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Abstract

Manifold mosaicing is a fast and robust way to summa-
rize video sequences captured by a moving camera. It is
also useful for rendering compelling 3D visualizations from
a video without estimating the 3D structure of the scene.
However, since the result mosaics are not perspective im-
ages, their geometry is inherently distorted. These mosaics
are commonly referred to as multi-perspective images, or
multi-perspective mosaics.

In this paper we address the following question: Given a
video captured by a moving camera, what is the best multi-
perspective mosaic that can be generated from it? What is
the mosaic with the best combination of large field-of-view
and minimal geometric distortions? We define the neces-
sary conditions for a good mosaic and a quantitive crite-
rion for the geometric distortions, and derive analytically
the optimal mosaic under this criterion. Results on video
sequences confirm that indeed the optimal mosaic has sig-
nificantly better quality than those generated by other tech-
niques.

1. Introduction

Manifold mosaicing [8, 9] is a robust way to generate a
panoramic image from a video sequence captured by a mov-
ing camera. The technique is simple, implemented by past-
ing thin strips from the video into the panoramic mosaic im-
age. Since the camera is moving, every strip in the mosaic
image is captured from a different viewing position. There-
fore such a mosaic is called a multi-perspective [13,15] im-
age.

Multi-perspective images have been used for creating
compact representations of video sequences [9, 16], for 3D
reconstruction [13, 17], photogrametry [2] and are recently
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Figure 1: Typical distortions in multi-perspective
mosaics. Image (a) is a part of a multi-perspective
mosaic, and image (b) is one of the input images.
Note the distortion of the building and the trees.

becoming popular for 3D visualization and image based
rendering [7,10-12, 15, 18].

Figure 1 shows an example of a multi-perspective im-
age (generated by the method in [8]). There is an apparent
non-uniform distortion of scene objects, depending on their
depth. The building and the bushes are stretched horizon-
tally, while the cars are shrinked. Such distortions cannot be
cancelled by any generic depth-independent transformation
of the image.

In this paper we address the following question: Given a
sequence taken by a calibrated camera moving on a known
trajectory, and an unknown scene, what is the best multi-
perspective image that can be generated from it? In other
words, which strips should be copied from the images and



how should they be pasted into the mosaic, such that the
result image will contain the maximal amount of visual in-
formation and minimal geometrical distortions?

We define the necessary conditions for a good multi-
perspective mosaic and a criterion quantifying the geomet-
ric distortions, and derive the least-distorted mosaic under
this criterion. The criterion is justified theoretically as well
as empirically. It turns out that the mosaic with the minimal
distortion also has the maximal field-of-view.

One may wonder why use multi-perspective mosaics at
all, since they are distorted. An alternative to this would
be to create a perspective panorama, by warping all in-
put images into a common coordinate frame. The choice
of multi-perspective mosaics comes from practical reasons.
Multi-perspective mosaics are generated by a simple, fast
and remarkably robust algorithm. On the other hand, in or-
der to generate a perspective panorama, a depth represen-
tation of the scene should be available. The estimation of
such a representation from a video sequence is computa-
tionally demanding and highly ill-posed (due to occlusions,
reflections, transparencies etc.). By minimizing the distor-
tions of multi-perspective images, it is possible to generate a
visually satisfying image with minor geometric distortions.
These distortions may in many cases be practically negli-
gible, especially in comparison with artifacts in perspective
panoramas due to errors in depth estimation.

The paper is organized as follows: In Section 2 we
present a generalized formulation of manifold mosaicing,
by allowing an arbitrary sampling of vertical strips from the
images. Each sampling function defines a projection ge-
ometry relating a 3D point to a location in the mosaic im-
age. In Section 3 we define the necessary conditions for a
good mosaic, namely a large field of view and a continu-
ous unique 3D to 2D projection. In Section 4 we define a
quality criterion measuring the distortion in the image, and
derive the optimal mosaic under this criterion. Examples
show that mosaics generated by the optimal sampling are
significantly less distorted than the ones generated by other
sampling methods.

1.1. Manifold Mosaics

Manifold mosaicing [8, 16] was introduced for the purpose
of generating a panoramic representation of a video. Ver-
tical straight strips were copied from the centers of the im-
ages, and pasted into the multi-perspective mosaic. For a
rectified camera moving sideways, the projection geome-
try of the mosaic can be described by the linear pushbroom
projection model [2]: Parallel projection in the camera mo-
tion direction, and perspective projection in the orthogonal
direction.

Manifold mosaicing was also used for 3D visualization
by selecting different vertical strips for different views. A
stereo pair of manifold mosaics, for example, can be gen-

erated by collecting different strips for the left-eye mosaic
and for the right-eye mosaic. In [4, 7], one location was
used for all the strips of the left-eye mosaic, and another
location for all the strips of the right-eye mosaic. A differ-
ent scheme for 3D visualization was proposed in [12, 18].
By a simple adjustment of the strip sampling function, the
authors have generated realistic walkthrough sequences of
multi-perspective images.

This work was inspired by [5,11], which discuss all cam-
era trajectories for generating stereo multi-perspective mo-
saics. We broaden this discussion, as we argue that the set
of stereo mosaics should also be characterized by the strip
sampling scheme.

There has been some work on manifold mosaicing with
curved strips [9]. These are especially useful when the cam-
era translation has a forward component. In this work, in
order to simplify the analysis, we assume that the image
plane is parallel to motion direction of the camera and limit
the sampling accordingly to vertical lines.

2. Sampling Functions for M osaicing

Consider a perspective video camera moving continuously
on a curved segment with its image plane orientation tan-
gent to the curve. Assume w.l.0.g. that the segment length
is1,and lett € [0, 1] be a parameter describing the location
of the camera in the segment. A multi-perspective mosaic is
generated by selecting a vertical line in each frame I(t) ac-
cording to a sampling function ¢(t), and pasting it into the
mosaic. ¢(t) denotes the location of the line sampled from
frame I(t). Let w(t) be the plane joining the camera cen-
ter of projection at location ¢ to the sampled line ¢(t). The
pasting location in the mosaic is defined by the intersection
of (t) with the mosaic manifold. In case the camera moves
on a linear trajectory, this manifold is a plane. Otherwise,
the manifold is determined by the camera trajectory. As
in [9], we set the distance of the manifold to be equal to
the camera’s focal length, in order to maintain the vertical
resolution of the image.

It is assumed that the camera motion and internal calibra-
tion are known, or were estimated from the video sequences
(For a review, see [3]), and that the horizontal field-of-view
angle of the camera is 6.

We first analyze mosaics generated from linear camera
trajectories, and find the optimal mosaic analytically. Two
useful examples of sampling functions for linear camera tra-
jectories, depicted in Figure 2, are the linear sampling func-
tion ¢(t) = at + B and a special case of it, the constant
sampling function ¢(t) = S (where « = 0). It was shown
in [18] that in the former case, all rays pass through a verti-
cal line inthe plane Z, = Z; + § where Z; is the the plane
of the camera trajectory and k = cot(%); in the latter case,
this plane is at infinity.
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Figure 2. Mosaicing by (a) a constant sampling
function and by (b) a linear sampling function.

General smooth trajectories are analyzed in Section 4.2
using local linear approximations.

3. Necessary Conditions for a Good
Mosaic

Let V= {(X,Y,Z)|Z > 0} be the set of viewed scene
points, i.e. the points in front of the camera.

We define the following necessary conditions for a good
mosaic:

e Unique Projection: Every 3D point P € V is pro-
jected to a single point in the mosaic image.

e Continuous Projection: Connected sets of scene
points are projected to connected sets of image points.

e Data Utilization: Strips are taken from all images.

A unique projection is important for avoiding duplicate
images of an object in the mosaic image. In Section 3.1
we show that for linear camera trajectories, this condition
holds if and only if the sampling function is monotonic non-
decreasing 1. In Section 3.2 we relax the unique projection

Iwithout loss of generality, it is assumed that the camera is moving
from left to right

(b)

Figure 3: 3D object representation by mosaicing
with a monotonic decreasing function. Mosaic (a)
was generated by a linear sampling function, so
every point on the object is associated with a sin-
gle point on the image. Mosaic (b) was generated
by a non-linear sampling function, and as can be
seen, some scene points appear twice in the mo-
saic.

condition by allowing a set G of points of measure 0 to
violate the uniqueness condition. We show that in this case,
G must be a line, and in case the camera moves on a linear
trajectory, this corresponds to a linear sampling function.
An almost-unique projection can be useful for constructing
representations of convex objects. An example is shown in
Figure 3.

The requirement for a continuous projection is obvious —
to avoid discontinuities in the mosaic image. It follows that
the sampling function must also be continuous.

The data utilization requirement is important for ensur-
ing maximal field of view when minimizing the geometric
distortion.

3.1. Projection Uniqueness

The projection is unique if every scene point is projected
to a single point in the mosaic image. A key observation is



that the scene points V" are in front of the camera. Hence the
planes m(t1), 7 (t2) must not intersect in front of the cam-
eras forany 0 < t; < to < 1. For a camera moving on
a linear trajectory, this implies that the sampling must be
non-descending monotonic.

3.2. Uniqueness Excluding a Set of Measure 0

Another useful criterion relaxes the requirement by allow-
ing some points to violate the uniqueness condition; This
set of points G is required to be of measure 0 (e.g. a point
oracurve). If G does not include any scene point, no scene
point would appear multiple times in the mosaic. As we
show bellow, this criterion implies that G is a line.

Theorem 1 For any continuous sampling function ¢(t), if
the set of points that are not uniquely sampled is of measure
0, then this set is a line.

Proof: The planes 7(0), 7 (1) intersect in a line 1, and all of
its points are sampled by both cameras ¢ = 0,1. We will
show that if there are points that are sampled by two cam-
eras that are not on this line, then the set of all such points
is of measure greater than 0: For every s, ¢ € [0, 1], the in-
tersection of plane 7(s) with plane 7 (¢) can be represented
by the dual Pliicker matrix:

L*(s,t) = n(s)n(t)T — w(t)n(s)T

(the planes are represented in homogeneous coordinates,
see [3] - page 52). Since = (t) is continuous, it follows that
L*(s,t) is continuous in s, ¢. If there exists a point not on
1 that is sampled more than once, then it lies on a plane
m(a) for some a € (0,1) such that L*(0,1) ¢ L*(a,1)
(i.e., w(0) and 7(a) intersect w(1) in different lines). Re-
fer to Figure 4 for illustrations. Consider the union of all
lines of the form L*(s,1) for s € [0,a) (which are inter-
sections of the planes =(s) in this range with «(1)). Since
L*(s,t) is continuous, it follows that this union is a set of
area greater than 0 on the plane 7(1). Let A(¢) denote the
set of all points on the lines associated with L*(s, t) for all
s € [0,a). Then the above can be written as |A(1)| > 0.
Due to the continuity of 7 (¢), there exists an interval (b, 1]
for which |A(t)| > 0 holds for every ¢ € (b,1]. Therefore,
since all planes 7(¢) are distinct, it follows that the union
UA(¢) is a set of volume greater than 0. Since it is con-
tained in the set of all points that are sampled more than
once, this set cannot be of measure 0. [ |

Result 1 In the case of linear camera motion, the sampling
functions satisfying the uniqueness criterion up to measure
0 are either monotonic non-decreasing or linear. (see Fig-
ure 3)

L*(0,2)

L*@,1)
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Figure 4: lllustrations for the proof of Theorem 1

4. Perspectivity: A Measurefor Geo-
metric Quality

We consider perspective images to be non-distorted. Hence
the distortions in a mosaic image are measured with respect
to the closest perspective image. In [14], a distortion was
measured with respect to the closest perspective image, with
the distance defined as the sum of distances of matching im-
age points. Such a measure, while visually compelling, re-
quired knowledge of the scene depth. Since in our case the
scene depth is unknown, we compare the 3D to 2D projec-
tions rather than the images. That is, we would like the 3D
to 2D projection induced by the mosaicing method to be as
close as possible to a perspective projection. In a perspec-
tive projection, all rays intersect in a point. Hence, for a
multi-perspective mosaic, the set of sampled rays should be
as closely bundled as possible. We find a center point that
has a minimal distance to all sampled rays, and we measure
how small this distance is.

First, we define the local perspectivity distortion, which
implements the idea above locally, for a neighborhood
around an image point. We then define a global perspec-
tivity distortion by integrating the local perspectivity distor-
tion on the entire image. We selected an additive measure,
so that the perspectivity of one region in the image is not
influenced by other regions in the image.

We first analyze the case of linear camera motion. For
this case, the least distorted mosaic is derived analytically,
and it turns out that the least distorted mosaic also has the
widest field of view. Non-linear camera trajectories are ana-
lyzed in Section 4.2 using local linear approximations. The
global perspectivity is minimized numerically using stan-
dard optimization techniques.

4.1. Perspectivity: Linear Camera Trajectory

We consider only monotonic non-decreasing sampling
functions satisfying the necessary conditions defined in
Section 3.

Given a sampling function ¢, each image point is as-
sociated with a single ray. Let us denote the intersec-
tion of the ray of image point p with the plane Z = Z



Figure 5: The relation between the local perspectiv-
ity distortion and the error in estimation of the 3D
scene. See Section 4.1 for details.

by (X(p),Y (p), Z). We define the distortion of the sam-
pling function ¢ with respect to a candidate center point
(X Y Z) in a neighborhood w of image point p as -
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and the local perspective distortion at p as -

ni(¢,p) = ming y (6,9, X, Y, 2) )

The expression given in (1) measures the distance e of
the ray from the candidate center point (X,Y,Z), ona
plane, relative to the depth Z of that plane (see Figure 5).
The underlying idea is that an image is distorted if it is not
consistent with a perspective image of a 3D scene. Con-
sider a scene point P at depth d, which is projected by a
ray whose error is e. Were the image perspective, this im-
age point would seem to be the projection of a scene point
P*, and the error in the 3D scene would be E, such that
E = e%.

The global measure of distortion is obtained by integrat-
ing a local perspectivity distortion on the image. To cancel
the effect of the proportions of the neighborhood w, we de-
fine the global perspectivity distortion of a given sampling
function ¢ as follows:

_ nL(¢7p)

where q@(t) is a reference sampling function which can
be chosen arbitrarily, and p is integrated over the image do-
main I = [Zmin, Tmaz] X [Ymins Ymaz]. FOr simplicity, we
choose the reference sampling function ¢(¢) = 0.

Theorem 2 The global perspective distortion of a linear
sampling function ¢(t) = at + B is -

=5 (k +kaZ1 ) 2 )

na(¢)

where S is the image area (k and Z; are defined in Sec-
tion 2).

The proof of the theorem above is omitted due to space
limitations, and is given in [1].
A direct result of the theorem above is the following:

Result 2 The global perspectivity distortion of a linear
sampling function ¢(t) = at + 8 with a > 0 is mono-
tonic decreasing in .. The most distorted linear sampling
is the constant sampling.

Note that the distortion of a linear sampling function de-
pends only on the slope of the function. Now let us study the
general case of continuous non-decreasing sampling func-
tions:

Theorem 3 Given a continuous non-decreasing sampling
function ¢(t), let us denote the linear sampling function
which agrees with ¢(t) at¢ = 0andt = 1 as ¢'(¢). If
¢ # ¢, then ng(¢) > ng(¢')

In order to prove the above, we first prove it for a polyg-
onal sampling function, i.e., a function ¢(¢) for which the
interval [0, 1] can be divided into segments [0, ¢1, ta, . .., 1]
such that ¢(t) is linear in each segment [, tjt1].

Lemmal Given a polygonal sampling function ¢(¢) and a
linear sampling function ¢'(t) such that ¢(0) = ¢'(0) and
¢(1) = ¢'(1), if ¢ # ¢ then na(¢) > na(4').

Proof: The idea behind this proof is that by eliminating
nodes in the polygon, the global perspectivity distortion
does not increase. For any ¢, we eliminate the node i by
defining a polygonal sampling function ¢*(¢) which agrees
with @(t) everywhere except for the segment [t;_1,%:11],
in which it is linear. As shown in (4), the distortion of a
linear sampling function is proportional to the area of the
2

image and to (ﬁ) . We denote the slopes of ¢(t) in
segments [t;—1, t;] and [t;, t;41] by aq and as, respectively,
and the slope of ¢*(¢) in [t;—1,ti+1] @ ag. The contribu-
tion of each segment to the global perspective distortion is
proportional to its length, and therefore, ng(¢) > ng(¢*)
if and only if

k 2 k 2 k 2
ti—ti )|l———) Htin—t: > (tspn—tia))|———
( 1)(a1Z1+k)+( o )(0221+k) 2 (b 1)(13Z1+7€)

It can be shown that this inequality always holds, and that
it becomes an equality if and only if ay = a2 = ag, i.e., if
b= ¢

By repeatedly applying the result above on ¢ we obtain
na(®) > na(¢), andna(p) = na(¢') onlyifp = ¢/. m

Now we can proceed and prove the theorem:

Proof of Theorem 3: For any ¢ > 0, we divide the
interval [0,1] into segments [0, ¢, 2¢, ..., 1] and approxi-
mate ¢(¢) with a polygonal sampling function ¢.(¢) such




that ¢(ke) = ¢ (ke) for all k, and ¢.(¢) is linear in each
segment [ke, (k + 1)e]. From Lemma 1 it follows that
ng(¢:) >ng(¢'). Since this is true for all € > 0, and since
¢(t) is continuous, it follows that ng(¢) >ng(¢'). [ |
Combining Theorem 3 with Result 2, we obtain:

Result 3 For a camera moving sideways on a straight line,
the sampling function with the minimal perspectivity distor-
tion is @opt ()= Tmintt(Tmas=min). This linear sampling
function starts with the leftmost column of the first image
and finishes with the rightmost column of the last image

4.2. Perspectivity: Non-Linear Trajectory

In order to handle non-linear camera trajectories, we define
the local perspectivity (Equation 2) based on a local linear
approximation of the camera trajectory and a local planar
approximation of the manifold. For each frame I, where
1 < f < N—K+1, we compute a discrete version dr, (¢, f)
of the local perspectivity (equation 2) over a set of K neigh-
boring frames I, ... Iy k1 and minimize the sum of the
discrete local perspectivities:

da(¢) = >_di(e, f) ()
f

To find the minimum of (5), we discretize the strip loca-
tions. Note that the local perspectivity dr, (¢, f) is defined
by finding an optimal center of projection for each combi-
nation of rays. Computing these centers of projections for
all possible sampling functions and for a large K is compu-
tationally intractable. This can be circumvented by select-
ing K = 2, in which case the local distortion dy, (¢, f) was
derived analytically, as it corresponds to the linear perspec-
tivity as defined in theorem 2. Once dr (&, f) is computed
for all pairs of views, we use belief propagation [6] to find
the optimum of equation 5. The complexity of this algo-
rithm is linear in the number of frames, and quadratic in the
number of possible strip locations in each frame.

5. Reaults

Figure 8 shows mosaicing results, using different sampling
functions, from video sequences captured by a camera mov-
ing on a linear trajectory. We compare the optimal sam-
pling function with the constant sampling function (lin-
ear pushbroom mosaicing), and with a non-linear mono-
tonic sampling function ¢(t) satisfying ¢(0) = ¢p:(0)
and (1) = ¢op(1). This demonstrates two main results
of this work. First, among all linear sampling functions
o(t) = at + B, the least distorted results are achieved
with the maximal « (compare Figure 8-b vs. 8-c). Second,
among all monotonic functions aligned at the edge points
t = 0,1, the optimal sampling function is the linear one
(compare Figure 8-b vs. 8-d).

Figure 6 compares a stereo mosaic generated by a con-
stant sampling function (as done by [4,7,11,17]) to one gen-
erated by the optimal linear sampling function. Note that in
addition to the distortions in the image, there is a distortions
in the disparity which is larger with the constant sampling.

As for non-linear camera trajectories, we computed
the least-distorted mosaics for various camera trajectories,
some examples of which are shown in Figure 7. In all cases
we tested, the least distorted mosaic was obtained when the
projection rays intersect in a line, as in [18].

One practical case of a non-linear trajectory is when the
camera moves on a circular arc. We examined visually the
differences between the least-distorted mosaic and mosaics
generated by constant sampling functions [7]. Various con-
stant sampling functions were compared, each with a strip
taken from a different offset from the center. The least dis-
torted mosaic in this case is a Crossed-Slits mosaic [12,18],
as shown in Figure 7-a. We found that the differences in
distortions with circular camera motion are not as signifi-
cant as with linear camera motion, as the rays in this case
are bundled together to begin with. Furthermore, in the case
of non-linear trajectory, the distortion is also affected by the
fact that the manifold is non-planar; this kind of distortion,
which (unlike perspectivity distortion) can be treated with
2D warping, has not been discussed in this paper.

6. Summary

Multi-perspective mosaicing is a robust and efficient tool
to summarize a video and to create 3D visualizations from
a moving camera. In both applications, it is important to
achieve least-distorted mosaics even when the 3D structure
of the scene is unknown. We have quantified the image dis-
tortion and derived the optimal mosaic. When the camera
moves on a linear trajectory, the least distorted mosaic is
generated by the linear sampling function with the maxi-
mal slope. This mosaic also has the largest possible field
of view. When the camera trajectory is not linear, the least-
distorted mosaic can be derived numerically. We found that
the distortions are especially significant when camera tra-
jectory is close to linear.

While the scene depth and camera parameters were used
in the analysis, the optimal sampling function is derived
without knowing the scene depth. However, if some prop-
erties of the scene are known in advance, such as a rough
depth estimate, they can be used to reduce the distortion, as
was shown in [12,18].
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Figure 6: A comparison between different strip sampling methods for stereo mosaics. The images should
be viewed in full color using anaglyphic 3D glasses. (al) and (a2) are two rectified input images. Mo-
saic (b) was generated by the optimal sampling function, mosaic (c) by the constant sampling function
(pushbroom mosaic).
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