
International Journal of Computer Vision 73(1), 41–59, 2007

c© 2007 Springer Science + Business Media, LLC. Manufactured in the United States.

DOI: 10.1007/s11263-006-9038-7

Multi-cue Pedestrian Detection and Tracking from a Moving Vehicle

D. M. GAVRILA
Machine Perception, DaimlerChrysler Research and Development, 89081 Ulm, Germany;

Intelligent Systems Lab, Faculty of Science, University of Amsterdam, 1098 SJ Amsterdam, The Netherlands
dariu.gavrila@DaimlerChrysler.com

S. MUNDER
Machine Perception, DaimlerChrysler Research and Development, 89081 Ulm, Germany

stefan.munder@DaimlerChrysler.com

Received June 5, 2005; Revised December 22, 2005; Accepted May 4, 2006

First online version published in July, 2006

Abstract. This paper presents a multi-cue vision system for the real-time detection and tracking of pedestrians
from a moving vehicle. The detection component involves a cascade of modules, each utilizing complementary
visual criteria to successively narrow down the image search space, balancing robustness and efficiency considera-
tions. Novel is the tight integration of the consecutive modules: (sparse) stereo-based ROI generation, shape-based
detection, texture-based classification and (dense) stereo-based verification. For example, shape-based detection
activates a weighted combination of texture-based classifiers, each attuned to a particular body pose.

Performance of individual modules and their interaction is analyzed by means of Receiver Operator Characteristics
(ROCs). A sequential optimization technique allows the successive combination of individual ROCs, providing opti-
mized system parameter settings in a systematic fashion, avoiding ad-hoc parameter tuning. Application-dependent
processing constraints can be incorporated in the optimization procedure.

Results from extensive field tests in difficult urban traffic conditions suggest system performance is at the leading
edge.
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1. Introduction

Our long term aim is to develop video-based driver
assistance systems for the detection of potentially dan-
gerous situations with pedestrians, in order to either
warn the driver, or, if no such time remains, initiate
appropriate protective measures (e.g. automatic vehi-
cle braking). See Fig. 1. The use of video sensors
comes quite natural for this problem; they provide tex-
ture information at fine horizontal and vertical reso-
lution, which in turn enables the use of discrimina-

tive pattern recognition techniques for distinguishing
pedestrians from other static and dynamic objects in
the traffic environment. The human visual perception
system is perhaps the best example of what perfor-
mance might be possible with such sensors, if only the
appropriate processing were used. Yet the pedestrian
application is very challenging from machine vision
perspective. It combines the difficulties of a moving
camera, a wide range of possible (deformable) object
appearances, cluttered backgrounds, stringent perfor-
mance criteria and hard real-time constraints.
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Figure 1. Driver inattention can instantly lead to dangerous situa-

tions with pedestrians.

The outline of the paper is as follows. Section 2
discusses previous work in this area. As will become
apparent, a multitude of interesting approaches have
been proposed in the literature, mostly focusing on sub-
problems (i.e. detection vs. tracking, lateral gait). Yet
there has been comparatively little effort spent on how
to effectively integrate multiple visual cues in an overall
detection and tracking system, as guided by quantita-
tive system (component) analysis. Furthermore, there
have been few instances in which presented concepts
were backed up by extensive experimental validation.

Section 3 presents the proposed pedestrian system
called PROTECTOR. The detection component in-
volves a cascade of modules, each utilizing comple-
mentary visual criteria to successively narrow down
the image search space, balancing robustness and ef-
ficiency considerations. Four detection modules are
considered: (sparse) stereo-based ROI generation,
shape-based detection, texture-based classification and
(dense) stereo-based verification. These are comple-
mented by a tracking module. We only provide short
descriptions of the individual modules, as most were
described previously. We focus instead on explaining
why certain modules were selected and how they were
integrated in the overall system. Among others, we
cover a novel mixture-of-experts architecture, involv-
ing several texture-based component classifiers, which
are weighted by the outcome of shape matching.

We obtain quantitative insights in the performance
of the independent modules and their interaction on
the basis of Receiver Operator Characteristics (ROCs).
Section 4 describes a system parameter optimization
technique to incrementally combine individual ROCs
into an overall optimized ROC. After choosing in the

latter an application-dependent ROC point, this method
allows to automatically determine the suitable module
parameter settings. Any application-specific bound on
computational cost can be incorporated as a hard con-
straint in the optimization procedure. This systemati-
cal approach to parameter optimization is undoubtedly
preferable to trial-and-error parameter tuning, so fre-
quently employed previously.

Section 5 introduces a methodology for the valida-
tion of an integrated pedestrian detection and tracking
system. Quantitative performance results of the pro-
posed PROTECTOR system are presented based on
many thousands of images from driving in real urban
traffic. Illustrating the benefit of the stereo vision mod-
ule, we compare the PROTECTOR system with a mono
version. Section 6 puts the resulting system perfor-
mance in context to that of other published systems and
lists possible improvements. We conclude in Section 7.

Although we primarily cover people detection in the
context of intelligent vehicles, the presented techniques
could also be adapted to other important domains, such
as surveillance or service robots.

2. Previous Work

Many interesting approaches for pedestrian detection
have been proposed, for a survey see (Gavrila, 2001).
Most work has pursued a learning-based approach, by-
passing a pose recovery step and describing human ap-
pearance directly in terms of simple low-level features
from a region of interest (ROI).

A number of ways exist to obtain such ROIs. Stan-
dard background subtraction, as frequently used in
surveillance applications, is unsuitable because of the
moving camera. Viable alternatives include sliding
windows, detection of independently moving objects,
and stereo-based obstacle detection.

The sliding window approach shifts ROI windows
of all possible sizes, at all locations over the images
while performing feature extraction and pattern clas-
sification. The brute-force approach in combination
with powerful classifiers (i.e. Mohan et al., 2001; Pa-
pageorgiou and Poggio, 2000; Zhao and Thorpe, 2000)
is currently computationally too intensive for real-
time application. Recently however, Viola et al. (2005)
demonstrated an efficient variant of the sliding win-
dow technique, which involves a detector cascade us-
ing simple appearance and motion filters (similar to
the Haar-wavelets). Simpler detectors, with a smaller
number of features, are placed earlier in the cascade
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and more complex detectors later. At each detector
stage, AdaBoost (Duda et al., 2001) incrementally se-
lects those features with the lowest weighted error on
the training set, until a user-supplied correct and false-
detection rate is achieved on a validation set.

Another approach for obtaining ROIs involves de-
tecting independently moving objects in monocular
images. This approach typically assumes translatory
camera motion and detects deviations in the opti-
cal flow field from the expected background mo-
tion (Elzein et al., 2003; Polana and Nelson, 1994;
Thompson and Pong, 1990).

A third effective approach for obtaining ROIs is by
stereo vision. Zhao and Thorpe (2000) obtain a fore-
ground region by clustering in the disparity space.
Broggi et al. (2003) and Grubb et al. (2004) consider
the x- and y-projections of the disparity space following
the ‘V-disparity’ technique (Labayrade et al., 2002).

Once ROIs have been established, different combi-
nations of features and pattern classifiers can be applied
to make the distinction between pedestrian and non-
pedestrian. For example, Broggi et al. (2004) employ
vertical symmetry features. Zhao and Thorpe (2000)
apply a high-pass filter and normalize the ROI for
size, thereafter applying a feed-forward neural net-
work. Papageorgiou and Poggio (2000) pioneered the
use of Haar-wavelet features in combination with a
Support Vector Machine (SVM); this approach was
subsequently adapted by Elzein et al. (2003) and others.

Component-based approaches have been utilized
to reduce the complexity of pedestrian classification.
Shashua et al. (2004), for instance, extract a feature
vector from each of 9 fixed sub-regions. Other ap-
proaches attempt to directly identify certain body parts.
Mohan et al. (2001), for example, extend the work of
Papageorgiou and Poggio (2000) to four component
classifiers for detecting heads, legs, and left/right arms
separately. Individual results are combined by a sec-
ond classifier, after ensuring proper geometrical con-
straints. Very recently, additional attempts have been
made towards reducing classification complexity by
manually separating the pedestrian training set in non-
overlapping sub-sets (i.e. based on pedestrian heading
direction) Shashua et al. (2004), Grubb et al. (2004),
and Shimizu and Poggio (2004).

There has been separately extensive work on pedes-
trian tracking. Representations such as Active Shape
Models (Baumberg and Hogg, 1994; Cootes et al.,
1995; Philomin et al., 2000), shape exemplars (Stenger
et al., 2003; Toyama and Blake, 2001) and color

blobs (Heisele and Wöhler, 1998) have been combined
with Kalman- (Baumberg and Hogg, 1994; Cootes
et al., 1995) or particle filtering (Philomin et al., 2000;
Stenger et al., 2003; Toyama and Blake, 2001) ap-
proaches. Given temporal ROI data, previous work has
detected people walking laterally to the viewing di-
rection, either using the periodicity cue (Cutler and
Davis, 2000; Polana and Nelson, 1994) or by learn-
ing the characteristic lateral gait pattern (Heisele and
Wöhler, 1998).

Orthogonal to the above, there has been increased
interest in the FIR domain (Broggi et al., 2004; Fang
et al., 2003; Liu and Fujimura, 2003) driven by the
arrival of cheaper, uncooled cameras. Detecting pedes-
trians by their body heat is attractive, certainly when
considering images shot on a cold winter night, where
the pedestrians stick out as white regions before a black
background. However, the situation is less appealing on
sunny summer days, when there is an abundance of ad-
ditional hot spots. In the latter case, one needs to resort
to a similar set of detection techniques as in the visible
domain.

Table 1 summarizes the main pedestrian detection
systems, distinguished by image sensor type, area of
coverage, detection performance, use of tracking, pro-
cessing speed and test set, where-ever specified by the
respective authors. As we will discuss in Section 6, per-
formance comparisons are hazardous, since data sets
are typically small (and diverse) (Mohan et al., 2001),
Papageorgiou and Poggio (2000), Viola et al. (2005),
Zhao and Thorpe (2000) and often relate to single com-
putational components (e.g. classification). Even where
test data is more abundant, many important test criteria
remain unspecified (e.g. exact coverage area, localiza-
tion tolerances, data assignment rule). The latter moti-
vates us to spell out a more detailed test methodology
(Section 5.1).

The issue of automatic system parameter optimiza-
tion has so far not been covered in the context of pedes-
trian detection, to our knowledge. A large body of lit-
erature exists on numerical methods dealing with the
minimization of non-linear objective functions. Such
approaches are impractical for the given problem of
optimizing a complex system, because (a) a single eval-
uation of the objective function is computationally ex-
pensive, and (b) the number of parameters involved is
relatively high. As a way out, authors have either tried
to model system behavior by simpler functions, e.g.
Bayesian networks (Sarkar and Chavali, 2000), or de-
veloped specialized solutions for the particular problem
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Table 1. Overview of current pedestrian detection systems. Detection performance derived by visual inspection of ROC graphs in respective

publications (approximation). “f.pos.” denotes false positives.

Sensor Coverage Detection Performance Tracking Processing

Authors type area (per frame) (per trajectory) speed Test set

Papageorgiou mono, – 70% correct, 0.15 f.pos. no 20 min 123 ped. images,

and Poggio visible (full set color wavelets) (200 MHz PC) 50 non-ped.

(2000) 70% correct, 3 f.pos. 10 Hz images

(red. grey wavelet set)

Mohan et al. mono, – 85% correct, 0.03 f.pos no – 123 ped. images

(2001) visible 50 non-ped

images

Viola et al. mono, – 80% correct, 0.5 f.pos no 4 Hz 2 sequences

(2005) visible (2.8 GHz PC) of 2000 images

(stat. camera)

Elzein et al. mono, – 69% correct, no 95s 16 ped. images +
(2003) visible 61% precision (500 MHz PC) few sequences

Shashua mono, 3–25 m 96% correct, 5.6 × 10−6 f.pos yes 10 Hz 1–5 hrs

et al. visible (inward moving) urban drive

(2004) 93% correct, 8.3 × 10−5 f.pos

(stationary in-path)

85% correct, 2.9 × 10−3 f.pos

(stationary out-path)

Zhao and stereo, – 85% correct, 3% f.pos no 3–12 Hz –

Thorpe visible (per stereo ROI) (450 MHz PC)

(2000)

Bertozzi et al. stereo, – 83% correct, 0.46 f.pos no – 1500 images,

(2004) visible 1897 ped. instances

Grubb et al. stereo, – 84% correct, 0.004 f.pos yes 23 Hz 2500 images,

(2004) visible (2.4 GHz PC) 14 different peds.

Gavrila and stereo, 10–25m 61–81% correct, 78–100% cor., 3–7 Hz sequence of

Munder visible in front [0.7–23] × 10−3 f.pos 0.3–3.5 f.pos/min 17390 images,

(current up to 4m (speed unoptimized) 694 ped. instances

paper) lateral 59–75% correct, 78–100% cor., 7–15 Hz 17067 non-ped.

[1.0–27] × 10−3 f.pos 0.4–5.1 f.pos/min (2.4 GHz PC) images

(speed optimized)

Fang et al. mono, – 84% correct, 19% f.pos no – 289 ped. images

(2003) FIR (summer)

92% correct, 3% f.pos

(winter)

at hand. Within this work, we aim to exploit the cascade
coupling of system modules.

Cascaded classifiers (Viola et al., 2005) have recently
received increasing interest due to their computational
efficiency, and a number of publications addressed their
optimization. For example, Sun et al. (2004) and Luo
(2005) observed that the overall cascade performance
is optimal if the slope of the log-scale ROC curve is
equal for all nodes, given that the individual cascade
nodes are statistically independent. No such assump-
tion is made by Huo and Chen (2004), who recently
proposed a ROC “frontier-following” heuristic to suc-
cessively adjust the thresholds of a classifier cascade.

The idea of analyzing the optimal front of ROC points
was first utilized by Provost and Fawcett (2001) in the
context of classifier comparison. They showed that, for
any misclassification costs, the optimal classifiers are
located on the ROC convex hull. Here, we extend both
ideas (Huo and Chen, 2004; Provost and Fawcett, 2001)
by developing a technique to sequentially optimize a
cascade of complex system modules, each controlled
by a number of parameters, and by incorporating user-
defined constraints.

This paper builds on earlier work described in
Gavrila et al. (2004). We consider the main contri-
butions of this paper the integration of modules in a
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Figure 2. Overview of the PROTECTOR modules. Modules shaded grey depend on stereo imaging. Parameters selected for optimization are

listed under the corresponding module.

multi-cue system for pedestrian detection and tracking
(Section 3.2), and furthermore, the systematic proce-
dure for parameter setting and system optimization
(Section 4).

3. The PROTECTOR System

See Fig. 2 for an overview of the modules of the PRO-
TECTOR system. Modules which rely on stereo are
shown in shaded grey, they would be discarded in a
mono version of the system. Figure 2 also lists the main
module parameters subject to optimization, as covered
in Section 4.

A first system design consideration involves the use
of stereo vision. Shashua et al. (2004), for example,
questions the benefit of depth disparity cues for seg-
menting out pedestrians in urban traffic due to heavy
disparity clutter. Approaches that are overly “bottom-
up”, such as those clustering sparse depth (e.g. Zhao
and Thorpe, 2000) or those based on detecting obstacles
using the V-disparity technique (Broggi et al., 2003;
Grubb et al., 2004), indeed tend to break down in such
cluttered scenarios, when pedestrians are not well sep-
arated from other objects in the environment and/or
when road surface is significantly occluded by other ob-
stacles. In such cases, pedestrian features are frequently
merged with other objects in the environment and a sub-
sequent pattern classifier has difficulties dealing with
the resulting spatial misalignment. We overcome this
problem by not relying on depth segmentation, instead
by instantiating “top-down” pedestrian matching based
on the (raw) depth data, see Section 3.2.1. In the experi-
ments in complex urban traffic, we show that the stereo
version of PROTECTOR significantly outperforms its

mono variant, as result of the improved foreground-
background separation (Section 5).

Another notable design choice, absent in other sys-
tems, is the use of a shape detection module prior to
texture-based pedestrian classification. Shape is a pow-
erful cue for the problem at hand; its property to reduce
the variation in pedestrian appearance as induced by
lighting or clothing, makes it an appealing “filter” be-
fore the use of texture, especially when it involves a
hierarchical matching approach which efficiently pro-
vides accurate target localization. Moreover, shape in-
formation can be used to instantiate pose-specific tex-
ture classifiers, for increased recognition performance
(Section 3.2.2).

3.1. Individual Modules

3.1.1. Sparse Stereo-Based ROI Generation. Pro-
cessing starts with the computation of a disparity map
using stereo. First step is the rectification of the left
and right camera image using an optimized implemen-
tation of Bouguet’s method (Bouguet, 2000). This im-
proves the epipolar alignment and reduces the effects
of lens distortion away from the optical center. In order
to allow real-time processing, we use a feature-based,
multi-resolution stereo algorithm developed by Franke
(2000) (alternate choices would have been possible).
The outcome is a relatively sparse disparity map, see
upper left part of Fig. 5.

3.1.2. Shape-Based Detection. We follow an
exemplar-based approach to shape-based pedestrian
detection, as previously described in Gavrila and
Philomin (1999). Pedestrians are represented by a set
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of training shapes or templates which ideally cover the
set of object appearances due to transformations (i.e.
scale) and intra-class variance (i.e. different pedestri-
ans, different poses). At the core, we perform template
matching based on the (chamfer) distance transform
(Borgefors, 1986). This correlation approach is
quite robust to missing features due to segmentation
problems (i.e. edge “gaps”) or occlusion. Furthermore,
the distance transforms has the advantage to provide
a gradual measure of shape dissimilarity. This allows
the use of an efficient search algorithms to “lock onto”
the correct solution, as discussed below.

Several thousand of exemplars have been collected
to describe the pedestrian shape distribution. We use a
template hierarchy to efficiently match whole sets of
templates, see lower right part of Fig. 5. Offline, this
hierarchy is constructed automatically from available
example templates, in bottom-up, level-by-level fash-
ion using clustering. Previous experiments have shown
that a three-level hierarchy is suitable for capturing the
pedestrian shape distribution, with number of templates
nodes decreasing an order of magnitude at successive
levels towards the root (Gavrila and Philomin, 1999).

Online, matching involves a depth-first traversal of
the template tree structure, starting at the root. Each
node corresponds to matching a (prototype) template
with the image at particular interest locations (i.e. at
various template translations). For the locations where
the (template size-normalized) chamfer distance mea-
sure between template and image is below a user-
supplied distance threshold Dl , one computes new in-
terest locations for the children nodes (generated by
sampling the local neighborhood on a finer grid of im-
age locations) and adds the children nodes to the list of
nodes to be processed. For locations where the distance
measure is above this threshold, search does not prop-
agate to the sub-tree; it is this pruning capability that
brings large efficiency gains. Following Gavrila and
Philomin (1999), a single distance threshold Dl applies
for each level of the hierarchy. An additional parameter
El governs the edge density that is extracted from the
original image at that level, which is the basis for the
underlying distance map. The resulting six parameters
D1,. . ., D3 and E1,. . ., E3 control the amount of ROIs
passed onto the next stage; they are determined auto-
matically using the optimization approach described in
Section 4.

3.1.3. Texture-Based Pedestrian Classification.
Whereas the preceeding module uses shape contours

Table 2. Data sets used for training and testing of the tex-

ture classifier. The data sets have been further increased by

mirroring and shifting the bounding box position in x- and

y-direction by few pixels (accounting for small remaining

localization errors).

Pedestrians Non-Pedestrians

Training set 5752 20434

Test set 4632 24668

to refine and filter the position and pose of candidate
pedestrians, the current pattern classification module
utilizes the richer set of intensity features to make
the distinction pedestrian versus non-pedestrian. The
selection of the particular type of classifier was guided
by the need to represent a complex decision boundary
in high dimensional feature space with only a relatively
small training set at the disposal, see Table 2 (negative
samples consisted of the false positives of the cascade
up to this point from previous bootstrapping steps
(Papageorgiou and Poggio, 2000)).

The SVM (Mohan et al., 2001; Papageorgiou and
Poggio, 2000), in combination with PCA for dimen-
sionality reduction, fits the above profile, but we de-
cided against it after an extensive experimental eval-
uation (Munder and Gavrila, 2006) showed its classi-
fication performance to be similar yet its processing
requirements to be substantially higher (by half order
of magnitude) than the approach we finally selected: a
neural network with local receptive fields (Wöhler and
Anlauf, 1999). The use of local receptive fields with
shared weights reduces the degrees of freedom for the
training process compared to a fully-connected feed-
forward network (Zhao and Thorpe, 2000), allowing
relatively small training sets. As Munder and Gavrila
(2006) shows, the network is nevertheless able to cap-
ture relevant feature information from a local neigh-
borhood.

3.1.4. Dense Stereo-Based Pedestrian Verification.
The aim at this stage is to filter out (false) detections
which contain an appreciable amount of background.
For this, the pedestrian shape template, which gener-
ated the candidate solution, is applied as a mask for
a dense cross-correlation with the other stereo image.
See Fig. 3. Cross-correlation is performed within the
particular disparity range as determined by the esti-
mated pedestrian depth (i.e. flat world assumption). A
second-order polynomial is fitted on the correlation val-
ues obtained over this one-dimensional search range. A
detection is accepted only if both the maximum of the



Multi-cue Pedestrian Detection and Tracking from a Moving Vehicle 47

Figure 3. Stereo Verification: The shape template masks out background pixels for a dense cross-correlation between both stereo images within

a certain disparity search range. A threshold is enforced on both height and spread of the resulting correlation function.

polynomial is above, and the normalized “spread” of
the polynomial is below a threshold (the latter is a mea-
sure of localization confidence). The two associated pa-
rameters, H and W , control the amount of ROIs passed
onto the next stage; they are determined automatically
using the optimization approach described in Section 4.

For some intuition in the above, see Fig. 4. The can-
didate solutions shown in black may have passed the
stereo, shape and texture module in the cascade. Based
on the ground plane constraint, however, they are esti-
mated at 10–15 m in front of the camera. When cross-
correlating with the other stereo image with the corre-
sponding disparities, matching will not produce a high
score, since the contained background pixels match
best at markedly lower disparity values (i.e. larger dis-
tances).

3.1.5. Tracking. Tracking allows us to overcome
gaps in detection, to suppress spurious measurements
and to obtain trajectory information for a subsequent
risk assessment module. Mainly because of computa-
tional cost and because shape variations have already
been handled by the detection modules, our tracker
is simplified to involve 2.5-D bounding box position

Figure 4. Stereo Verification: Examples of removal of background-

corrupted detections (accepted solutions shown white, rejected

black).

(x, y), extent (w, h), and depth (z), as well as their
derivatives. The depth of a bounding box is determined
from stereo vision using the shape template to mask
out background pixels. We use a straightforward α-β
tracker to estimate the object state parameters.

To deal with non-trivial data associations (i.e. single-
measurement multiple-track assignments or vice versa)
in an optimal fashion, we use the classical Hungar-
ian method (Kuhn, 1955). It operates on a cost matrix,
which is built from the similarity between the predic-
tion of the tracks and the associated measurements. As
similarity measure we use a weighted linear combina-
tion of Euclidean distance between object centroids and
pairwise shape dissimilarity. For the latter, we use the
chamfer distance (which was pre-computed off-line for
all pairs of shape exemplars in the process of the con-
struction of the exemplar hierarchy, see Section 3.1.2).
A new track is started whenever a new object appears
in m successive frames and no active track fits to it.
It ends, if the object corresponding to an active track
has not been detected in n successive frames. The two
associated parameters, m and n, control system output;
they are determined automatically using the optimiza-
tion approach described in Section 4.

3.2. Module Integration

We aim for a tight integration of modules in Fig. 2,
incorporating as much information as possible from a
previous module into the next one, for efficiency and
recognition performance reasons.

3.2.1. Depth and Shape. Figure 5 illustrates how the
depth and shape modules are integrated, while taking
into account the ground plane constraints (i.e. flat world
assumption, pedestrian on the ground). The outcome
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Figure 5. Integration of stereo, shape and ground plane constraints at “hand-over” of obstacle detection to pedestrian classification.

of the stereo module, the disparity map, is multiplexed
into N discrete depth ranges. The associated binary
images are scanned with windows related to minimum
and maximum extents of pedestrians, taking into ac-
count the ground plane location at a particular depth
range and appropriate pitch angle tolerances. The lo-
cations where the number of (depth) features exceeds
a percentage of the window area are added to the ROI
list for the subsequent shape detection module. The two
parameters, pitch angle tolerance ψ and feature density
threshold δ control the amount of ROIs passed onto the
next stage; they are determined automatically using the
optimization approach described in Section 4.

For a tight integration, the exemplar-based approach
of Section 3.1.2 computes separate template hierar-
chies corresponding to a discrete set of pedestrian sizes.
Links are established off-line between possible ROI
window sizes/locations and the template hierarchies
of corresponding pedestrian size, allowing an efficient
online “hand-over”. See Fig. 5. A similar technique ap-
plies the mono case; this takes into account solely the
ground plane constraints, without benefitting from the
pruning of window locations based on the existence of
sufficient depth features.

3.2.2. Shape and Texture. Texture-based classifica-
tion of pedestrians is challenging because of the high
variability of the target class, which arises from three
sources: foreground texture (induced by the pedes-
trian’s clothing and illumination), shape (body pose
and viewing direction), and background texture. One
approach to tackle this problem known from the lit-
erature is to partition the feature space into regions

of reduced variability, and to train separate classi-
fiers, or “local experts” for each sub-region (Jacobs
et al., 1991). This mixture-of-experts architecture is
particularly suitable for the problem at hand because
partitioning information is already available from the
shape detection module. Hence, instead of trying to
learn a clustering of the texture patterns anew, we
exploit the shape matching results as an additional
source of information for the texture classification
module. In order to compensate for shape matching
errors, as e.g. caused by background clutter, we de-
rive a probabilistic assignment of texture patterns to
shape clusters, used to weight the results of the individ-
ual classifiers. Figure 6 provides an illustration of this
architecture.

In Section 3.1.2, a hierarchy of shape templates has
been constructed. At the top level, this hierarchy de-
fines a partitioning of all underlying shape templates
into a number of clusters, each roughly representing
a distinct body pose. Let Ci , i = 1 . . . K , denote the
shape clusters, K being the number of template nodes
at the top level of the tree. In order to assign a texture
pattern x to a cluster Ci , we define a distance measure
between x and Ci by

Di (x) = min
t∈Ci

DChamfer(t, x), (1)

i.e., the minimum chamfer distance (Borgefors, 1986)
over all shape templates t in cluster Ci . By modeling the
cluster-conditional density function as an exponential
distribution,

p(x | Ci ) ∝ αi e
−αi Di (x), (2)



Multi-cue Pedestrian Detection and Tracking from a Moving Vehicle 49

Figure 6. Integration of shape-based localization and texture classification. The shape cluster membership of the matching shape template

determines the weighting of the K classifiers in a mixture-of-experts architecture.

and assuming equal prior probabilities, we derive the
probability of pattern x falling into cluster Ci according
to Bayes formula as

wi (x) ≡ αi e−αi Di (x)∑K
j=1 α j e−α j D j (x)

≈ P(Ci | x). (3)

Parameters αi are determined on the training set via
maximum likelihood.

One could partition the training set into K disjoint
subsets based on these probabilities, and train a sep-
arate classifier on each subset. We decided against
it as preliminary experiments have shown degraded
performance, possibly due to wrong sample-to-cluster
assignment or the reduced number of training sam-
ples remaining in each cluster. Instead, we train K
classifiers fi on the same full training set, but ap-
ply the cluster membership probability wi (x) as a
weight to each training example. The output of each
classifier can be considered as an approximation of
the posterior probability that pattern x represents a
pedestrian:

fi (x) ≈ P(pedestrian | Ci , x). (4)

The final classification result is consequently given by
the weighted sum of the cluster classifiers:

F(x) =
K∑

i=1

wi (x) fi (x) (5)

≈
K∑

i=1

P(Ci | x)P(pedestrian | Ci , x)

= P(pedestrian | x). (6)

Classification result F(x) is compared to a user-
supplied threshold C , which controls the amount of
ROIs passed onto the next stage. It is determined au-
tomatically using the optimization approach described
in Section 4.

Determination of the weights wi (x) is rather time-
consuming as it requires the computation of the cham-
fer distance of a previously unseen texture pattern to all
shape templates (Eqs. (1) and (3)). For online process-
ing, we approximate wi (x) by the expectation of the
weight vector distribution of samples in the training
set that fall in that particular cluster:

ŵ
j
i = ED j [wi (x)] (7)
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Figure 7. ROC curves of the texture classification module, determined on the test set. The solid curve shows the performance of the classifier

as given in Eq. (5), whereas approximated weights according to Eq. (7) have been used for the dashed curve. For comparison, ROC performance

for a single classifier without clustering is shown as well.

where

D j = {x ∈ D | j = arg min
j ′=1...K

D j ′ (x)} . (8)

In this manner, ŵ
j
i can be pre-computed off-line, and

index j follows online from hierarchical shape match-
ing.

Figure 7 illustrates the benefit of the proposed
mixture-of-experts architecture. The ensemble of tex-
ture classifiers attuned to particular pedestrian poses
clearly outperforms the single classifier trained on the
entire data set. Furthermore, approximating wi (x) by
ŵ

j
i does not appreciably affect performance.

4. System Optimization

After having introduced the individual modules, we
turn to modeling their interaction and to finding good
overall parameter settings in a systematic and opti-
mized fashion. Figure 2 shows the system modules to
be optimized and their respective parameters. In total,
13 parameters which mainly influence system perfor-
mance and processing speed have been identified for
optimization. Our optimization objective is the entire
system ROC curve in order to remain flexible regard-
ing the ROC point to be used in a particular application.
In order for the outcome to be practically usable, we

integrate the inevitable processing constraints (i.e. av-
erage processing time per frame) into the optimization
process.

The idea can be sketched as follows: We search over
a set of parameters by computing a ROC point, i.e. the
false positive and the detection rate, for each parameter
setting, as illustrated in Fig. 8. After filtering this set
of ROC points to meet user-defined constraints, the de-
sired system ROC curve is given by its frontier (black
curve in Fig. 8). For computational reasons, the system
modules are successively included into the optimiza-
tion process.

The theory of the optimization approach is given
in the next subsection, implementation details and the
incorporation of constraints are described in Section
4.2.

4.1. Sequential Parameter Optimization

We first consider the problem of adjusting the pa-
rameters of a cascade of n system modules. Each
module represents a classifier that assigns an input
pattern x to either the target or non-target class, de-
pending on some parameter vector qi , i = 1,. . ., n,
subject to optimization. The output of the entire cas-
cade is “target class” if, and only if, all classifiers
agree on that decision. If di (x, qi ) ∈ {0, 1} de-
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Figure 8. Illustration of the optimal subset of ROC points: A cloud of ROC points of the texture classification module has been generated by

varying its output threshold as well as the parameters of the preceeding shape detection module, shown by grey crosses. The subset of optimal

ROC points (for this particular module) is depicted by the black curve.

notes the output of the i th classifier where 1 and 0
denote the target class and non-target class, respec-
tively, then the result of the entire cascade is given by
D1:n(x, q1:n) = d1(x, q1)d2(x, q2) . . . dn(x, qn), where
q1:n = (q1,. . ., qn) denotes the concatenation of all
parameter vectors. Furthermore, let Qi denote the set
of admissible parameter vectors qi , and Q1:n = Q1 ×
· · · × Qn .

The performance of the cascade for a given parame-
ter vector q1:n is characterized by a pair of false positive
rate and corresponding detection (or hit) rate,

F1:n(q1:n)=Pr[D1:n(x, q1:n)=1|non-target pattern x],

H1:n(q1:n)=Pr[D1:n(x, q1:n) = 1|target pattern x],

which represents a point in ROC space. The set Q1:n of
all admissible parameter vectors generates a set of ROC
points, of which we seek the dominating, or Pareto
optimal (Boyd and Vandenbergh, 2004) ones along the
frontier, see Fig. 8 for an illustration. More formally, we
seek for the subset Q�

1:n ⊂ Q1:n of parameter vectors
q1:n for which there is no other parameter vector that
outperforms both, false positive rate and the detection
rate rate: (temporarily dropping subscripts)

Q� ={q ∈ Q | ∀q′∈QF(q′)≥ F(q)∨H (q′)≤ H (q)}.
(9)

Performing such an optimization simultaneously for
all parameters, however, becomes computationally in-
feasible even for a moderate number of cascade nodes
and parameters. But suppose the following precon-
dition holds: Each (concatenated) parameter vector
q1:i ∈ Q�

1:i optimal for a cascade of nodes 1,. . ., i is
also optimal if only nodes 1,. . ., i − 1 are considered.
That is,

q1:i = (q1:i−1, qi ) ∈ Q�
1:i ⇒ q1:i−1 ∈ Q�

1:i−1, (10)

for i = 2,. . ., n. Then, the search space Q1:n in Eq. (9)
can be restricted to contain the solution Q�

1:n−1 of a
truncated cascade. Applying this idea recursively leads
to the method of sequentially computing Q�

1:2, Q�
1:3,

. . . , Q�
1:n , where the search space Q′

1:i in each step can
be restricted to contain the preceeding solution:

Q′
1:i = Q�

1:i−1 × Qi ,

Q�
1:i = {q ∈ Q′

1:i | ∀q′∈Q′
1:i

F(q′) ≥ F(q) ∨ H (q′)

≤ H (q)}. (11)

It is easy to show that the precondition (10) is met
when the cascade nodes are independent, i.e. if

F1:n(q1:n) =
n∏

i=1

fi (qi ), H1:n(q1:n) =
n∏

i=1

hi (qi ),

(12)
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Figure 9. System optimization procedure.

where fi (qi ) denotes the false positive rate of node i
which is now only affected by its associated parame-
ters qi and independent of all others, and analogously
for hi (qi ). Substituting F and H in Eq. (9) with these
products immediately implies (10). In other words, the
successive computation scheme (11) is provably opti-
mal if the cascade nodes are independent.

In practice, the cascade nodes are correlated so that
this procedure is no longer guaranteed to find the global
optimum. However, there is experimental evidence that
often, the solution such found is close to optimal. An
example is given in Section 5.2.

4.2. Implementation

In many applications there are constraints that restrict
allowable parameter settings. For example, an (online)
application will involve bounds on allowable process-
ing speed. For real-time pedestrian detection on-board
a moving vehicle, we place an upper limit on the aver-
age processing time per frame.

In general, let a parameter vector q1:i under con-
sideration at optimization be required to meet some
user-defined constraint Ci (q1:i ) ≥ 0. Then the search
space Q′

1:i in Eq. (11) is restricted to those parameter
vectors that meet the constraint, i.e. it is replaced by

QC
1:i = {q1:i ∈ Q′

1:i | Ci (q1:i ) ≥ 0}. (13)

Our particular constraint of limiting the average pro-
cessing time per frame is implemented as follows. At
optimization stage i and parameter q1:i under con-
sideration, processing time T consumed

1:i (q1:i ) of modules
1,. . ., i can be measured, while the processing time of
the remaining modules i + 1,. . ., n is estimated to be
a linear function of the (average) number of ROIs to
be processed by these modules. The latter is given by
the number of outputs ki (q1:i ) of module i , while the

parameters of the linear model, T fix
i+1:n and T obj

i+1:n , are
determined in advance by linear regression over the
training set. With T limit denoting the user-defined pro-
cessing time limit, Ci is given by

Ci (q1:i ) = T limit − T consumed
1:i (q1:i ) − T fix

i+1:n

−ki (q1:i )T
obj

i+1:n. (14)

Two simplifications are made in order for the op-
timization algorithm to be computationally feasible.
The sets of admissible parameters Qi are required to
be finite, so that Eq. (11) can be implemented as a
simple search over the restricted set QC

1:i . Finiteness
is achieved via discretization. Secondly, we limit the
number of ROC points to be considered from the pre-
ceeding solution set. At most M ROC points are se-
lected from Q�

1:i−1, drawn uniformly along the ROC
curve. The resulting system parameter optimization al-
gorithm is listed in Fig. 9.
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Table 3. “Real World” statistics.

Run1 Run2

Total images 21053 17390

Images containing pedestrians 1021 855

Events (pedestrian instances): all/risky 733/112 694/89

Event trajectories: all/risky 45/17 50/10

5. Experiments

We tested the PROTECTOR system on data from ur-
ban traffic environment. Two video sequences (Run1
and Run2) were recorded on the same route through
suburbia and inner city of Aachen, Germany, lasting
27 min and 24 min, respectively. On the route, ten
pedestrian “actors” awaited the system, either stand-
ing or crossing at various walking speeds, according to
a pre-defined choreography (for both runs the same).
In addition, there were the “normal” pedestrians which
happened to be on the road. The vehicle driver was
requested to maintain 30 km/h, traffic conditions per-
mitting. Statistics for both sequences are shown in
Table 3. See Fig. 10 for a view inside the vehicle
demonstrator.

Run1 was used to perform the parameter optimiza-
tion as described in Section 4, system evaluation was
done on Run2. None of these sequences was used for
the training process of a system module (as shape
or texture pattern examples), Run1 merely provided
a basis for the adaption of our system to the urban
environment.

Figure 10. Inside the vehicle demonstrator: stereo cameras visible

lateral to rear-mirror, display for system prototyping.

5.1. Test Methodology

At the core, system evaluation involves comparing en-
tries from ground truth with system output, both related
to 3D object position relative to the vehicle (we pre-
fer to evaluate the system in 3D rather than in image
space, because application-specific considerations can
more easily be described in 3D terms). Ground truth
data is obtained by a human operator diligently label-
ing objects in monocular images, and by using scene
knowledge to back-project into 3D. For the case of
pedestrians, the latter means making the “flat world”
assumption coupled with the reasonable conjecture that
the pedestrian feet stand on the ground plane.

In comparing system output and ground truth, we
consider two performance metrics: sensitivity and pre-
cision. Sensitivity relates to the percentage of true so-
lutions that were found by the system, whereas preci-
sion relates to the percentage of system solutions that
were correct. A sensitivity and precision of 100% is
ideal: the system finds all real solutions and produces
no false positives. For additional insight, we consider
the two performance metrics on both the frame- and
trajectory-level. For the latter, we further distinguish
two types of trajectories: “class-B” and “class-A” tra-
jectories that have at least one entry or at least 50% of
their entries matched, respectively. Thus, all “class-A”
trajectories are also “class-B” trajectories, but “class-
A” trajectories pose stronger detection demands that
might be necessary in some applications. Furthermore,
the following items need to be specified.

Sensor Coverage Area. The sensor coverage area
represents the space surrounding the vehicle where the
defined object detection capability is required. Outside
this area, we consider detection capability optional in
the sense that the system is not rewarded/penalized
for correct/false/missing detections. The PROTEC-
TOR sensor coverage area is shown in Fig. 11.

Localization Tolerance. Given an object detected by
the system at a certain location (“alarm”), and given a
true object location (“event”), the localization tolerance
is the maximum positional deviation that still allows us
to count the alarm as a match. This localization toler-
ance is the sum of an application-specific component
(how precise does the object localization have to be for
the application) and a component related to measure-
ment error (how exact can we determine true object
location).

For the PROTECTOR field tests, we define object
localization tolerance as percentage of distance, for
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Figure 11. PROTECTOR system coverage area.

lateral and longitudinal direction (X and Z ), with re-
spect to the vehicle. Regarding the application-specific
component, values of Xa = 5% and Za = 15% appear
reasonable; for example, this means that, at 20 m dis-
tance, we tolerate a localization error of ±1 m and ±3 m
in the position of the pedestrian, lateral and longitudinal
to the vehicle driving direction, respectively. Regard-
ing the measurement-specific component, Xm = 5%
and Zm = 15% appear necessary (with the larger Zm

value to account for non-flat road surface and/or vehi-
cle pitch in case of ground truth by monocular image
labeling). For the PROTECTOR field tests, we then use
overall tolerances of X = 10% and Z = 30%.

Data Assignment. For the PROTECTOR application
we allow many-to-many correspondences. An event is
considered matched if there is at least one alarm match-
ing it. In practice, this means that in the case a group of
pedestrians walking sufficiently close together in front
of the vehicle, the system does not necessarily have to
detect all of them in isolation, it suffices if each true
pedestrian is within the localization tolerance of a de-
tected pedestrian.

5.2. Validation of the Optimization Procedure

The first test aims to validate the system optimization
procedure described in Section 4 using real-world data.
For comparison, we determine the true optimum by
exhaustive search of the entire (discretized) parameter
space. In order for this to be computationally feasible,

we select only two out of the five system modules,
namely the “Shape-based Detection” and “Texture-
based Classification” modules. Furthermore, we fix the
parameters of the non-leaf levels of the shape tem-
plate hierarchy, so that three system parameters remain
for optimization: the leaf-level edge binarization and
chamfer distance thresholds EL and DL , and the clas-
sifier output threshold C , see Fig. 2. 11 discrete values
are chosen for parameter EL , and 100 for DL and C ,
so that in total 111, 000 different parameter settings
have to be considered for the exhaustive search, but
only 11 × 100 + 127 × 100 = 13, 800 for the sequen-
tial approach, where 127 is the number of ROC points
obtained in the first optimization step.

In addition, we apply the independent optimization
procedure described by Luo (2005). Here, we first de-
termine a single ROC curve for each of the two system
modules. Since two parameters are involved for the first
module, its ROC curve is computed from the Pareto
front, Eq. (9). An overall optimization objective, con-
structed by considering log-scale ROC curves and by
using the Lagrange multiplier method, is to minimize
log(F(q)) − λ log(H (q)). By assuming independence
and substituting F and H with Eq. (12), this decom-
poses into independent optimization problems, one for
each module, parametrized by the Lagrange multiplier
λ. The overall ROC curve is then obtained by varying λ

within the range (0, ∞) and by choosing optimized pa-
rameters independently for each module, given by the
point on their log-scale ROC curve with slope equal to
λ.

ROC results for all three methods obtained on the
optimization sequence Run1 are given in Fig. 12. The
performance of the sequential optimization procedure
is almost identical to the optimal ROC curve ob-
tained by exhaustive search, whereas results of the
independent optimization approach are considerably
degraded.

5.3. PROTECTOR System Results

We compare three variants of our system: The PRO-
TECTOR system as described in Section 3 with and
without processing time constraint, and a mono sys-
tem, without time constraint, where the stereo-related
modules have been discarded (Stereo-based ROI Gen-
eration and Pedestrian Verification, leaving only the
ground plane as ROI constraint). The upper bound on
average processing time was specified at 100 ms.
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Figure 12. Comparison of three parameter optimization approaches: Exhaustive search, the sequential optimization method described in

Section 4, and the independent optimization described in Luo (2005).
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Figure 13. ROC curves of 3 configurations: Stereo/Mono system, optimized without processing time constraint, and stereo system optimized

under average processing time constraint of 100 ms.

The system parameter optimization procedure de-
scribed in Section 4 is employed for each of the three
variants using sequence Run1. Resulting ROC curves
are shown in Fig. 13. The x- and y-axis denote aver-
age number of false detections per image, and frame-
level sensitivity, respectively. The ROC point at Sen-

sitivity = 60% has been selected on each of these
curves for system evaluation, to ensure a common
reference for performance comparison between the 3
variants.

Results on the test sequence Run2 are given in
Table 4 on the frame and trajectory level. Enforcing
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Table 4. “Real World” Performance for Sequence Run2: “F” denotes frame-level performance, “A”/“B” denote

A-class/B-class trajectory performance, respectively. Numbers of false alarms (FA) are given per 103 frames for

frame-level performance, and per driving minute for trajectory performance.

Stereo Stereo, Time constraint Mono

F A B F A B F A B

Sensitivity (all) 61.0% 62.0% 78.0% 58.8% 64.0% 78.0% 62.8% 68.0% 82.0%

Precision (all) 52.6% 37.2% 38.0% 46.1% 29.1% 30.3% 22.7% 14.3% 15.2%

FA 103 fr, min (all) 23 3.6 3.5 27 5.2 5.1 110 15.3 15.1

Sensitivity (risky) 80.9% 90.0% 100% 75.3% 80.0% 100% 74.2% 80.0% 90.0%

Precision (risky) 83.1% 61.9% 61.9% 73.1% 57.1% 57.1% 30.4% 25.8% 25.8%

FA 103 fr, min (risky) 0.69 0.33 0.33 1.0 0.38 0.38 9.9 2.0 2.0

Avg. Proc. (Frame) 162 ms 101 ms 638 ms

the processing time constraint lowers the precision
of the stereo system by about 6–8%, but leads to
a significant speed-up of almost 40%. This speed-
up is mainly achieved by choosing very strict pa-
rameters for the first two modules, stereo-based ROI
generation and shape-based detection, so that fewer
ROIs have to be processed by the system compared to
the unconstrained variant. The same overall sensitiv-
ity is then attained by relaxing the parameters of the
subsequent modules texture classification and stereo
verification. The mono system suffers from a high num-
ber of false detections made on cluttered background,
which are otherwise cut out by the stereo-based ROI
generation.

A separate evaluation was made for pedestrians di-
rectly in front of the car, i.e. which are in particu-
lar risk, by restricting the sensor coverage area to a
maximum lateral offset from the vehicle medial axis
of 1.5 m (instead of 4 m). Performance significantly
increases when only those “risky” pedestrians are
considered.

Finally, Fig. 14 provides three screen shots of the
PROTECTOR system in action. The top image illus-
trates a test track scenario, the lower images two ur-
ban scenes. The left sub-images show the results of
stereo-based ROI generation (the bounding boxes of
shape templates activated by stereo are shown in grey,
as discussed in Section 3.2.1). Middle sub-images con-
tain detection results superimposed. The right sub-
images contain a top view of the scene in front of the
vehicle. Shown is the sensor coverage area, with dis-
tance scale in meters. Detected pedestrians are denoted
by white dots, (relative) velocity vectors by white line
segments. The bottom image shows a typical false de-
tection on traffic infrastructure.

6. Discussion

One is naturally inclined to put the obtained system
performance in perspective by comparing it to that of
previous systems and, secondly, to one that might be
expected of a future commercially-viable system. Yet
both type of comparisons are difficult, for different rea-
sons. A thorough comparison with previous systems
is only possible if all test criteria have been laid out
and applied uniformly, on the identical test data set.
We have already argued that test criteria were insuf-
ficiently spelled out in previous work, and addressed
this here by Section 5.1. Furthermore, the use of merely
hundreds of images for the test set (see last column of
Table 1) can lead to very significant performance vari-
ations depending on the “ease” of the selected data set.
Performance swings related to the number of false pos-
itives up to orders of magnitude are not uncommon. In
our test set, using many thousands of images, we have
observed much smaller performance variations, in the
order of a couple of percentages.

But size is not all that matters. Special caution should
be taken when, for example, comparing performance
reached on data from a surveillance scenario (e.g. Viola
et al., 2005) with that of a moving vehicle (this pa-
per). In the former case, the downward tilted camera
typically sees the uniform “greyish” background of
the road as the backdrop of pedestrians, background
diversity is limited by the stationary nature of the cam-
era. This helps improve pedestrian/non-pedestrian dis-
crimination, compared to the case where the camera is
vehicle-mounted and non-tilted, where pedestrian are
seen against the backdrop of an ever changing com-
plex environment (e.g. vehicles, traffic infrastructure).
With all the necessary caveats in place, can now turn to
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Figure 14. PROTECTOR system results: stereo preprocessing, detections and trajectories.
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Table 1 and observe that, in terms of the performance
metric typically listed (i.e. correct/false detections per
frame), the proposed PROTECTOR stereo-system is
very competitive, certainly when considering process-
ing speed constraints. The advantage of using stereo
furthermore becomes clear when comparing it to a
mono version, it produces an order of magnitude more
false positives (see Fig. 13).

A number of methodical improvements could help
overcome the above performance gap. Related to the
early attention focusing stages, we are interested in
detecting independently moving objects using the so-
called flow-depth constraint (Heinrich, 2002) and in the
more general problem of ego-motion estimation from
time-varying stereo data. Computational resources per-
mitting, processing could start with the computation of
dense stereo over the entire image, for more accurate
object segmentation. We are also interested in more so-
phisticated tracking by means of a spatio-temporal ob-
ject representations using distinct linear subspace mod-
els or Dynamic Point Distribution Models (DPDMs)
(Giebel et al., 2004). State propagation is achieved by
a particle filter which combines the three cues shape,
texture and depth in its observation density function.
Detections are integrated into tracking by means of
importance sampling.

7. Conclusions

This paper introduced a multi-cue vision system for
real-time pedestrian detection and tracking from a
moving vehicle, called PROTECTOR. The detection
component involved a cascade of modules, each
utilizing complementary visual criteria to focus on
relevant image regions. Tight integration ensured that
valuable information (constraints) is passed on be-
tween successive modules. A novel mixture-of-experts
architecture, involving texture-based component clas-
sifiers weighted by the outcome of shape matching,
was shown to outperform the single texture classifier
approach.

In order to cope with the complexity of such large
vision system, the paper analyzed the performance of
individual modules and their interaction by means of
ROCs. A sequential optimization heuristic was shown
to result in near-optimal system parameter settings,
while incorporating processing time constraints.

Extensive experiments in difficult urban traffic con-
ditions showed that PROTECTOR reaches a correct
recognition percentage of 62–100% at the cost of 0.3–

5 false classifications per minute. The stereo version of
the system clearly outperformed a mono version; per-
formance was furthermore enhanced by a restriction
of the sensor coverage area and more processing time.
Although overall results are promising, much more re-
search is needed before PROTECTOR-like systems can
reach ROC performance adequate for real-world use.
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