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Abstract

We describe the functional and architectural breakdown
of a monocular pedestrian detection system. We describe
in detail our approach for single-frame classification based
on a novel scheme of breaking down the class variability
by repeatedly training a set of relatively simple classifiers
on clusters of the training set. Single-frame classification
performance results and system level performance figures
for daytime conditions are presented with a discussion
about the remaining gap to meet a daytime normal weather
condition production system.

I. I NTRODUCTION

This paper describes a monocular visual processing sys-
tem for pedestrian detection targeting the niche of driving
assistance on-board vehicles. The development is geared
towards a serial production sensor qualified initially for
collision warning and ACC Stop & Go applications, and
later for active safety collision mitigation systems. The
system runs on a prototype development platform (based on
1GHZ microprocessor PPC7457 G4) at a rate of 10Hz and
is being ported onto a specialized system-on-a-chip (EyeQ)
with the target frame rate of 20-25HZ.

Generally speaking, a visual processing system needs to
function well under a wide range of visibility conditions
covering over-cast sky, strong highlights, low visibility due
to inclement weather, wide dynamic range of imaging con-
ditions, change of context, day-time and night-time driving.
On top of that, the class of pedestrians is particularly
challenging for a number of reasons:
• The image space variability of the class is very large

as pedestrians appear in various poses, clothing and
various articulations of body parts. The articulation of
body parts also makes the process of tracking a pedes-
trian along an image sequence somewhat challenging.

• Pedestrians are found mostly in city traffic conditions
where the background texture (from surrounding man-
made structures, other vehicles poles and trees) form
a highly cluttered environment.

• The background clutter covers both shape (texture)
and depth. If in an open roadway a pedestrian would
stand out using depth disparity cues (such as by using
stereopsis), depth cues are unlikely to be useful for
segmenting out pedestrians in city traffic due to the
heavy disparity clutter.

• Pedestrians occupy a narrow image strip and from a
distance may look similar to many background objects
such as trees, poles, parts of parked vehicles, narrow
windows and openings, and so forth.

• Laterally moving pedestrians form an important sub-
class for which motion measurements form a powerful
cue. However, parts of moving vehicles (in slow traffic)
also generate inward motion signals and motion-based
segmentation from a moving platform is still a difficult
problem especially in an evironment rich with other
moving structures.

We will present below the functional and architectural
breakdown of a pedestrian detection system, and in more
details present a novel single-frame detection algorithm.
One of the key points which emerges from our analysis
of single-frame detection schemes is that it is unrealistic to
expect a reasonable system level performance using single-
frame classification only. Only by pooling together many
perceptual decisions can the system hope to segment out
pedestrians at a sufficiently reliable level. The key therefore
lies in the integration of additional cues measured over
time (dynamic gait, motion parallax, stability of re-detection
measures), situation specific features (such as leg positions
at certain poses), and most importantly via building up
additional object categories consisting of vehicles (both in
motion and stationary) and stationary background structure
such as poles, trees, guardrails, lane markings and so forth.
Due to space limitations we will focus on the details of the
single frame detection and describe only in general terms
the principles of the multi-frame decisions and end with a
detailed comparative analysis of our classifier and present
results and statistics of the system level performance.

II. FUNCTIONAL BREAKDOWN OF THESYSTEM

The appearance of pedestrians in the scene can be divided
into a number of categories:

Pedestrians moving laterally:visual motion analysis is a
strong cue for detection provided that the host vehicle
motion is factored out. In other words, simple image sub-
traction would not apply since the camera is mounted on a
moving platform. Another important cue is the gait pattern
both dynamically (change of position of legs over time) [3],
[17], [4] and statically (position of legs in a single frame).

Stationary pedestrians in primary host vehicle path (”in-



path”): pattern recognition (based on texture/shape) is the
primary source. In some cases the static gait position be-
comes useful. Motion parallax from the ground plane [13],
[11] forms a weak cue for sufficiently close pedestrians,
however it might be difficult to extract reliably in a city
traffic environment due to clutter and low visibility of the
roadway due to occlusions.

Pedestrians moving longitudinally:similar to stationary
pedestrians as the longitudinal motion is too weak to be
reliably picked up by image processing.

Stationary pedestrians out-of-path:stationary pedestrians
out of the host vehicle path need to be detected in order to
minimize the detection delays in case the pedestrian decides
to move inwardly — no external action is expected from the
system upon detection of stationary out-of-path pedestrians
thus a certain level of false positives is allowed.

The pedestrian system architecture loops through the
following modules:

(1) Generate candidate regions of interest:a systematic
scan of the image for rectangular shaped regions at all
positions and all sizes would be computationally unwieldy.
An attention mechanism filters out windows based on lack
of distinctive texture properties and incompliance with
perspective constraints on range and size of the candidate
pedestrian. On average, the attention mechanism generates
75 windows (out of the many thousands of candidates
which could be generated otherwise) per frame which are
fed to the classifier.

(2) Single frame classification: this is the heart of the
detection process. Details are presented in Section III.

(3) Multi-frame Approval Process: candidates which
survive the single frame classification thresholds are
likely to correspond to pedestrians . However, due to
the high variability of the object class and the high
levels of background clutter it is conceivable that
coincidental arrangements of image texture may have a
high detection score — an ambiguous situation which is
likely to be unavoidable. Additional information collected
over a number of frames are used in the system for
further corroboration. Measures that are collected over
multiple frames include (i) dynamic gait pattern based on
periodicity, (ii) inward motion analysis scores (coupled with
ego-motion [14]), (iii) motion parallax (when available),
(iv) consistency measure of the single-frame classifier over
time, and (v) tracking quality measures. The approval
process is based on a decision-tree type of classifier
trained by a training set. The length (number of frames)
of the approval process depends on the type and quality
of the collected information. For example, a strong inward
motion ranks highly in the decision process and induces
an immediate approval.

(4) Range measurement: candidate regions are fit
to pedestrians in such a way that the lower part of
the rectangular region is aligned with the feet. A gait

recognition process is used both as a discriminant in the
single-frame classification and multi-frame approval and
for a cue for range measurement. More details on the
process of range measurement using the flat roadway
assumption can be found in [15].

The four basic steps above are also coupled with support-
ing functions such as host vehicle ego-motion (of Yaw and
Pitch) [14], close range motion segmentation (for extracting
strong inward motion regardless of shape classification),
robust tracking (which can handle non-rigid motion and
occlusions induced by pedestrians crossing each other)
— and of primary importance the classification scores of
background sub-classes which include licensed vehicles,
poles, guard-rails, repetitive texture, lane mark interpre-
tation, bridges and other man-made horizontal structures,
and pedestrian walking zone areas. The sub-class scores
play an important role in the final decision-tree multi-frame
approval process.

We describe next our approach for single-frame classifi-
cation and present a novel scheme designed to reduce the
class variability to smaller pieces by repeatedly training a
set of relatively simple classifiers on clusters of the training
set.

III. S INGLE FRAME CLASSIFICATION ALGORITHM

The changing pose and articulation of the limbs suggests
a classifier based on the integration of local image represen-
tations as opposed to a holistic (global) representation. A lo-
cal image representation breaks down the class variability to
local parts each with its own variability which is presumably
much smaller than that of the entire shape. Moreover, the
representation by components compensate for pose and ar-
ticulation changes by allowing a flexible geometric relation
among the components during classification. The integration
of the local representations in the classification stage can
be rather degenerate such as the nearest neighbor approach
which employs relatively sophisticated local features such
as those used by [9], or integration via a cascaded classifier
such as the hierarchical SVM approach used by [8].

Both local feature integration approaches are problematic
in our application domain. The nearest neighbor approach
has been proven very effective for matching against a single
exemplar (as opposed to a class of objects), when the
number of descriptors is relatively large (in the thousands)
and when the local descriptors are localized on richly
textured regions [9]. In our application domain, the image
regions surrounding a typical pedestrian are often poorly
textured and because of the small region size it is difficult
to generate a large number of distinct descriptors. The
hierarchical SVM runs an SVM [1] classifier separately
on each local region thereby mapping each sub-region to
a real number (distance to local decision surface) — which
can be considered as a local discriminant function. The
results of the local discriminants are integrated by running
an SVM classifier on the feature vector comprising of



the local discriminant results. Due to the relatively small
number of local regions (of the order of 10), one would
require each sub-region to be highly discriminatory, be
localized in order to maximize the discrimination ability
and to be subject to a relatively sophisticated component
classifier which in the context of SVM translates to a high
order feature map (polynomial of Radial Basis Function).
The number of support vectors (templates used during
the classification stage) for high order feature maps are
relatively large (roughly 10% of the training set) thus make
the classification stage costly in computing resources. In [8]
a quadratic polynomial component classifier is used where
the integration of local discriminants is done by a linear
classifier. In our domain, mainly due to the small image
size of interest regions (candidate regions are warped to a
12×36 window which is fed to the classifer) and the poorly
defined sub-regions which make accurate localization of
component regions very challenging, such an approach is
not strong enough for an effective single-frame classifier
(see comparative results in Section IV).

A. Multi-training Classification by Components: Our Ap-
proach

Our approach to the single-frame classification stage
borrows from the idea of the recognition-by-components
using a 2-stage classifier algorithm. Namely, we breakdown
the region of interest into sub-regions, create a local vec-
tor representation per sub-region, feed each of the local
feature vectors to a discriminant function and integrate
the local discriminant results by a second-stage classifier.
The crucial difference from the conventional paradigm is
the way we handle the training set. Since the number
of local sub-regions are small we generate multiple local
discriminants (one per local sub-region) by dividing the
training set into mutually exclusivetraining clusterswhere
each cluster represents a training collection from a particular
pose, a particular articulation and a particular illumination
condition — all together 9 different subsets of the training
dataset. The idea behind the subset division of the training
set is to breakdown the overall variability of the class into
manageable pieces which can be captured by relatively
simple component classifiers. In other words, rather than
seeking sophisticated component classifiers which cover the
entire variability space (of the subregions) we apply prior
knowledge in the form of clustering (manually) the training
set. Each component classifier is trained multiple times —
once per training cluster — while the multiple discriminant
values per subregion and across subregions are combined
together via Adaboost [5]. Details of this approach are given
below.

The candidate region is divided into a fixed configuration
of 9 overlapping sub-regions with positions illustrated in
Fig. 1). We next compute for each subregion a local image
descriptor designed to be insensitive to local shifts of
image structure that may be caused by change of pose
and articulation of the pedestrian’s arms and limbs. The

Fig. 1. The configuration of the nine sub-regions is displayed
over the gradient image. The distribution of the arrows in each
sub region is measured (see the text). In addition, four pair
combinations are constructed (regions 10, 11, 12, 13).

particular design of the descriptor vector is borrowed from
a biologically inspired model implemented by [9] following
necessary changes due to the relatively small size of our
sub-regions. In particular, image gradient magnitudes and
orientations are sampled and the robustness against local
shifts is achieved by creating orientation histograms over
2× 2 sample regions (i.e., the sub-region is further divided
in a 2 × 2 configuration). Each orientation histogram has
8 orientation bins whose level are weighted by a smoothed
version of the gradient magnitudes. Taken together, the local
description consists of2×2×8 = 32 element feature vector
normalized to unit length (the normalization reduces the
effects of illumination changes).

The 32-element feature vector (per sub-region) undergoes
a linear weighting using Ridge Regression [7]. Briefly, let
w ∈ R32 be the desired weight vector which ideally forms
a hyperplane which separates the negative and positive
examples of the training cluster (the process below is
applied separately to each training cluster). Letxi be the
input local descriptors corresponding to the i’th training
image (at the particular location of sub-region) and let
yi = ±1 denote the class label. The Ridge Regression
procedure seeksw which minimizes the objective function:

α‖w‖2 +
∑

i

(yi − w>xi)2,

where α is a pre-determined fixed positive constant. The
solution of the optimization problem can be described in
closed form as follows. LetM be the Gram matrix, i.e.,
Mij = x>i xj , let A = [x1, x2, ...] hold the input vectors as
its columns, and lety = (y1, y2, ...). The weight vectorw
is equal to:

w = A(K + αI)−1y.

The discriminant ofx is the inner-productw>x. Given a
particular training cluster, the inner-product between the 9
weight vectors (one per sub-region) and their corresponding
sub-region local descriptor vector form a feature vector of 9
elements. Four additional elements are added by concatenat-
ing selectedpairs (illustrated in Fig. 1) of sub-regions into



local descriptors with 64 elements each which are turned
into 4 elements by the Ridge Regression procedure above.
Taken together, we have 13 elements per training cluster,
thus making a single feature vector of9×13 = 117 elements
representing the candidate region.

Note that breaking apart the training set into clusters is a
crucial ingredient in this procedure, because otherwise the
linear discriminant (per sub-region) would be too weak of
a classifier to be of practical use. Our findings show that
simplifying the variability space (induced by the training
clusters) is much more powerful than seeking a stronger
local discriminant — most likely because the local image
structure is not sufficiently discriminatory for such a wide
variability space. Also note that the choice of the local de-
scriptor allows us to bypass the need forlocalizedfeatures,
i.e., searching for distinguishable parts such as arms, legs,
head, and so forth.

The 117 elements are combined with Adaboost using
the entire training set. Each of the 117 elements can be
considered as a ”weak lerner” in the sense that it forms
a class discrimination. The main idea of AdaBoost is to
assign each example of the training set a weight. At the
beginning all weights are equal, but in every round the weak
learner returns a hypothesis, and the weights of all examples
classified wrong by that hypothesis are increased. That way
the weak learner is forced to focus on the difficult examples
of the training set. The final hypothesis is a combination of
the hypotheses of all rounds, namely a weighted majority
vote, where hypotheses with lower classification error have
higher weight.

This completes the description of the 2-stage classifica-
tion algorithm. In the next section we compare our approach
to holistic SVM and 2-stage SVM and demonstrate a
significant improvement in the ROC curve.

IV. EXPERIMENTAL RESULTS

The single frame pedestrian classification phase has been
a subject of past research (cf. [2], [6], [8], [12]) with pub-
lished performance figures. In general, the performance of
any classification system is subject to a tradeoff between the
rate of miss-detections (false negatives) and the rate of false
detections (false positives). For example, the performance of
detection drops as one imposes more stringent restrictions
on the rate of false positives. This tradeoff is captured by the
so called ROC curve which plots the error in miss-detection
against the false alarm rate.

The images were captured at a640 × 480 resolution
with a horizontal field of view of 47 degrees. Regions
of interest were scaled (up or down) to fill a region of
size 12 × 36 pixels which were fed into the single-frame
classifer. The training dataset consisted of 54,282 instances
roughly split equally between positive (pedestrians) and
negative examples. The negative examples were generated
automatically by sampling the windows produced by the
system’s attention mechanism. It is important to note that
the attention mechanism filters out windows based on lack

Fig. 2. ROC curves of three classifiers: our classifier is the top
curve, the global SVM classifer [12] is the middle curve, and the
2-stage SVM classifier [8] is the bottom curve.

of distinctive texture properties and incompliance with
perspective constraints on range and size of the candidate
pedestrian. In other words, the negative examples are not
random image fragments. On average, the attention mech-
anism generates 75 windows per frame which are fed to
the classifier. The test dataset consisted of 15,244 instances,
where both the training and test sets cover a wide variety of
daytime conditions including scale (range to camera from
3m to 25m), pose, articulation, illumination, background
texture, weather conditions, and a spectrum of visibility
conditions (mostly due to inclement weather conditions).
The training and test sets were extracted from 50 hours
of driving covering city traffic conditions around the world
including Japan, Munich, Detroit and Israel.

Fig. 2 shows the ROC curve (the top curve) of thetest
dataset. We can see from the curve that our classifier would
achieve, for example, a detection rate of 90% at a false
rate of 5.5% (which means 1 false positive for every 18
windows inspected). We chose the tradeoff with 93.5%
detection rate — achieved at a false positive rate of 8%
which is roughly one false positive for every 12 windows
inspected. Fig. 3 shows a sample of false positives (upper
row) and false negatives of the single frame classification
phase. Note that a window containing a pedestrian at a
wrong scale is also considered a false positive since the
system cannot reliably track these regions over time and
thus the region will be eventually dropped during the multi-
frame classification phase.

The reader may notice that these figures are strikingly
poorer than previously published results. For example, [12]
applies a global SVM on windows of size64 × 128 and
reports a detection rate of 81.6% at a false positive rate of
1 window per 15,000 windows inspected. The difference in
reported results may arise from a number of sources: (i)
the test set in [12] consisted of 165 positive examples only,
(ii) negative examples were generated by systematically
scanning the image — therefore many of the negative
examples were ”very easy”, as opposed to the negative
examples generated by our attention mechanism, (iii) dif-



Fig. 3. Some misclassifiaction examples. Upper row: false positive
examples. Bottom row: false negative examples.

ferent window size of64× 128 suggests that high detailed
pictures of pedestrians were used as opposed to the often
impoverished images our system must handle, (iv) training
and test sets in [12] cover only rear and front poses whereas
in our case all poses are covered, and (v) it is unclear what
level of variability (i.e., degree of challenging situations)
are covered by a particular dataset and thus it becomes
difficult to make comparisons. Similar performance figures
on the component-based 2-stage SVM were reported in [8]
citing an ROC curve with a 90% detection rate with a false
positive rate of 1 to 10,000 windows inspected.

Since it is difficult to establish a baseline for comparing
the various approaches from the published performance
figures alone, we have run the global SVM and a 2-stage
SVM using our training and test tests — thus establishing
a common baseline for comparative performance evaluation
of the single-frame classification phase. The middle ROC
curve in Fig. 2 corresponds to a quadratic polynomial classi-
fier trained using SVM (with the quadratic kernel function)
using the procedure described in [12]. The lower ROC curve
corresponds to a 2-stage SVM (following [8]) where the
9 sub-regions and 4 pairs of sub-regions were classified
using a quadratic polynomial SVM and the components
combination was done with a linear SVM. The reader may
wonder why the component 2-stage SVM performs poorer
than the global SVM — contrary to the results of the
original authors. The reason lies, in our opinion, with the
poor texture definition of the small sub-regions which make
each of them not sufficiently discriminatory over the entire
variability space. This underscores the importance of our
approach to breakdown the variability to smaller pieces
thus enabling the small sub-regions to become sufficiently
discriminatory. In comparison, the sub-regions in [8] were
relatively large (ranging from28 × 28 to 69 × 46) thus
allowing the underlying image texture to become more
discriminatory. In anycase, both ROC curves are uniformly
poorer that the ROC curve of our classifier by a significant
amount.

Going back to the ROC curve of our classifier, a simple
calculation would show that it is not realistic to expect a
reasonable system level performance from a single-frame
classification only. As mentioned previously, about 75 win-
dows are inspected per frame, and given a processing rate
of 10HZ we arrive at a number of 2.7 million classification
queries in one hour of driving. Allowing for one false
detection per 3 hours of driving, we would require a false
alarm rate of10−8 which is roughly 6 orders of magnitude
better than what is displayed in the best ROC curve of
Fig. 2. Such an improvement is not likely to happen by
finding a better classifier or a better scheme for representing
descriptors (local or global). The key therefore lies in the
integration of additional cues measured over time (dynamic
gait, motion parallax, stability of re-detection measures),
situation specific features (such as leg positions at certain
poses), and most importantly via building up additional
object categories consisting of vehicles (both in motion
and stationary) and stationary background structure such as
poles, trees, guardrails, lane markings and so forth.

The details of the system level integration and the extrac-
tion of the additional cues are beyond the scope and space
limitations of this paper. However, we will briefly present
below some of the performance results of the complete
system.

A. The Complete System Performance

As mentioned in Section II, the inspected windows which
pass the single-frame classification stage undergo a multi-
frame approval process. The accuracy requirements of the
final decision depends on the location of the pedestrian
and whether the pedestrian is stationary or moving laterally
(inwards towards the host vehicle path). The most stringent
requirements are set on inward moving pedestrians and on
in-path stationary pedestrians. For these situations the false
alarm rate should be less than 1 per 3 hours of driving with a
detection rate of above 95%. Accuracy requirements for out-
of-path stationary pedestrians are set for a false alarm rate
of 360 false positives per hour of driving (roughly 1 per 10
seconds of driving) at a detection rate of 95%. As mentioned
earlier, out-of-path stationary pedestrians are detected for
purpose of advanced lock-in in order to minimize the
detection delays in case the pedestrian decides to move in
an inward motion — no external action is expected from the
system upon detection of stationary out-of-path pedestrians.

We collected performance statistics over 5 hours of
daytime driving in dense city traffic (mostly in down-
town Tokyo and Jerusalem) under bright illumination with
normal weather conditions. Although weather conditions
were normal, bright illumination (as opposed to over-cast
sky) introduces much difficulty to the detection process as
shadows and highlights are emphasized in the scene and
create in turn unstable contrast changes over the image and
make the exposure control quite challenging due to the high
dynamic range of the scene. The detections were divided
into the following categories: (i) inward moving pedestri-



(a) (b) (c) (d) (e)

Fig. 4. (a) and (b) illustrate a typical image from the 1 hour test ride in one of the busiest Tokyo districts. The numbers below each
bounding box represent range. (c),(d) contain false positive examples: the horse legs in (c) and what may appear as an out-of-path
pedestrian at a range of 23m in (d). The region size at a distance of 23m is roughly8× 24 pixels. Square like bounding box represents
a vehicle in (d) and (e). An example of a miss detection (where the arrow is located) in (e).

ans, (ii) stationary pedestrians in-path, and (iii) stationary
pedestrians out-of-path. Pedestrians moving longitudinally
were counted as stationary. Stationary pedestrians out-of-
path which were occluded (such as by parking vehicles and
other obstructions) were not considered. The detection rate
of inward-moving pedestrian stands on 96% with 1 false
positive created during a host vehicle turning maneuver. The
average delay for inward moving pedestrians at the range
up to 15m was 4.6 frames (the minimal delay stands at
4 frmaes), 11.2 frames for 15m–25m and 21.7 frames for
pedestrians at the range of 25m–30m. The detection rate of
stationary in-path was calculated from a 1 hour drive in a
busy district of Tokyo (see Fig. 4a,b) stands on 93% with 3
false positives. The detection rate of out-of-path pedestrians
was determined from the same 1 hour session and stands
on 85% with 102 false positives.

V. SUMMARY

We have presented the functional requirements and ar-
chitecture of a pedestrian detection system targeting on-
board driving assistance applications. We presented our
approach for the single-frame classification stage which
is based on a novel scheme of breaking down the class
variability by repeatedly training a set of relatively simple
classifiers on clusters of the training set. Together with a
shift-invariant local description of image sub-regions and
discriminant integration using Adaboost we have obtained a
powerful classifier that outperforms the leading approaches
(for which a detailed description exists and can be re-
produced). One of the key points made in this work is the
observation that it is not realistic to expect a reasonable
system level performance using single-frame classification
only. The path from single-frame to system level per-
formance must include the integration of additional cues
measured over time (dynamic gait, motion parallax, stability
of re-detection measures), situation specific features (such
as leg positions at certain poses), and most importantly
via building up additional object categories consisting of
vehicles (both in motion and stationary) and stationary
background structure such as poles, trees, guardrails, lane
markings and so forth. The experimental results of our
system so far indicate that for some of the functions (such
as inward moving pedestrian detection) the performance is
satisfactory for daytime and normal weather conditions, and

for the remaining functionalities the gap which remains
is relatively small for meeting a daytime normal weather
specification.
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