
 

  

Abstract— This paper details an approach for the automatic 
detection and tracking of humans using multi-sensor modalities 
including 3D Ladar and long wave infrared (LWIR) video. By 
combining data from these sensors, we can detect individuals 
regardless of whether they are erect, crouched, prone, or 
partially occluded by other obstacles. Such algorithms are 
integral to the development and fielding of future “intelligent” 
unmanned ground vehicles (UGVs). In order for robots to be 
integrated effectively into small combat teams in the 
operational environment, the autonomous vehicles must 
maneuver safely among our troops and therefore must be 
capable of detecting stationary and moving people in cluttered 
scenes. 

I. INTRODUCTION 
 HE goal of this work is to robustly detect and track both 
stationary and moving humans from a moving 
unmanned ground vehicle (UGV) using data from both 

3D Ladar and a long wave infrared (LWIR) camera. 
Detecting humans in any type of sensor data is a challenging 
problem due to the wide variety of positions and 
appearances which humans can assume. Stationary humans 
further complicate the task since motion cues can not be 
relied on to eliminate false alarms. In order to reduce false 
alarm rates, which can be significant in cluttered urban 
environments, algorithms are usually limited to detecting 
moving humans [2]-[3],[14] or to detecting upright humans 
in more ideal postures [4]-[8],[12]. These limiting 
assumptions are acceptable in the case of pedestrian 
detection for the automotive industry where the goal is to 
have an alert system that aids a human driver or in 
surveillance applications in which the camera is in a fixed 
location.  

In the military context in which we are striving for a fully 
autonomous UGV that has 360 degree situational awareness, 
it is critical that we not only reliably detect upright people, 
but those that are prone on the ground (e.g. a hurt soldier) 
and those not moving. Since stationary humans have the 
potential to move at any time distinguishing them from other 
objects such as barrels and crates is important for effective 
and robust UGV path planning. To achieve this goal, we 
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assert that it is necessary to fuse information from various 
sensor modalities. Unlike the fusion approach in [12], we 
have chosen Ladar and LWIR sensors which both provide 
day/night capability and operate under extensive 
environmental conditions. 

 In this paper, we first review a joint spatial-temporal 
solution to the Ladar data association problem [1] in which 
Ladar returns are considered as samples on an underlying 
world surface. This surface is explicitly modeled and then 
locally matched over time intervals. The result is a natural 
categorization of the world into stationary and moving 
objects.  With a focus strictly on moving obstacles, the 
algorithm in [1] achieves a high rate of performance with the 
use of simple size features to distinguish between humans 
and other types of objects. We present improvements to the 
algorithm in [1] that focus on extracting more advanced 
shape-based features from the Ladar data and enable the 
detection of stationary humans.   

Even with these advances, it is a challenge to differentiate 
a prone human in the Ladar from the massive amount of 
ground returns that are received, or even to detect upright 
humans when they are standing against walls or other large 
structures. In order to achieve these tasks, we use LWIR 
video to complement the capability of the Ladar. LWIR 
video provides information out to much longer ranges than 
the Ladar, and has the ability to highlight humans in a 
variety of non-ideal postures due to emissivity differences 
with their surroundings. We present a statistical and 
morphological approach to human detection in LWIR 
imagery. Many algorithms make the simplifying assumption 
that humans will always be hot compared to the surrounding 
environment [5], [14], but this is often not the case, so we 
discuss our approach to making the algorithm robust to such 
challenges.   

In Section II, we summarize our method of object 
extraction and data association in Ladar data, and detail new 
features that have been implemented to improve 
performance.  In addition, we present metrics and 
performance results on a baseline set of Ladar data.  Section 
III contains a detailed presentation of our LWIR algorithm 
that extracts human regions-of-interest (ROIs). In Section 
IV, we briefly discuss our approach for fusing Ladar and 
LWIR at both the feature and detection levels.  Section V 
summarizes our work. 
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II. LADAR ALGORITHM 

A. Ladar Sensor Data 
Our 3D data are the result of a pair of scanning Ladars that 

have been configured at fixed pan and tilt positions on the 
top of a sport utility vehicle (SUV). This dual configuration 
allows for nearly 180 degree field-of-view (FOV) in the 
direction the vehicle travels. In addition to the dual Ladars, 
the SUV has been equipped with an aluminum beam that 
holds a set of stereo LWIR video cameras, amongst a 
number of other sensor pairs, see Fig. 1.  

Frames of data from the right and left Ladars are 
synchronized in time in order to account for either Ladar 
dropping frames or for unexpected differences in the frame 
rates of the two sensors.  Each Ladar scans at approximately 
10 Hz, providing a 2D grid based depth map for each scan.  
Although there is a small angular overlap of the two Ladars, 
we have initially chosen to do a simple concatenation of the 
depth maps from each sensor.   

B. Object Extraction 
In [1], an algorithm for detecting moving vehicles and 

people using a single scanning Ladar on a moving vehicle 
was presented.  Since the data from the dual Ladar 
configuration appear to the algorithm as a single depth map, 
the approach is applied to the new dual data without 
modification.  There are two key components to the 
approach: find objects in the scene and analyze their motion.   

Object detection is achieved through a two-step process of 
eliminating ground returns and then implementing a 
contiguous region building technique that leverages the 
adjacency information in the angle-depth map created by the 
Ladars. This simple clustering approach has very low 
computational requirements, and works well for both large 
and small objects.   

The ability to effectively isolate human objects depends on 
the performance of the ground removal algorithm. We found 
that modeling the ground with roughly horizontal planes [1] 
worked well at close range, but was unreliable at points far 
from the sensor and added undesirable computational 
complexity. The ground is now labeled by computing the 
elevation angle between neighboring points in the angle-
depth map.  Using the ground map in conjunction with the 
angle-depth map, a height-above-ground for each Ladar 
return is estimated.  We use this height value to eliminate all 
 

 
Fig. 1: Sensor configuration on a modified sport utility 
vehicle.  The vehicle has 2 Ladars and a stereo pair of LWIR 
cameras. 

points less than 0.25 meters above ground.  This approach 
has the advantage of removing clutter due to tall grass and 
vegetation, as well as curbs in an urban setting, all of which 
pose difficulties to our algorithm if not eliminated. 

C. Data Association and Tracking 
 We use a surface probability density model for 3D 

object registration [1].  The registration approach relies on 
explicitly modeling the object surface as a mixture of 3D 
Gaussians, ( )Xf

Sρ , centered at each sampled point: 

                         ( ) ( )∑=
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The covariances 2
iσ  are proportional to the sampling 

density, and hence to the distance from the Ladar.  This 
models a wide variety of surfaces including coarsely 
sampled natural objects such as trees. Models are registered 
and scored by optimizing the Bhattacharya similarity 
measure which compares two density functions and gives an 
absolute similarity estimate enabling the goodness of a 
match to be assessed.   The similarity measure is also useful 
for resolving matching ambiguities and detecting occlusions. 
A discrete implementation using convolution filtering 
enables real-time registration without being trapped by local 
minima.  

Most of the work in moving object detection is achieved 
by clustering and registration. However, there are a number 
of sources of clutter as well as objects appearing and 
disappearing due to occlusions. These effects can lead to 
spurious motion estimates and hence false positives.  Use of 
a Kalman filter tracker minimizes these effects, by enforcing 
motion consistency. 

D.  Classification Features 
In order to detect stationary, as well as moving humans, 

we can not rely on simple size constraints for classification.  
The Ladar data provide significant shape information about 
an object, particularly at close range.  We have implemented 
a new feature that quantifies this shape information and 
eliminates false alarms due to random clutter in the data.  
Random clutter refers to natural things in the environment 
such as thin vegetation, tall grass, or small branches which 
pose little danger to the UGV if in its path.   

1) Shape-based feature extraction 
Once points have been clustered into objects using our 

depth map region growing technique, the original 3D points 
from each human-sized object are projected onto a 2D plane, 
see Fig. 2. The projected cluster points are then used to 
create a 32 x 16 binary template which is aligned with the 
major axis of the cluster. As a measure of how uniformly 
distributed the returns are across the 2D grid, we compute a 
feature that we refer to as the fill-factor, 
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Empirical analysis indicates that 2D binary templates of 

true humans, as well as other man-made objects, will be  



 

    

 

 
Fig. 2: (left) 3D Ladar points from one frame for a walking 
human; (center) Projection onto a 2D plane; (right) Binary 
32x16 map. (ff = 0.2246) 
 
roughly uniformly distributed, while a template resulting 
from random clutter which happens to be human size will be 
oddly shaped with points concentrated in small sections of 
the binary map. Random clutter clusters often meet human 
size constraints when several small clusters are erroneously 
grouped together (e.g. small clumps of grass and vegetation 
in close proximity to one another). The fill-factor value for 
these non-uniformly distributed clusters is much smaller.    

Since the number of Ladar points associated with a cluster 
decreases dramatically with distance, the fill-factor value for 
humans at long range also decreases.  Fig. 3 illustrates the 
returns for a human at x meters from the sensor compared to 
those at 2x meters. As a result of the reduced number of 
returns at the longer distance, the fill-factor value is likely to 
drop below the specified threshold.  In order to compensate 
for the reduced number of returns, the fill-factor value for 
objects at longer distances can be calculated by 
accumulating returns over multiple frames.  Allowing points 
to accumulate over even a short period of time can greatly 
improve the shape detail in the projected cluster, and 
increase the fill-factor value appropriately, see Fig. 4.  In 
many instances, false alarms due to random clutter do not 
persist for more than a frame, therefore their 2D density does 
not accumulate and their fill-factor value remains low.  
Although the fill-factor feature helps to eliminate false 
alarms due to random clutter, it is not able to distinguish 
humans from other human-sized objects such as barrels and 
posts. To make this distinction, we are developing a more 
advanced shape-based technique that involves a 2D 
comparison of the Ladar returns with a pre-determined ideal 
human template. 

2) Strength-of-Detection 
We have developed and tested an effective strength-of-
detection (SoD) value to associate with each cluster in each 
frame of the Ladar data. Initially, we used the fill-factor 
value as this measure, but this, by itself, does not reflect the 
increased confidence in the classification that results from 
repeatedly detecting and labeling a cluster as human over 

 

  
Fig. 3: Projection onto the yz-plane of the Ladar returns 
from a human at (left) x meters compared to (right) 2x 
meters. 

   
Fig. 4: Improvement in shape information by accumulating 
Ladar points for clusters at longer range: (left) 1 frame; 
(center) 2 frames; (right) 5 frames.   

 
several frames of data. Consequently, we implemented an 
improved SoD measure that takes into account, not only, the 
fill-factor feature, but whether the object is of the proper size 
to be human, whether it is moving at a realistic human speed 
(or is stationary), and whether the cluster persists over time. 
Confidence is defined in terms of four components: size 
( sc ), shape ( fc ), speed ( vc ), and life ( lc ), 

 
lcvcfcscC ∗∗∗= ,                               (3) 

 
where each component ranges in value from 0 to 1.  

The size component, sc , indicates how closely the height 
(h), width (w), and depth (d) of each cluster match nominal 
human dimensions (wmax, dmax, hmin, hmax): 
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We use a sigmoid to define shape in terms of a weighted 

version of the fill-factor, 
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where ff is the fill-factor computed from the 2D binned 
density, lh is the number of frames the cluster has been 
human-sized, and ωf is an experimentally determined 
constant. Scaling ff by lh increases cf   for clusters that are 
consistently human-sized. 

Since humans are limited in the speed at which they can 
travel, speed is another feature contributing to our 
confidence measure.  A cluster moving faster than a 
practical human pace is more likely to be a part of a vehicle 
than a human, so, as speed increases over the maximum 
allowable (vmax), confidence decreases, 
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 The final component of C captures the confidence 
associated with tracking an object and its features over time.  
The longer a cluster is tracked and is human-sized the more 
confident we are that we have correctly identified a human. 
This persistence is characterized by  
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where l is the life of the cluster which is the total number of 
frames that the cluster has been tracked, lh is the number of 
frames the cluster has been human-sized, and ωl is an 
experimentally determined constant.    

The SoD characterizes the algorithm’s confidence that a 
cluster is human (higher values equal more confidence) and 
provides a means for doing a thorough receiver operating 
characteristic (ROC) cuve analysis of algorithm 
performance.   

E. ROC Analysis 
We use a baseline set of Ladar data for algorithm analysis 

that consists of 18 scenarios, each of which is 60 – 90 
seconds in duration.  In these scenarios, eight humans move 
along straight line tracks at various orientations to the sensor 
vehicle.  Each particular human always traverses the same 
basic track.  GPS ground truth for each human track, as well 
as for the sensor vehicle, was recorded at approximately 0.1 
second intervals.  In addtion to the moving humans, four 
mannequins were used to represent stationary humans, 
resulting in a total of twelve possible human targets.  Factors 
that are varied include, the speed of the humans (1.5 or 3.0 
meters per second) and the speed of the sensor vehicle (15 or 
30 kilometers per hour).  As an added challenge, most of the 
scenarios contain other moving vehicles which occlude the 
humans from the sensor at certain times.    

We define two metrics to characterize the overall 
performance of our algorithm: the probability of detecting a 
true track  and the number of false tracks generated per 
second.  A track is defined as any set of M points that are 
labeled with the same ID by the algorithm, whether 
stationary or moving.  As a result, the maximum number of 
tracks that can be detected for any given scenario is twelve.  
We typically set the number of points, M, equal to one. 
Using the SoD defined in (3) thru (9), a threshold, CT, is 
defined such that each object with a SoD greater than CT is 
classified as human. ROC curves, which plot the probability 
of detecting true tracks versus the number of false tracks 
detected per second, are generated for different scenario 
conditions by varying CT.   Fig. 5 shows the overall 
performance of our algorithm on the baseline data.  Separate  

 
Fig. 5: Average performance results for a set of 18 Ladar 
files.  
 
curves for the moving and stationary targets reveal the high 
level of performance that the algorithm achieves in both 
cases.  On average, the algorithm achieves 99% detection 
with less than one false alaram per second. 

III. LWIR ALGORITHM 

A. Cluster Extraction and Classification 
Our LWIR algorithm generates human regions-of-interest 
(ROIs) using a two-stage process that first extracts clusters 
and then classifies the clusters based on a small number of 
geometrical features. We use a combination of statistical and 
edge features along with morphological techniques for 
cluster extraction. Global and local normalized intensity 
deviation images are computed. Normalized intensity 
deviation is defined as σ)( mijxijn −= , where xij is pixel 

intensity and m and σ are the mean and standard deviation 
which have been computed either globally or within a small 
window around the pixel. For local processing, an integral 
image implementation has been used so that varying the 
window size does not impact the computational load of the 
algorithm. 
 Edge information is obtained using the gradient. Using 
empirically determined thresholds, binary images are created 
from the global and local deviation images, as well as the 
edge map. Future work is aimed at using statistical 
processing to automate the choice of the thresholds in each 
case. Morphological dilation and cleaning are used prior to 
nearest neighbor clustering. 
 The second stage of the algorithm computes simple 
geometrical features for each cluster which are used to retain 
only those clusters that are human-like in nature.  The two 
features are an axis ratio and an edge ratio.  The first is the 
ratio of the major axis of the cluster to the minor axis of the 
cluster and the second is the ratio of the number of perimeter 
pixels in the cluster to the number of edge pixels.  We define 
two thresholds, ET and AT, such that all clusters with an axis 
ratio less than AT and an edge ratio greater than ET are 
classified as human. The features and thresholds have been 
chosen so as not to eliminate the detection of prone and 
other non-ideally postured humans.  

 



 

  

  
Fig. 6: The use of LWIR data enables the detection of 
humans in a variety of positions (upright, squatting, visibly 
occluded).  

B. Processing Results 
To establish a baseline performance for the algorithm, we 
first focused on analyzing data sets that are ideal in the sense 
that the humans tend to be hotter than their surroundings and 
there is little thermal clutter in the scenes. Fig. 6 shows the 
results of the algorithm on a series of frames from one of the 
baseline data sets. Under these ideal conditions, the 
algorithm provides a high detection rate in conjunction with 
few false alarms. The algorithm detects upright humans and 
humans in non-ideal positions (squatting, crouched), as well 
as humans visibly occluded by vegetation and bushes. In the 
latter case, the person would not be detectable in EO 
imagery.  

A challenge to our LWIR algorithm performance is the 
variation in resolution of the data with range. It can actually 
be more challenging to detect a person at close range than at 
far range. The lower resolution, at far range, leads to a 
homogeneous thermal signature for the entire subject, 
whereas, at close range, the better resolution reveals more 
variation in a person’s thermal signature as a result of things 
such as clothing and hair, see Fig. 7. At close range, a person 
often gets separated into smaller features such as the face, 
arms, hands and legs. In the absence of additional 
information, it can be challenging to put these pieces back 
together. However, by incorporating knowledge about the 
range of the object from the sensor, merging of object pieces 
can be achieved. 

C. Thermal Thresholding Analysis 
Like many IR algorithms, our initial algorithm relied on 

the human having an emissivity greater than that of its 
surrounding which may be an acceptable assumption at 
night, and in the early morning, or in cooler climates. 
However, in general this is not the case, and the algorithm 
needs to be made robust to various environmental 
conditions. We are evaluating the ability to thermally 
threshold the data by leveraging the fact that the sensor is 
thermally calibrated. However, preliminary analysis has 
shown that humans generate a wide range of thermal 
emissions across their body due to variation in clothing 
material as well as thermal reflections from the surrounding 
environment. Fig. 8 highlights that a simple windowing 

 
Fig. 7: Variation in thermal resolution with range. At close 
range, better resolution results in over segmentation, 
whereas the lower resolution at long range leads to a 
homogeneous signature across the body.  
 
threshold based on the minimum and maximum intensity of 
the human eliminates only a small portion of the scene. In 
this case, all pixels with intensities higher than the maximum 
human intensity are shown in white and those with 
intensities less than the minimum human intensity are shown 
in black. Only the road and sky are eliminated from the 
scene. In addition, one can see that the legs of the human 
appear much hotter than the rest of the body due to thermal 
reflections from the road (road is approx. 120 degrees). We 
are in the process of developing a more advanced technique 
which uses statistics of the thermal variation to dynamically 
threshold the scene and reduce the amount of clutter that 
remains.  

IV. APPROACH TO FUSION 
Analysis of our Ladar and LWIR algorithms has revealed 

the strengths and weaknesses of each approach.  Ladar 
sensors provide a forum for fast and reliable detection and 
tracking of objects that are well separated in angle and 
depth, but the data are limited in range and not appropriate 
for more difficult scenarios (e.g. prone humans).  In contrast, 
LWIR imagery is sensitive to much longer ranges and has 
the ability to discriminate objects in close proximity as a 
consequence of emissivity variations.  However, due to 
better resolution at close range, this same emissivity feature 
leads to over-segmentation of many objects.  Robust and 
reliable human detection and tracking can be achieved by 
merging these complementary modalities. We have 
developed a multi-level approach to fusion that combines 
information from the Ladar  

 

Fig. 8:  Thermal emission variation across the human body. 
Regions hotter than the maximum human intensity are 
shown in white, cooler in black, and regions which fall 
between the minimum and maximum are in grayscale with 
dark gray being the hottest.  



 

 
Fig. 9:  Approach to fusion includes merging information at 
both the feature and detection levels.   
 
and LWIR sensors at both the feature and detection levels. 
Fig. 9 shows an overview of our approach.  We are currently 
addressing the first stage of feature-level fusion in which we 
incorporate range information with the LWIR imagery. 

The most common way of associating depth information 
with each cluster is through stereo techniques [10], [11]. 
However, dense stereo methods tend to be computationally 
intense and may require special processing boards in order to 
achieve the real-time rates that are required for this task.  As 
a result, we take advantage of registered Ladar and LWIR 
cameras to use depth information from the Ladar to reduce 
the computational load on the stereo by eliminating all close 
range regions in the LWIR imagery from the stereo 
processing.  Stereo techniques provide the long range 
mapping. 

Any approach to fusion is dependent on the involved 
sensors being accurately registered, both intrinsically and 
extrinsically. Under the sponsorship of the Robotics 
Consortium, a method for achieving the desired registration 
has been developed [13]. Using the results of this newly 
developed registration process, we will be moving forward 
with the fusion approach which we have designed.   

V. CONCLUSION 
We have developed an algorithm for 3D Ladar data that 

consists of object detection, data association, classification, 
and tracking. In depth analysis of the algorithm using a set 
of ground truthed data, shows that the algorithm provides 
good performance on humans in more ideal positions that 
are spatially distinct from other objects.  A second algorithm 
developed for LWIR imagery, complements our Ladar 

approach by enabling the detection of individuals at much 
longer range and in more difficult positions.  Future efforts 
will be focused on finalizing the fusion of the two methods. 
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