. A class called RemoteExecAction is also created 
by extending FigureAction class to respond to the triggering of 
the button. After users have completed a workflow and submit it 
for remote execution, the workflow is exported to a string in 
MoML format and sent back to our middleware by opening an 
URL connection. The execution results are also written to the 
URL connection. If the execution is successful, the URL of an 
HTML page summarizing execution results will be sent back to 

Intersect: creates an output feature class containing features that fall within the area common to both input 
datasets 
 
Intersect <features{Ranks};features{Ranks}...> <out_feature_class> {ALL | NO_FID | ONLY_FID} 
{cluster_tolerance} {INPUT | LINE | POINT}  
 
<in_features {Ranks};in_features {Ranks}...> A list of the input feature classes or layers.  … 
<out_feature_class> The feature class to which the results will be written. … 
{NO_FID | ONLY_FID | ALL} Determines which attributes from the Input Features will be transferred 
to the Output Feature  … 
{cluster_tolerance} Cluster tolerance is the distance range in which all vertices and boundaries in a 
feature class are considered identical or coincident. … 
{INPUT | LINE | POINT} Choose what type of intersection you want to find. … 



Web clients. Subsequently users can follow the links in the 
summary page for further visualization and exploration. We note 
it is possible to launch a new browser window within the 
workflow GUI environment. Fig. 5 illustrates the interactions 
among different components during the process. It is obvious 
that the development of workflow GUI is the key to the success 
of our fast system prototyping. Fortunately, Ptolemy II provides 
a solid basis for the extension.  

4.3 Executing Geospatial workflows using 
Geoprocessing Tools  

After the middleware receives the workflow in MoML 
representation, it can call Ptolemy II APIs to parse the MoML 
documentation back to internal workflow representation without 
any GUI involvement. For each director (e.g., SDF), Ptolemy II 
can compute an execution schedule by simply call the 
getScheduler() function of the director. While it is possible to 
simply execute the workflow within Ptolemy II if ArcGIS 
Geoprocessing tools are wrapped as executable actors, we have 

decided to develop our own execution module for the following 
practical considerations. First, there is a semantic mismatch 
between the definition of inputs and outputs in Ptolemy II and 
ArcGIS Geoprocessing tools. In ArcGIS Geoprocessing tools, 
names (including physical file paths) of data files, instead of 
geospatial data themselves, are used as inputs. As such, the 
names of output data files are considered as inputs rather than 
outputs. Literally there are no output parameters in ArcGIS 
Geoprocessing Tools (but there are output files). We could have 
designed actors in this way by following the interpretation 
strictly. However, the logics of processing pipelines are rather 
obscure in this case. Second, in order to execute actors within 
Ptolemy II, we would have to wrap ArcGIS Geoprocessing tools 
as Ptolemy II actors physically (note that we have only exposed 
the interfaces of ArcGIS Geoprocessing tools as conceptual 
actors as described in Section 4.1). It is highly inefficient to 
initialize ArcGIS Arcobjects engine every time a wrapped 
Geoprocessing tool is invoked. It would be much more efficient 
if the initialization is performed only once per workflow.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Fig. 3 MoML representation of the Intersect tool interfaces (with excerpt for clarity) 

<entity name="Intersect" class="ArcGISActor"> 
 <property name="desc" class="ptolemy.kernel.util.StringAttribute" value="… "> 
  <property name="style" class="ptolemy.actor.gui.style.LineStyle"/> 
 </property> 
 …… 
 <property name="output_type " class="ptolemy.data.expr.StringParameter" value="INPUT"> 
  <property name="style" class="ptolemy.actor.gui.style.ChoiceStyle"> 
   <property name="C0" class="ptolemy.kernel.util.StringAttribute" value="INPUT"/> 
   <property name="C1" class="ptolemy.kernel.util.StringAttribute" value="LINE"/> 
   <property name="C2" class="ptolemy.kernel.util.StringAttribute" value="POINT"/> 
  </property> 
 </property> 
 <port name="features" class="ptolemy.actor.TypedIOPort"> 
  <property name="input"/> 
  <property name="multiport"/> 
  <property name="type" class="ptolemy.actor.TypeAttribute" value="string"/> 
  <property name="desc" class="ptolemy.kernel.util.StringAttribute" value="A list of the input feature classes or 
layers"> 
   <property name="style" class="ptolemy.actor.gui.style.NotEditableLineStyle"/> 
  </property> 
  <property name="_showName" class="ptolemy.kernel.util.SingletonAttribute"/> 
 </port> 
 <port name="out_feature_class" class="ptolemy.actor.TypedIOPort"> 
  <property name="output"/> 
  <property name="type" class="ptolemy.actor.TypeAttribute" value="string"/> 
  <property name="desc" class="ptolemy.kernel.util.StringAttribute" value="The feature class to which the 
results will be written"> 
   <property name="style" class="ptolemy.actor.gui.style.NotEditableLineStyle"/> 
  </property> 
  <property name="_showName" class="ptolemy.kernel.util.SingletonAttribute"/> 
 </port> 

… 
</entity> 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Illustration of the GUI of the configuration dialog for the Intersect Actor 
 
 
While our design is more efficient for geospatial 

workflows that require multiple geoprocessing tools and is more 
intuitive in understanding the workflow logics (see more 
discussion in Section 5), we need to propagate output values of a 
prior actor to the input ports of the connecting actors according 
to the actor execution plan provided by Ptolemy II. While this 
sounds trivial, we have found that the implementation needs 
some careful thoughts. First, as discussed in Section 3, Ptolemy 
II workflow graph model does not connect ports directly. Instead, 
the edges of graphs are actually the connections between ports 
and relations. Although this makes it possible to send a same 
output data token to multiple input ports based on some well-
founded formalism, it is nontrivial to program the token 
propagation mechanism when programming from scratch. To do 
so essentially requires simulating Ptolemy II workflow 
execution process outside the system. Second, the output data 
file names, which are now represented as the values of output 
parameters, should be derived from inputs according to Ptolemy 
II. However, in geospatial modeling practices, these output data 
file names are either provided by users or assigned to unique 
identifiers automatically generated by a system and have nothing 
to do with inputs. The semantic mismatch needs to be addressed 
properly.   

Our solution to the first issue relies on a hash table 
data structure. For each actor in the schedule to be executed, we 
find its input ports. We look up the value of all the input ports in 
the hash table by using the combination of the actor name and its 
port name as the key. Once all the values of the mandatory 
parameters are retrieved and validated and the values of non-
mandatory parameters are checked and updated, the 
Geoprocessing tool corresponding to the name of the actor can 
be executed. Upon the successful completion of execution, we 
need to send the values of the output ports to the input ports of 
connecting actors for next steps of executions. The procedure is 
as the following. First, for each of the output port of the actor, 
we retrieve its connecting input ports of the next actor in the 
workflow graph. We then add entries to the hash table by using 
the combinations of the name of the connecting actor and the 
names of the input ports of the connecting actors as the key and 

the value that are supposed to send to the output port of the 
current actor as the value. We note that there are source actors 
(with no input ports) and sink actors (with no output ports). As 
the execution of a workflow begins with source actors and ends 
with sink actors, the above hash table looking processes are 
guaranteed to be successful.  

Our solution to the second issue relies on a novel use 
of PortParameter in the context of geospatial workflow 
composition. By adding input ParameterPort(s) for actors that 
need to specify output file names, users are allowed to provide 
constant string values or to provide expressions that can be 
evaluated to string values in runtime through the actor 
configuration interface (c.f. Fig. 4). The string values 
representing output file names can also be provided by actors 
that output string values through their output ports when these 
ports are connected to the ParameterPorts. A unique file name 
will be generated if the PortParameter is not configured and its 
ParameterPort is not connected.  

4.4 Developing a Web-GIS to visualize 
workflow execution results 

As workflows are executed remotely in our prototype 
system, it is important to have the capabilities to visualize the 
original, intermediate and final results in a Web environment 
conveniently.  Using a Web-GIS for this purpose is a natural 
solution. As shown in Fig. 5, our design enables visualization 
and explorations through a dynamically generated HTML page 
that summarize a workflow execution. The relevant file paths 
are mapped to URLs in the HTML page. When the URLs are 
accessed at the client side, the corresponding data will be served 
by a WebGIS and visualized in browser windows. While it is 
natural to use ArcGIS Server as the Web-GIS for this purpose, 
we have found that automatically publishing Web services for 
the dynamically generated geospatial datasets in an ArcGIS 
Server is more difficult than we have expected. To speed up the 
development process, we have decided to use the open source 
MapServer and OpenLayers instead.  

It is fairly straightforward to publish geospatial data as 
OGC Web services in MapServer and use OpenLayers to 



visualize these services, provided that necessary metadata of the 
geospatial data are already defined in MapServer map 
configuration files. We have made such publishing and 
visualization process dynamic by using MapServer PHP APIs 
and the key-value mechanism supported by the HTTP GET 
protocol. Basically we append layer names to URLs to be 
visualized while they are being generated by geoprocessing tools 
(as described in Section 4.3) so that the layer names can be 
passed to OpenLayers Javascript code when OGC Web services 
requests are being formulated. When the OGC Web services 
requests are processed by a MapServer PHP script at the server 
side, the layer names are then parsed from the requesting URL 
to the PHP script. Subsequently a dynamic MapServer layer is 
created by the PHP script. After the dynamic layer is created, all 
OGC Web services requests can be served in the same way as if 
the layers are statically set.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Illustration of component interactions in our 
prototype system 

 
 

5 DEMONSTRATIONS AND 
EVALUATIONS 

A snapshot of the Java applet window for geospatial 
workflow composition is shown in Fig. 6. Under the “actor 
library” list at the top-left of the figure, actors representing four 
ArcGIS processing tools, i.e., Buffer, Union, Intersect and Clip, 
are used for demonstration purposes. A typical site selection 
geospatial processing workflow using the four actors/tools has 
been composed.  The workflow works as the following. Given a 
point dataset representing the sites of thermal springs 
(sthermals), we wish to find suitable places to build facilities 
that are not only close to the thermal springs, but are also close 

to either cities (scities) or major roads (sroads). As such, we 
build a 10-mile (16000 meters) buffer around each thermal 
spring and a 5-mile (8000 meters) buffer around cities and roads. 
The buffers of the cities and roads are unioned before 
intersecting with the buffers of thermal springs. Finally we clip 
the intersection result by the county boundary dataset (scounty) 
to highlights the suitable places that are within a set of 
preselected counties. The names of the original input datasets 
and the buffer sizes are specified by using a StringConst actor. 
In addition, the top-level button to execute composed geospatial 
workflows is highlighted at the top of Fig. 6. The workflow 
execution summary page and the Web-GIS interface to visualize 
the final result (i.e., dataset var5) are shown in Fig. 7. To put the 
result into context, we also display the map of the original 
datasets at the right side of Fig. 7. While our Web-GIS 
application currently still lacks the capability of conveniently 
customizing layer combinations and symbolization (as a typical 
desktop GIS does), we have planned to improve the 
functionality in the future. 

We next provide some preliminary evaluations on the 
prototype system we have developed. As we have discussed 
previously, we have adopted a fast prototyping deign principle 
by reusing and integrating existing software components. Due to 
the maturity and robustness of Ptolemy II workflow composition 
and scheduling infrastructure, compositing and editing 
geospatial workflows are intuitive, highly interactive and user 
friendly. Using the workflow system essentially eliminates the 
needs to program ArcGIS directly. While programming ArcGIS 
Geoprocessing tools is relatively straightforward due to the 
coarse-grained design of the tools, it is non-trivial to initialize 
Arcobjects and get through license validation process 
programmatically which involve considerable technical hurdles 
as we have experienced. More importantly, our workflow 
composition system can run over the Web from any web 
browsers that support Java applet. In contrast, as of the time of 
writing, ArcGIS ModelBuilder can only run within ArcGIS 
desktop environment. We believe our prototype system is the 
first to facilitate visual chaining ArcGIS Geoprocessing tools 
over the Web and provide a similar functionality of desktop 
based ModelBuilder.  

Despite the close relationship between our prototype 
system and ArcGIS ModelBuilder, we next discuss a few 
differences between the two. We argue that our system has 
certain advantages over ArcGIS ModelBuilder.  For comparison 
purposes, we have built the same site selection workflow in 
ArcGISBuilder which is shown in Fig. 8. From the figure, it is 
clear that the inputs and outputs of processing units and the data 
communications in ModelBuilder are not as formally modeled 
and represented as in Ptolemy II. All the inputs and outputs of a 
processing tool in ArcGIS need to be configured in a dialog 
associated with the tool. The connections between the outputs of 
a tool and their connecting tool(s) are just “symbolic” links for 
visualization purposes. For example, in the left part of Fig. 9, 
while the file names should be combined to form a single input 
parameter according to the syntax of the Intersect tool (c.f. Fig. 
2), they are represented as two separate inputs in ArcGIS 
ModelBuilder. On the contrary, Ptolemy II faithfully represents 
the ArcGIS tool syntax as shown in the right part of Fig. 9. The 
process of combining multiple output ports to a single input port 
is through the multi-port mechanism that has been formally 
defined in Ptolemy II. During workflow composition, while 
ArcGIS ModelBuilder requires connecting a data source to a 
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JNLP file with 
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libraries 
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Geoprocessing tool followed by selecting a parameter among all 
the parameters of the tool, Ptolemy II allows to connect ports 
directly, which, based on our evaluations, is more intuitive. 

While ModelBuilder in ArcGIS 10 has been improved 
significantly, we hope our evaluations can help further improve 
its functionality and usability. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Snapshot of the workflow composition environment (with remote execution trigger at top) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 Snapshots of workflow execution summary page and Web-GIS visualization interface 
 (with overlaid original data displayed on the right) 

 
 



There are plenty room left for improvements for our 
prototype system as well.  First of all, we currently use a very 
preliminary mapping convention between the input data file 
names used in workflow compositions and the data files residing 
on remote servers. It would be much more useful if users are 
allowed to drag-and-drop a data source actor to select proper 
datasets by interacting with the data source actor in a way 
similar to the EMLDataSource actor that we have used in the 
Kepler workflow system [23]. As the resulting data source in 
this case can be any addressable URI instead of plain file names 

residing on the same sever hosting the middleware and ArcGIS 
Geoprocessing tools, it becomes possible to advance our 
prototype system to fully utilize distributed computing 
environments. Second, our Web-GIS application is very 
preliminary at present. While we plan to allow visualizing 
multiple layers simultaneously and customizing the 
symbolizations of the layers on the flay using open source GIS, 
we are also investigating the possibilities of dynamically 
publishing geospatial data as ArcGIS Web services and visualize 
the data using standard ArcGIS Server  Web APIs. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8 Snapshot of the example geospatial processing workflow in ArcGIS ModelBuilder 

 
 
 
 
 
 
 
 
 
 
 
Fig. 9 Comparisons of modeling inputs and outputs of processing units in ArcGIS ModelBuilder (left) and Ptolemy II (Right) 
 
 
 

7 CONCLUSION AND FUTURE WORK 
Motivated by the reality that a Web-based geospatial 

workflow composition system is missing to use ArcGIS 
Geoprocessing tools conveniently in a way similar to ArcGIS 
desktop-based ModelBuilder, we have developed such a 
prototype system by reusing and integrating various software 
packages. Instead of developing the Web-based geospatial 
workflow composition system from scratch which may take 
years, our prototype is developed in weeks with many desirable 
features including Web-enabled, highly usable and robust. A site 
selection example has been used to demonstrate the utilization 
of the prototype system. With the ability to fully utilize the 
geospatial processing power of the most popular commercial 
GIS system in a workflow environment, our initial vision on the 
scientific workflow approach to distributed geospatial data 
processing [21] is a step further to make the vision a reality.  

For future work, in addition to what have been 
discussed in the evaluations, we plan to apply the prototype 
system for online collaborative modeling in multiple disciplines, 
including social-economic analysis of water resources and trip 
purpose identification from large-scale taxi trips. We also plan 
to add ontology-based semantic validation to the prototype by 

extending our previous works on geospatial workflow 
validations in the desktop Kepler scientific workflow system 
[42].  
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