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Abstract

One of the main challenges in computer vision is the au-
tomatic detection of specific object classes in images. Re-
cent advances of object detection performance in the visible
spectrum encourage the application of these approaches to
data beyond the visible spectrum. In this paper, we show the
applicability of a well known, local-feature based object de-
tector for the case of people detection in thermal data. We
adapt the detector to the special conditions of infrared data
and show the specifics relevant for feature based object de-
tection. For that, we employ the SURF feature detector and
descriptor that is well suited for infrared data. We evaluate
the performance of our adapted object detector in the task
of person detection in different real-world scenarios where
people occur at multiple scales. Finally, we show how this
local-feature based detector can be used to recognize spe-
cific object parts, i.e., body parts of detected people.

1. Introduction
Object detection has been subject to extensive research

over the past decades. Many of the traditional tracking
approaches are based on foreground detection that distin-
guishes objects from a static background by image subtrac-
tion or some more elaborated approach, e.g. [13]. Draw-
backs of these systems are the disability to reliably distin-
guish different object classes and to cope with ego-motion
of the recording camera, though extensions in this latter di-
rection have been proposed by [10]. Recent advances in ob-
ject detection in the visible spectrum ([14], [8], [12], [11])
encourage the use of trainable, class-specific object detec-
tors to detect people in thermal data.

In this paper, we address the problem of detecting people
in real-world thermal images. Unlike other approaches, e.g.
[4], that assume a static background and a static camera in
order to detect objects by simple foreground or motion seg-
mentation, we are able to detect people from a moving cam-
era without assumptions on the environment. In addition
to people/scene classification, this object-classification ap-

proach is able to distinguish between object classes, which
is important since we are not interested in any moving ob-
ject, like cars (like a motion detection would return it even
in an environment with a static camera), but only in people.

Our person detector is build on a state-of-the-art fea-
ture based object detector, introduced by Leibe et al. in [8].
We make several enhancements to this object detector and
adapt it to the specific task of detecting people in thermal
data. The approach of local-feature based person detection
is specifically applicable in thermal data, because the varia-
tion in person appearance is rather limited compared to visi-
ble wavelength imagery. In thermal data, people mostly ap-
pear as a light region with a contrast to a darker background.
Additionally to just detecting persons as a compound, we
show how this feature based person detector can be used to
classify body-parts of persons, which can be used for fur-
ther interpretation on the behavior of people. We evaluate
the person detector in three thermal image sequences with
a total of 2535 person occurrences. These image sequences
cover the complete range of difficulties in person detection,
i.e., people appearing at different scales, visible from differ-
ent viewpoint, and occluding each other.

The paper is structured as follows. In section 2 we briefly
introduce the basics of the object detection approach and
detail the extensions and adaptations we made to it. In sec-
tion 3, we show how this feature based object detector can
be used to classify object-parts, i.e., body-parts of persons
in our application. Section 4 elaborates the issues specifi-
cally relevant in the application of this object detector to the
task of person detection in thermal data. In section 5, we
evaluate the person detector in three different infrared im-
age sequences taken from various viewpoints with different
cameras.

2. The refined object detection approach

Our person detector is build on a state-of-the-art object
detector by Leibe et al. [8]. In this section, we briefly de-
scribe the training and detection approach and the enhance-
ments we made.
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2.1. Training

In the training stage, a specific object class is trained on
the basis of annotated example images of the desired ob-
ject category. The training is based on local features that
are employed to build an appearance codebook of a specific
object category. Leibe et al. use a combination of multiple
cues to find interest points in the image and then use local
Shape Context Descriptors [2] for feature description. Since
this combination of multiple interesting point detectors in-
creases computation time, we use the SURF (Speeded Up
Robust Features) descriptors described in [1]. This com-
bination of interest point detection and feature description
is specifically designed for fast calculation. A specialized
GPU implementation presented in [3] attains a performance
of 100 frames per second on 640x480 images for feature
detection and matching.

The features extracted from the training images on mul-
tiple scales are used to build an object category model. For
that purpose, features are first clustered in descriptor space
to identify reoccurring features that are characteristic for the
specific object class. To generalize from the single feature
appearance and build a generic, representative object class
model, the clusters are represented by the cluster center (in
descriptor space). At this point, clusters with too few con-
tributing features are removed from the model since these
cannot be expected to be representative for the object cat-
egory. The feature clusters are the basis for the generation
of the Implicit Shape Model (ISM) that describes the spatial
configuration of features relative to the object center and is
used to vote for object center locations in the detection pro-
cess. This ISM is built by comparing every training-feature
to each representative (cluster center) that was generated in
the previous clustering step. If the similarity (euclidean dis-
tance in descriptor space) of a feature and the representative
is above an assignment threshold, the feature is added to
the specific codebook entry. Here, the feature position rel-
ative to the object center – the offset – is added to the spa-
tial distribution of the codebook entry with an assignment
probability. This probability is based on the similarity and
a single feature can contribute to more than one codebook
entry (fuzzy assignment).

2.2. Detection

To detect objects of the trained class in images, SURF
features are extracted in each input image. These fea-
tures (the descriptors) are then matched with the codebook,
where codebook entries with a match above a threshold tsim
are activated and cast votes for object center locations. To
allow for fast identification of promising object hypothesis
locations, the voting space is divided into a discrete grid in
x-, y-, and scale-dimension. Each grid that defines a vot-
ing maximum in a local neighborhood is taken to the next

step, where voting maxima are refined by mean shift to ac-
curately identify object center locations.

At this point we make two extensions to the work of
Leibe et al.

First, we do not distribute the vote weights equally over
all features and codebook entries, but use the feature simi-
larities to determine the assignment probabilities. By that,
features more similar to codebook entries have more influ-
ence in object center voting. The assignment probability
p(Ci|fk) of an image feature fk, codebook entry Ci combi-
nation is determined by:

p(Ci|fk) =
ρ(fk, Ci) + tsim

tsim
, (1)

where ρ(fk, Ci) is the euclidean distance in descriptor
space multiplied by−1. The same distance measure is used
for the probability p(V~x|Ci) of a vote for an object center
location ~x when considering a codebook entry Ci. The vote
location ~x is determined by the ISM that was learned in
training. Here, ρ(fk, Ci) is the similarity between a code-
book representative and a training feature that contributes
to the codebook entry.

The overall probability for, and weight of a vote V~x is:

V w~x = p(Ci|fk)p(V~x|Ci). (2)

Second, we solve the problem of the training data depen-
dency. The initial approach by Leibe et al. uses all votes
that contributed to a maximum to score a hypothesis and to
decide which hypotheses are treated as objects and which
are discarded. As a result, the voting and thus the hypoth-
esis strength depends on the amount and character of the
training data. Features, that frequently occurred in training
data result in codebook entries with a large amount of con-
tributing features and thus in a vast of votes for a single ob-
ject center location with only the evidence of a single image
feature. Since a feature-count independent normalization is
not possible at this point, this can result in false positive hy-
potheses with a high strength, generated by just a single or
very few false matching image features. To solve this is-
sue, we only count a single vote – the one with the highest
similarity of image- and codebook-feature – for an image-
feature/hypothesis combination. We hold this approach to
be more plausible since a single image feature can only pro-
vide evidence for an object hypothesis once.

The score γ of a hypothesis φ can thus, without the
need for a normalization, directly be inferred by the sum
of weights of all I contributing votes:

γφ =
I∑
i=1

V wi (3)

Certainly, this score is furthermore divided by the volume of
the scale-adaptive search kernel (see [8] for details), which
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is necessary because objects at higher scales can be ex-
pected to generate much more features than those on lower
scales. Additionally, this enhancement provides us with an
unambiguousness regarding the training-feature that created
the involvement of a specific image feature in a certain hy-
pothesis. This allows for decisive inference from a feature
that contributed to an object hypothesis back to the training
data. This is important for the classification of body-parts
which is described in detail in section 3.

The result of the detection step is a set of object hypothe-
ses Φ, each annotated with a score γφ. This score is subject
to a further threshold application. All object hypotheses be-
low that threshold are removed from the detection set Φ.

3. Body-part classification
As mentioned in section 2.2, our enhancements provide

us with an unambiguousness regarding the training-feature
that created a specific vote. This unambiguous inference to-
gether with an object-part annotation of the training data,
i.e., a body-part annotation of persons, allows for object-
part classification. The training data body-part annotation
can directly be used to annotate training-features found on
body-parts with semantic body-part-identifiers. This anno-
tation is added to the codebook entries for the features that
can be associated with certain body-parts. The object hy-
potheses resulting from detection consist of a number of
votes. These were generated by specific entries (that refer
to training features) in certain codebook entries that were
activated by image features. Using the annotation of these
entries, we are now able to infer the semantics of (some)
image features that contribute to an object hypothesis.

This body-part classification approach has the weakness
that the similarity between an image feature and the train-
ing feature is calculated only indirectly by the similarity
between the (generalized) codebook representative and the
image feature (see equation 1). This means that a feature
that is annotated with a body-part and resides in a spe-
cific codebook entry could contribute to a person hypoth-
esis because the similarity between an image feature and
the codebook representative is high enough (this similarity
constraint is rather weak since we want to activate all sim-
ilar structures for detection) but the image feature does in
fact not represent the annotated body-part.

For this reason, we decided to launch another classifica-
tion level that includes stronger constraints on feature simi-
larity and introduces a body-part-specific appearance gener-
alization. Following that, we generate body-part templates
for every body-part class found in the training data. I.e.,
we pick all features annotated with “foot” from the training
data. The descriptors of these features are then clustered in
descriptor space to generate body-part templates. The pre-
sets on descriptor similarity applied here are stricter than
those used in codebook training. This is because we rather

want to generate an exact representation than generalize too
much from different appearances of certain body-parts. The
clustering results in a number of disjoint clusters that repre-
sent body-parts. The number of items in a cluster is a mea-
sure for how generic it represents a body-part. The more
often a certain appearance of a body-part has been seen in
training-data, the more generic this appearance is. Since
the goal is to create an exact (strong similarity in cluster-
ing) and generic (repeatability of features) representation,
we remove clusters with too few associated features. The
remaining clusters are represented by their cluster center
and constitute the templates. These templates can now be
used to verify the body-part classification of stage one by
directly comparing the feature descriptors of a classified im-
age feature with all templates of the same body-part class.
If a strong similarity constraint is met for any of the tem-
plates, the classification is considered correct. Otherwise,
the image feature annotation is removed.

This multi-level body-part classification is capable of
improving the classification robustness by integrating gen-
eralized knowledge of body-part appearance which cannot
be covered by the codebook generalization itself (since the
generalization at that point lacks the body-part information
and generalizes only based on appearance). It is not in-
tended to replace the pre-classification by inference com-
pletely since this would discard the useful spatial informa-
tion that is provided by the codebook (that specific body-
parts can only be at specific positions – this is covered by
the ISM model).

Example results of the body-part classification are shown
in figure 1. Here, the relevant body-part categories are:
head(blue), torso(red), shoulder(light red), leg(green), and
foot(yellow). We see that we are not able to detect every
relevant body-part in any case, but the hints can be used
– especially when considering temporal development – to
build a detailed model of a person which can be the start-
ing point for further interpretation on person behavior. The
body-part trajectories acquired in the temporal considera-
tion can then be used to classify the behavior of a person
based on the observed articulation. For this, the trajectories
can be considered in the reference system of the person it-
self and a classification, e.g. in “running” or “walking” is
possible by just observing the trajectories of certain limbs
like feet. (Such an interpretation is actually ongoing work
at our lab). The feature-based detection approach is particu-
larly suited for that because it works despite camera motion
and changing environment conditions.

4. Detection specifics in infrared data
As mentioned in section 2.1, we use SURF instead of

a combination of multiple interesting point detectors and
shape descriptors. Despite the faster calculation, these fea-
tures are particularly suited to distinguish between light
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(a) (b)

(c) (d)

Figure 1. Example body-part classification results of detected persons. Relevant body-part classes are: head(blue), torso(red), shoulder(light
red), leg(green), and foot(yellow).

(foreground) and dark (background) patterns. This is due to
the gradient orientations that are used to describe a certain
image region. Practically this means – as shown in figure
2(a) – that the descriptor of a light region on dark back-
ground does not match a dark region on light background
and vice versa. This characteristic is specifically useful in
the task of person detection in thermal data because persons
typically have a significant light appearance here.

To capture the spatial distribution of the features more
accurately, we use the upright version of SURF, the U-
SURF features. These are not rotational invariant which
increases the distinctiveness. This enables us, as shown in
figure 2(b), to distinguish, e.g. features found on the right
and left shoulder of persons (left and right refers to the ap-
pearance in the image, not right and left from persons view).
Especially in our application, where a spatial distribution of

features is learned (ISM), this is important because, e.g. a
match of the right shoulder in training data with a left shoul-
der in input data would result in a vote for the wrong object
center location.

The object detector used here inherently comprises a
bunch of parameters that are relevant for the object detec-
tion performance. These parameters comprise settings of
the feature extraction, parameters of the training process
and various settings of the detection itself. When detect-
ing people in thermal images, especially the settings for the
similarity threshold (see section 2.1 and 2.2) are important.
In contrast to the application to visible wavelength images,
these should be set rather low, which means we require a
high similarity in a codebook entry and especially between
image feature and codebook entry in detection. This is nec-
essary due to the very similar appearance of different object
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(a) (b)

Figure 2. (a) By using gradient orientation, SURF features of light regions on dark background do not match dark regions on light back-
ground.(b) USURF is able to distinguish these kinds of patterns.

parts in thermal data. Since here, the contrast within a per-
son is very low, most of the features found on people refer
to parts which have a high contrast with darker background.
These most often appear as a light region on dark back-
ground which makes the distinctiveness accomplished by
U-SURF and the strong similarity requirements inevitable.

5. Experimental Results
5.1. Training data

A crucial point in the performance of a trainable object
detector is the choice of the training data used to generate a
model of the desired object category. Our person detector is
trained with a set of 30 training images taken from an image
sequence that was acquired from a moving camera in urban
terrain with a resolution of 640x480. The set contains 8 dif-
ferent persons appearing at multiple scales and viewpoints.
Two sample images of this set are shown in figure 3. The
persons are annotated with a reference segmentation which
is used to choose relevant features to train the person de-
tector. Additionally, we annotate the training features with
body-part identifiers when this is adequate (when a feature
visually refers to a certain body-part). Example results for
the body part detection are shown in figure 1. All detection
results shown hereafter do not contain any of the persons
that appear in training data.

5.2. Person detection

To show the operationality of the detection approach in
infrared images, we evaluate the performance in three dif-
ferent image sequences, taken from different cameras under
varying environmental conditions. For evaluation, all per-
sons whose head or half of the body is visible, are annotated
with bounding boxes.

To assess the detection performance, we use the perfor-
mance measure

recall =
|true positives|

|ground truth objects|
(4)

following [9]. To determine whether an object hypothesis is

a true- or a false positive, we use two different criteria. The
inside bounding box criterion assesses an object hypothe-
sis as true-positive if its center is located inside the ground
truth bounding box. Only a single hypothesis is counted
per ground-truth object, all other hypotheses in the same
box are counted as false positive. The overlapping crite-
rion assesses object-hypotheses using the ground-truth and
hypotheses bounding boxes. The overlap between those is
calculated by the Jaccard-Index [7] (compare intersection-
over-union criterion [6]):

overlap =
area(Bp ∩Bgt)
area(Bp ∪Bgt)

. (5)

The first criterion is deliberately used to account for inac-
curacies in bounding boxes in the ground truth data and to
assess the detection performance independently of its accu-
racy. Specifically in our case, where the bounding box is
defined by the minimal box that contains all features that
voted for a hypothesis, a hypothesis that only contains the
upper body of a person would be counted as false positive
using the overlapping criterion, even if all body-parts of the
upper body are correctly found. To depict the accuracy of
detections, we use the overlapping criterion which is evalu-
ated for different overlap demands.

The first image sequence contains a total of 301 person
occurrences, appearing at roughly the same scale. People
run from right to left in the camera’s field of view with par-
tial person-person overlapping. We evaluate the sequence
using the recall criterion and the false positives per image.
The recall is shown as a function of false positives per image
as used in various object detector evaluations. To assess the
accuracy of the detection we evaluate with different require-
ments of overlapping. The results for the different evalua-
tion criteria (OLx: Bounding box overlap with a minimum
overlap of x%; BBI: Inside bounding box) are shown in fig-
ure 5(a). The curves are generated by running the object
detector with different parameter settings on the same im-
age sequence. Example detections for this image sequence
are shown in figure 4 (a)-(c).

The second image sequence is from OTCBVS dataset [5]
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(a) (b)

Figure 3. Example images of the training set. The training set comprises 30 images with 8 different persons.

with 763 person occurrences. Here, a scene is observed by
a static camera with a high-angle shot. Two persons appear-
ing at a low scale move in the scene without any occlusions.
As we see in 5(c), the detection performance is very similar
for all false positive rates. Here, we nearly detect all person
occurrences in the image at low false positive rates. The
results do not improve significantly with other parameters
that allow person detections with lower similarity demands
and result in more false positives. It is worth mentioning
that the detector was trained on persons the appearance of
which was not even close to the ones visible in this image
sequence. Both, viewpoint and scale of the persons have
changed completely between training and input data. Note
that the buckling in the curves of bounding box overlap can
result from parameter adjustment in allowed feature sim-
ilarity for detection. Activating more image features for
detection can result in more false positive hypotheses and
in additional inaccuracies in the bounding box and thus in
less true-positives regarding the overlap criterion. The de-
tailed trend of false positives per image and recall for dif-
ferent overlap demands in figure 5(d) shows that the detec-
tion performance itself is very good. The accuracy is rather
poor compared to the detection performance but still has a
recall of above 0.7 with a 50% bounding-box overlap de-
mand. With increasing overlap demand, the detection rate
decreases and the false positives increase. As we can see
from the development of the curves, this is just due to inac-
curacy and not due to “real” false positives generated from
background or other objects. Example detections for this
image sequence are shown in figure 4 (d)-(f).

The third image sequence has been taken in urban ter-
rain from a camera installed on a moving vehicle. This im-
age sequence, with a total of 1471 person occurrences in
it, is the most challenging because a single image contains
persons at various scales and the moving paths of persons

cross, which leads to strong occlusions. From the example
result images in figure 4 (g)-(i), we see that some persons in
the background occupy only few image pixels while other
persons in the foreground take a significant portion of the
whole image. Unlike one could expect, the fact that people
are moving parallel to the camera is not very advantageous
for the object detector because the persons limbs are not
visible very well from this viewpoint. The results of this
image sequence are shown in figure 5(b). We see, that the
inside bounding box criterion performs well and has a re-
call of more than 0.9 with less than 1.5 false positive/image.
When applying the bounding box overlap criterion, the per-
formance drops significantly – stronger than in image se-
quence one and two. Especially the 50% overlap criterion
only reaches a recall of 0.5 with more than 5 false posi-
tives/image. This rapid performance degradation is mainly
due to the inaccuracies in the bounding boxes of persons
appearing at higher scales. This is also visible in the exam-
ple detections in figure 4 (g)-(i). Here, people in the scene
background are most often detected accurately while per-
sons close to the camera are detected rather imprecisely.

6. Conclusion
In this paper we presented a feature based person detec-

tion approach with integrated body-part classification and
its application to thermal data. We evaluated the person de-
tector in three thermal image sequences with different chal-
lenges for person detection. The evaluation results of the
three test sequences show that the detector performs well
in detecting people per se, but is rather imprecise in terms
of bounding boxes. This is inherently due to the feature
based approach, that does not account for an object seg-
mentation but determines the bounding box based on local
features. The accuracy can be improved by using the seg-
mentation approach of [8] where the backprojection of fea-
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(g) (h) (i)

Figure 4. Example detections of all 3 evaluation sets. Sequence1:(a)-(c), Sequence 2:(d)-(f), Sequence 3:(g)-(i). Blue points indicate
features that generate the hypothesis marked with the red bounding box.

tures is used to obtain a detailed figure/ground segmenta-
tion. We discarded the application of this here, because our
work aims at doing further processing and interpretations of
object-detections on the feature/body-part level.
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