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Abstract— This paper describes performance results from a
real-time system for detecting, localizing, and tracking pedes-
trians from a moving vehicle. The end-to-end system runs at
5Hz on 1024x768 imagery using standard hardware, and has
been integrated and tested on multiple ground vehicles and
environments. We show performance on a diverse set of ground-
truthed datasets in outdoor environments with varying degrees
of pedestrian density and clutter. The system can reliably detect
upright pedestrians to a range of 40m in lightly cluttered
urban environments. In highly cluttered urban environments,
the detection rates are on par with state-of-the-art non-real-
time systems [1].

I. INTRODUCTION

The ability for autonomous vehicles to detect and predict
the motion of pedestrians or personnel in their vicinity is crit-
ical to ensure that the vehicles operate safely around people.
Vehicles must be able to detect people in urban and cross-
country environments, including flat, uneven and multi-level
terrain, with widely varying degrees of clutter, occlusion, and
illumination (and ultimately for operating day or night, in
all weather, and in the presence of atmospheric obscurants).
To support high-speed driving, detection must be reliable to
a range of 100m. The ability to detect pedestrians from a
moving vehicle in a cluttered, dynamic urban environments
is also applicable to automatic driver-assistance systems or
smaller autonomous robots navigating in environments such
as a sidewalk or marketplace.

This paper describes results from a fully integrated real-
time system capable of reliably detecting, localizing, and
tracking upright (stationary, walking, or running) human
adults at a range out to 40m from a moving platform. Our
approach uses imagery and dense range data from stereo
cameras for the detection, tracking, and velocity estima-
tion of pedestrians. The end-to-end system runs at 5Hz on
1024x768 imagery on a standard 2.4GHz Intel Core 2 Quad
processor. The ability to process this high resolution imagery
enables the system to achieve better performance at long
range compared to other state-of-the-art implementations.
Because the system segments and classifies people based on
stereo range data, it is largely invariant to the variability of
pedestrians’ appearance (due to different types and styles
of clothing) and scale. The system also handles different
viewpoints (frontal vs. side views) and poses (including
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articulations and walking) of pedestrians, and is robust to
objects being carried or worn by them. Furthermore, the
system makes no assumption of a ground-plane to detect or
track people, and similarly makes no assumption about the
predictability of a person’s motion other than a maximum
velocity.

Fig. 1. Examples of test scenarios and the output of our pedestrian detection
system (yellow boxes are detections with range and track ID text and a green
overlay of the segmented person; the cyan boxes are missed detections).

The performance of the system is demonstrated on a
variety of ground-truthed datasets in various outdoor en-
vironments, with different degrees of person density and
clutter. An example of these scenes is shown in Figure 1. The
majority of datasets used to evaluate the system consist of
scenarios simulating the operation of an unmanned ground
vehicle (UGV) traveling at moderate speed in semi-urban
terrain (paved roads with light clutter and people walking
along or into the road). In these scenarios, the system is
capable of initial detections of pedestrians up to 60m, and
reliable detection and tracking of pedestrians up to 40m,
which correspond respectively to 30 pixel and 45 pixel tall
pedestrians for our cameras. We also present performance
results of our system on recently published datasets of
crowded street scenes. Although not specifically designed for



highly cluttered urban environments, we show that results of
our real-time system are comparable to the state-of-the-art
systems that are designed to operate in these environments.

II. RELATED WORK

There has been extensive research on pedestrian detection
from manned and unmanned ground vehicles using scanning
laser rangefinders (LIDAR) and monocular and stereo vision
in visible, near infrared, and thermal infrared wavelengths.
Most such work assumes the scene contains a dominant
ground plane that supports all of the pedestrians in upright
postures. Maximum detection ranges tend to be 30m or less.
Rates of missed detections and false alarms are not good
enough to be satisfactory in deployed systems. Most prior
work on pedestrian detection has been done for applications
to smart automobiles, robotic vehicles, or surveillance. This
literature is very large, so we only cover recent highlights
and main trends here.

Research on pedestrian detection for smart automobiles
has employed monocular vision [2], [3], [4] stereo vision [5],
[6], [7], [8], [9] and LIDAR [10]. Vision-based methods have
used visible [2], [3], near infrared [4], and thermal imagery
[8]. Most work in this area has been strongly motivated by
the requirement to be very low cost in eventual production.
The approaches generally follow the architecture of detecting
regions of interst (ROIs), classifying these regions, and
tracking them.

Work on pedestrian detection for robotic vehicles in out-
door applications [11], [12], [13], [14], [15] includes methods
that do range sensing with 2D LIDAR, 3D LIDAR, stereo
vision, and/or structure from motion and do image sensing
with visible and/or thermal infrared cameras. At a high level,
algorithm architectures are analogous to the systems for the
automotive domain, involving ROI detection, classification,
and tracking, though the order and details of these steps
differ. As a group, there is more emphasis in this domain
on classification based on the 3D shape of the objects as
perceived by LIDAR or stereo vision than there is in the
automotive domain. The feature extraction and classification
algorithms tend to be simpler than those used in either the
automotive or video surveillance domains. Several of these
approaches have been tested as part of third party field
experiments, with results discussed by Bodt [16].

Finally, work on pedestrian detection in the surveillance
arena largely divides into work with image sequences from
stationary cameras, where background subtraction and/or
image differencing is used to detect moving objects [17],
[18], and work that applies trained pattern classifiers to
individual images [19], [20], [21], [22], [23]. The former
group is less relevant here, because background subtraction
and temporal image differencing are more difficult to use
from moving cameras. The latter group uses a variety of
feature extraction and classification methods to achieve better
detection and false alarm rates than single-frame results
reported in the automotive pedestrian detection literature;
however, the results are not directly comparable because
computational requirements are generally higher, the testing

protocol often uses image databases where positive examples
are already centered in image chips or does exhaustive search
over position and scale of ROIs in test imagery, and because
only individual frames are considered, the systems do not
include any tracking.

III. SYSTEM DESCRIPTION

Our system is fully described in earlier work [14], but
we briefly summarize our approach here. We focus on two
differences from our prior system: a slightly reduced feature
set, and an improved tracker. Our system consists of the
following steps:

• Stereo vision takes synchronized images from a pair of
cameras and computes a dense range image.

• Region-of-interest (ROI) detection projects stereo data
into a polar-perspective map and then segments the map
to produce clusters of pixels corresponding to upright
objects.

• Classification computes geometric features of the 3D
point cloud of each ROI and classifies the object,
resulting in a probability of being human.

• Tracking associates ROIs in sequential frames, ac-
counting for vehicle motion, and estimates the velocity
of the detected objects.

The system architecture allows the possibility of using
appearance and motion features to improve the classification
of people, but we currently do not make use of these features.

A. Stereo Vision

The first step in our system is to compute dense range data
from stereo images. We use a multi-processor version of the
real-time algorithm described by Goldberg [24] previously
used on the NASA Mars Exploration Rovers and in the
DARPA PerceptOR program. On a 2.4GHz Intel Core 2
Quad processor, the algorithm can process 1024x768 im-
agery at 10 frames/sec.

B. Region-of-Interest Detection

Detecting region-of-interest (ROI) areas from the stereo
data serves as a focus-of-attention mechanism to reduce the
runtime of subsequent classifiers and segments foreground
pixels from background pixels in a region. This allows a
shape-based classifier to be run on the 3D points that make
up a specific object, rather than sliding a window over
the image and explicitly performing foreground/background
segmentation in each window.

The stereo range data is transformed into a gravity-leveled
frame, accounting for the roll and pitch of the vehicle, and
then projected into a two-dimensional polar-perspective grid
map (PPM). The map is then segmented based on map
cell statistics. Unlike a traditional Cartesian map, which is
divided into cells of fixed size in Cartesian (x,y) space, the
PPM is divided into cells with a fixed angular resolution but
variable range resolution in polar (r, θ) space in order to
preserve the coherency of the stereo range data. The PPM
accumulates the number of range points projected into each
cell. The map is then smoothed with an averaging filter with



an adaptive bandwidth in polar space corresponding to a fixed
bandwidth in Cartesian space. For computational efficiency
the filter is implemented using an integral image of the map.
After smoothing, the map gradient is used to find all of the
peaks in the map, which are then grown to the inflection
points in the gradients, resulting in a segmentation of the
map. Because the minimum expected size of the objects
being detecting is known, segmented blobs whose peaks fall
within half of this size are then merged together. Figure 2
provides an example of a filtered PPM with ROI detections.

(a)

(b)

(c)
Fig. 2. An example of the stereo-based segmentation for region-of-interest
detection. (a) shows the left image of a stereo pair with the resulting depth
map (inset); (b) shows the polar-perspective map of point counts smoothed
with an averaging filter with a close up of the map with segmented regions
overlaid; and (c) shows the segmented regions in different colors, with
examples of the foreground/background separation.

C. Classification

Geometric features of each segmented 3D point cloud are
used to classify them as human or not human based on shape.
After segmentation, a scene may contain hundreds of regions.
To reduce the number of regions that must be classified,

we first prefilter the regions with a fixed threshold on the
width, height, and depth variance of each segmented region.
This threshold is simply selected as the 3σ values obtained
from the training data. After prefiltering, the features used
for classification are computed for each region’s point cloud.

We then compute geometry-based features for the re-
maining regions, including the fixed-frame shape moments
(variances of point clouds in a fixed frame), rotationally
invariant shape moments (the eigenvalues of the point cloud’s
scatter matrix), and “soft-counts” of various width, height,
depth, and volume constraints. The logarithmic and empirical
logit transforms of these moments and counts are used to
improve the normality of the feature distribution.

To compute the features, we start by centering the point
cloud about the x-axis by its mean value and setting the
minimum depth z and height y to zero. The first feature is
defined by the logarithm of the 2nd order moment of the
height:

f1 = − log(σ2
y) (1)

The “soft-count” features are defined by the number of
points that fall inside certain preset coordinate bounds (or
volumes). Such count-based features ignore “true shape” and
focus instead on the object’s size or extent. Unlike moment-
based features, count-based features are more tolerant of out-
lier noise and some artifacts of stereo processing. Naturally
there are strong correlations between these two different sets
of features. However, this correlation or redundancy can be
quite helpful for modeling purposes. For the total number of
points n in a blob point cloud, we define nx = #(|x| < 1) as
the number (subset) of 3D points whose x value is less than
1m (in absolute value), ny0 = #(y < 2) and ny1 = #(y >
1) as the number of points whose height value is less than 2m
and greater than 1m, and nz0 = #(z < 4) and nz1 = #(z <
3.5) as the number of points with a depth value less than 4m
and 3.5m respectively. We also define nv to be the number
of 3D points that satisfy all three width, height, and depth
constraints simultaneously (i.e., the number of points that fall
within the prescribed rectangular volume of size 1m x 2m
x 4m). Although these constraints were selected empirically,
the process could easily be automated. In order to normalize
the data as well as account for uncertainty due to the sample
size (n), we use a logit transform with an empirical prior
count c:

f2 = log
nx + cx

n − nx + cx
f3 = log

ny0 + cy0

n − ny0 + cy0

(2)

f4 = log
nz0 + cz0

n − nz0 + cz0

f5 = log
nv + cv

n − nv + cv
(3)

f6 = log
ny1 + cy1

n − ny1 + cy1

f7 = log
nz1 + cz1

n − nz1 + cz1

(4)

The rotationally-invariant features are the logarithms of the
eigenvalues of the point cloud’s covariance (inertia) matrix,
where (λx, λy, λz) correspond to the major, intermediate, and
minor axes, respectively:

f8 = − log(λx) f9 = − log(λy) f10 = − log(λz) (5)



We note that f8 would be redundant with f1 if all the blobs
were oriented correctly (upright and “facing” downrange).
However, this is often not the case, due to artifacts in stereo
processing, and especially at long ranges where blob point-
clouds are often tilted and/or slanted.

Analysis of the shape features indicated that a linear
classifier (with a linear decision boundary) was too simple to
always work effectively. However, a more complex decision
boundary can be achieved while still using a linear classifier
(which is desirable for its computational efficiency and
robustness) by expanding the feature set to use higher-order
terms. Specifically, a quadratic decision boundary is modeled
using the augmented feature set:

x = [ 1 {fi} {fifj}i<j {f2
i } ]T (6)

Using this feature vector, a Bayesian generalized linear
model (GLM) classifier (for logistic regression) is then
trained using standard iteratively reweighted least squares
(IRLS) to obtain a Gaussian approximation to the posterior
mode. Simple MAP estimates of predictive probability (of
being human) are obtained using this Gaussian mode-based
approximation.

D. Tracking

Tracking ROIs in the scene is used to both reduce incorrect
detections and estimate the velocity of the detected objects.
By associating ROIs across multiple frames, the single frame
classifications can be aggregated to eliminate false positives.
Similarly, using the positions of a tracked object from stereo
and the motion of the vehicle, estimated by visual odometry
[25] or provided by an inertial navigation system (INS), the
velocity of the object can be computed and extrapolated to
provide a predicted motion to a path planner. The tracking
algorithm is designed to be extremely computationally effi-
cient and makes very few assumptions about the motions of
objects.

Tracking is implemented as the association of ROIs in
sequential frames. The ROIs extracted in a new frame are
matched to existing nearby tracks by computing a cost based
on each ROI’s segmented foreground appearance and then
solving a one-to-one assignment problem. For computational
efficiency and simplicity, the cost between an ROI and a track
is computed by comparing the new ROI to the last ROI in
the track. Only ROIs within a fixed distance are considered;
the distance is computed by using an assumed maximum
velocity of 2m/s in any direction for each object. The
cost between ROIs is then computed as the Bhattacharyya
distance of a color (RGB) histogram between each ROI. For
computational efficiency, we solve the assignment problem
with co-occurring minima. If an ROI does not match an
existing track, a new track is started. Tracks that are not
matched for a fixed number of frames are removed. To
eliminate the incorrect detections that lead to false positives
while still maintaining detections on true positives where the
classification score dropped for a small number of frames,
we temporally filter the scores with the median of three
consecutive scores and require three consecutive frames

of detection before making a classification decision. The
velocity of tracks is estimated by fitting a linear motion
model to the track. We estimate the position and velocity
uncertainty by combining the expected stereo error with the
model fit.

IV. EXPERIMENTAL RESULTS

The end-to-end system has been tested on datasets with
hand-labeled ground-truth and integrated onboard a vehicle
for live testing. The primary datasets were collected from the
vehicle on which the system was integrated in semi-urban,
lightly cluttered scenarios. The results on these datasets show
that our system can achieve initial detections at a range
of 60m, with detections reliable enough for autonomous
navigation out to 40m. To demonstrate that the system’s
performance is competitive with state-of-the-art systems in
highly cluttered, urban scenarios, we also make use of
datasets published by Ess [1], [26]. We show that we can
achieve performance similar to Ess on these datasets while
running at real-time rates.

A. Semi-Urban Datasets

The primary datasets used to evaluate the system use
input imagery from a 3 CCD color stereo camera pair with
1024x768 pixels, a 50 cm baseline, a field of view approxi-
mately 60 degrees wide, and with frame rates between 3.5Hz
and 10Hz. The cameras were either mounted on the roof of
an SUV at a height of approximately 2m above the ground,
and pointed down by approximately 5 degrees, or on the pan-
tilt head of an unmanned vehicle at a height of approximate
2m above the ground, and pointed down by 20 degrees. The
scenarios include the vehicle driving down a road at speeds
varying from 15 to 30 kph, with stationary mannequins and
people standing, walking, and running along the side of and
across the road in varying directions. The scene also contains
stationary and moving cars, trucks, and trailers, along with
stationary crates, cones, barrels, sticks, and other similar
objects. In many cases, the pedestrians experience a period
of partial to full occlusion by these objects or each other.
Several variations of the scenario also include one or two
people walking in front of the vehicle, weaving between each
other and occasionally going out of the field of view.

The imagery was manually ground-truthed by annotating
a bounding box around each person in the left image of
each frame, to a range of approximately 100m. In total, our
corpus includes approximately 6,000 annotated frames with
approximately 10,000 annotated people, although we restrict
our analysis to specific datasets which are representative
of operational scenarios. Although people are annotated
regardless of their posture or degree of occlusion, we only
consider people who are in an upright posture with less
than 50% occlusion for our analysis. We use the measure
of the area of the intersection over the area of the union
of the annotated and detected bounding boxes to declare a
correct detection. However, for these datasets, we found that
relaxing the common evaluation criteria of 50% intersection-
over-union to 25% produced more meaningful results. This



is because we are interested in detection at relatively long
range where the segmentation error is dominated by the
foreground fattening effect of stereo matching. Because the
scenes are relatively uncluttered, using a looser matching
criteria still remains representative of actual detections. In
order to present results that are meaningful when developing
a complete, autonomous system capable of safe navigation,
we present our results as the probability of detection (Pd),
defined as the number of detections divided by the true
number of people in the scene, versus the false alarms per
frame (FAPF), defined as the number of incorrect detections
divided by the number of frames in the dataset. To illustrate
the performance as a function of range, we restrict the
detections and annotations to a maximum range.

To demonstrate the effectiveness of our feature set and
classifier, we first present results on a cross-validation test
over many of our datasets. Figure 3 (a) shows the perfor-
mance of the system as an average of 1000 trials on a dataset
combined from many different scenarios, totaling 4,396
frames with 3,409 annotated people. From these sequences,
21,824 ROIs were extracted and each curve was generated
by randomly selecting 80% of these ROIs for training and
using the remaining 20% for testing. The resulting number
of effective frames in each test sequence is thus 879, and
the average number of humans is shown in the plot for
the respective range restriction. For this test, no temporal
filtering was used to adjust the classification scores. Figure
3 (b) shows a sample of the images of the sequences used.
The detections shown are indicative of the performance of
the system (but are, in fact, based on a system trained without
that sequence). Across our datasets, the system can achieve
a 95% Pd at 0.1 FAPF for people less than 30m and 85%
Pd at 0.1 FAPF for people less than 40m. For people out
to 50m and 100m, the system achieves 95% and 90% Pd
respectively at 1 FAPF.

Because the cross-validation results sample across all
of the datasets being tested on, they do not necessarily
provide compelling evidence that the system is effective in
new, unseen scenarios. To demonstrate that our system is
robust in new environments, we show the performance on
individual sequences that have never been used for training.
Although less statistically significant, they are perhaps more
indicative of the performance to be expected of the fielded
system. Figure 4 (a) and (b) show the results of the system
without temporal filtering on two sequences held out from
the training data. The same system was run on both datasets
with no modification. As the plots show, the sequence shown
in Figure 4 (a) is more difficult than (b), containing more
clutter and occlusion. The system achieves well above 95%
Pd at 0.1 FAPF for pedestrians less than 30m and 80% Pd for
less than 40m. For a fielded system, we generally run at an
operating point closer to 0.02 FAPF, which results in 90%
Pd for <30m and 65% Pd for <40m, and maintain some
degree of persistence of detected objects, propagating them
with their predicted velocity for path planning.

The main source of false alarms of our system in these
environments is due to the over segmentation of vehicles.

(a)

(b)
Fig. 3. (a) The performance resulting from 1000 trials of 80%/20% split
cross-validation tests on 4,396 frames drawn from various scenarios. (b)
Examples of images and detections from the various scenarios, with an
example false alarm on the truck in the bottom image. The yellow boxes
are detections, with a green overlay of the segmented person.

An example of a false alarm on the front of a pickup
truck is shown in the lower image of Figure 3 (b). The
individual distracter objects, such as barrels, tripods, and
sign posts are only occasionally misclassified because they
are normally segmented correctly. The main source of missed
detections is due to variability of the stereo range data at long
range, partial occlusion, and occasionally due to imprecise
localization of the person due to under or over segmentation.
Our system has some robustness to partial occlusion, but
tends to break down after greater than 50% occlusion. The
sequence shown in Figure 5 shows several examples of per-
formance on occluding and overlapping people. The people
in the near field are detected when they are unoccluded, or
only slightly occluded. They are not detected when partially
occluded either vertically (due to crossing the other person)



(a)

(b)
Fig. 4. The performance for two testing runs including people walking
along and in the street, with moving cars and stationary distractor objects.

or horizontally (due to the posts). Notice, however, that the
people are all tracked throughout the sequence (although with
one incorrect association). The people in the far field are
similarly not detected when they are partially occluded by the
vehicles (or too far away), but are detected when they emerge
into the open. The failure to detect partially occluded people
is understandable because we only train a single classifier
with data that does not contain many occluded people.

In addition to testing on ground-truthed datasets, the end-
to-end system has been integrated into several systems for
live testing. An earlier version of the system was fielded as
part of the RCTA program “Safe Operations” test, as reported
in [16]. The system described here has been integrated
onboard the test vehicle for an upcoming test, for which
results will be published in the future. The system has also
been used to demonstrate autonomous navigation in a lightly
cluttered dynamic environment on a small vehicle (with
cameras at approximately 1m high and with a 12cm baseline)
traveling at approximately 1m/s.

Fig. 5. A sequence of frames showing detections (yellow boxes, with green
overlay the segmented person) and misses (cyan boxes) for people under
occlusion. The number above the boxes indicates the range, and the number
below indicates the track ID.

B. Urban Datasets

To illustrate that our system is competitive with other state-
of-the-art stereo-based pedestrian detection systems, we also
evaluated our system on datasets published by Ess [1], [26].
These datasets consist of 640x480 resolution color Bayer
tiled imagery, taken at 15Hz, with a 40cm baseline camera
pair pointed straight out at a height of approximately 1m. The
scenarios are significantly more complex than the semi-urban
data, with many people in a busy shopping district in Zürich,
Switzerland, with significant occlusion, clutter, and motion.
The annotations include all people whose torso is partially
visible, and include children and partially upright postures,
but not people sitting. To make a direct comparison to the
results published by Ess, we use their detection criteria (50%
intersection-over-union) and restrict the annotations used in
the same way they do (with height greater than 80 pixels for
sequence 2 of the 2008 data, and 60 pixels for all other data).
We completely omit sequence 1 of the 2008 data because we
were unable to generate acceptable stereo depth maps based



on the camera models provided. The depth data density on
all other sequences is acceptable, but not as dense as it could
be, and results in reduced performance as discussed later. For
direct comparison, we also train on exactly the same data as
well (sequence 0 of the 2007 data).

The performance of our end-to-end system with the Ess
test sequences using exactly the same evaluation criteria are
shown in Figure 6 (a). Although the performance does not
appear very good (between 0.4 and 0.7 recall at 1 false
positive per frame, and with maximum achievable recalls
between 0.5 and 0.75), it is very similar to the results
reported by Ess. In fact, the results are slightly better at
1 FAPF on all sequences except sequence 2 of the 2008
data (which is due to less stereo coverage). Examples of
the scenes, along with stereo and the predicted velocity of
certain pedestrians, are shown in Figures 7 and 8. Notice
that people are detected when they are in various poses or
stages of walking and while carrying bags or briefcases.
The main cause of the missed detections is simply due
to a lack of stereo depth data density on people who are
either too close or occluded. To illustrate this point, we also
show the performance for the sequences where annotated
people must have at least 10% stereo coverage (of the pixels
defined by the annotated bounding box) in Figure 6 (b).
Because our system relies on stereo data for both detection
and classification, it can never find these people, nor would
it be able to localize them to plan around them in a fully
autonomous mode.

Our system misses detections and produces false positives
in some understandable situations. For instance, it misses
most children (left image of Figure 7), which were not
included in any training data, and detects mannequins in
shop windows or reflections of people in windows (right
image of Figure 7). However, the majority of false detections
is due to patchy stereo on flat surfaces such as buildings
or cars, which results in the objects being over-segmented
into a human sized objects (as seen on the car in the
left image of Figure 8). Many times, this results in false
positives high up on buildings (as seen in the center image of
Figure 8), that could be removed by only considering people
who might enter the street or be a danger. In other cases,
explicitly detecting other objects such as cars would remove
the false detections. Despite not designing for many of these
situations, our system is capable of achieving competitive
performance while running in real-time (10Hz on 640x480
imagery).

V. CONCLUSION

The results of our real-time, stereo-based pedestrian detec-
tion system show it to be effective at detecting people out to a
range of 40m in semi-urban environments. It achieves results
comparable with alternative approaches with other sensors,
but offers the potential for long-term scalability to higher
spatial resolution, smaller size, and lower cost than other
sensors. It also performs similarly to state-of-the-art results
from recent literature, while running at real-time rates.

(a)

(b)
Fig. 6. (a) The performance for sequences from [26] and [1] presented
with the same evaluation criteria as their work. (b) the performance for the
same sequences when all annotation that have less than 10% stereo coverage
are eliminated, indicating that most of the misses in (a) are due to lack of
stereo depth data on the people.

However, our system currently has some key limitations.
Because the initial segmentation uses a projection into a 2D
map, it cannot segment people or objects in close contact. To
address this problem, we are investigating direct disparity-
space and image-space segmentation techniques to provide
regions of interest. Similarly, because we use a relatively
small geometry-based feature set for classification, it is
inherently limited. Any object with a similar shape to a
person may be misclassified. To address this problem, we
are investigating using appearance and motion features to
improve classification. We are also using these extensions to
handle the cases of pedestrians under partial occlusion and
in non-upright postures.
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