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Abstract 

 

This paper presents a panoramic virtual stereo vision approach to the problem of detecting and 

localizing multiple moving objects (e.g., humans) in an indoor scene. Two panoramic cameras, 

residing on different mobile platforms, compose a virtual stereo sensor with a flexible baseline. A 

novel “mutual calibration” algorithm is proposed where panoramic cameras on two cooperative 

moving platforms are dynamically calibrated by looking at each other. A detailed numerical 

analysis of the error characteristics of the panoramic virtual stereo vision (mutual calibration 

error, stereo matching error, and triangulation error) is given to derive rules for optimal view 

planning. Experimental results are discussed for detecting and localizing multiple humans in 

motion using two cooperative robot platforms. 
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List of Symbols: 

χ : angular resolution of the panoramic image 

Dk: target’s distance to camera k (k=1,2) 

φ0, φ1 and φ2 : three interior angles  of the triangle formed by two cameras and the target 

θi  : bearing angle of the target in image i (i=1,2) 

βij : bearing angle of the camera i in image j 

B: baseline length 

R: radius of the cylindrical body of the mobile robot used for mutual calibration 

α  : angle subtended by the cylindrical body of the robot 

W : width of the target  

wi : width of the target in the panoramic image i (i=1,2) 

Ti
(k) : feature set of the blob i in camera k 

X∂  : error in estimating parameter X (X = B, 1φ∂ , 2φ∂  β21, θ1, θ2,α, w and D) 

BD1∂ : distance error due to the baseline error 

φ
1D∂  : distance error due to angular error 

+∂ 1D : distance error when D1 > B 

0
1D∂ : distance error when D1 = B 

−∂ 1D : distance error when D1 < B 

fixD1∂ : distance error when the baseline is fixed 

sD1∂ : distance error in the size-ratio method 
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1 Introduction 

Flexible, reconfigurable vision systems can provide an extremely rich sensing modality for 

sophisticated robot platforms. We propose a cooperative and adaptive approach to the problem of 

finding and protecting humans in emergency circumstances, for example, during a fire in an 

office building.  Real-time processing is essential for the dynamic and unpredictable 

environments in our application domain, and it is important for visual sensing to rapidly focus 

attention on important activity in the environment. Any room or corridor should be searched 

quickly to detect people and fire. Field-of-view issues using standard optics are challenging since 

panning a camera takes time, and multiple targets/objectives may require saccades to attend to 

important visual cues. Using multiple conventional cameras covering different fields of view 

could be a solution, but the cost of hardware (cameras, frame grabbers and computers) and 

software (multiple stream data manipulation)  would increase. Thus, we employ panoramic 

cameras to detect and track multiple objects (people) in motion, in a full 360-degree view, in real 

time. 

We note that there is a fairly large body of work on detection and tracking of humans [1-5], 

motivated most recently by the DARPA VSAM effort [6]. On the other hand, different kinds of 

omni-directional (or panoramic) imaging sensors have been designed [7-12], and a systematic 

theoretical analysis of omni-directional sensors has been given by Baker & Nayar [7]. 

Omnidirectional vision has become quite popular with many vision approaches for robot 

navigation [10,13,14, 30, 31], 3D reconstruction [15-17, 29] and video surveillance [18-20, 28]. 

Research on multiple camera networks with panoramic cameras that are devoted to human and 

subject tracking and identification can be found in the literature [19-23, 30, 31]. The most related 

work is the realtime human tracking system by Sogo et al [21] using multiple omnidirectional 

cameras distributed in an indoor environment. The system detects people, measures bearing 

angles and determine their locations by triangulation. Generally there are two problems in such a 

system - (1) the correspondence problem among multiple targets, and (2) the measurement 

accuracy of target locations.  The correspondence problem  is more difficult in a panoramic stereo 
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than a conventional stereo because both large baseline and low resolution make it hard to 

establish correspondences of the visual features.  The second problem arises particularly when a 

target is (almost) aligned with the stereo pair.  In order to solve these problems, Sogo et al [21] 

proposed a “N-ocular stereo” approach without visual features that only verifies the 

correspondences of multiple targets of binocular stereo by a third omnidirectional camera,. They 

showed that the uncertainty in estimating 3D locations was reduced by using the best estimations 

of pairs of four fixed panoramic cameras put in the vertices of a square region. However the error 

of localizing a target is still proportional to the square of the target’s distance from the cameras 

with fixed baseline distances; in their simulation, it increases 7-fold when a target moves 3.5 

meters away from the cameras. Our work differs from theirs in that we deal with panoramic 

stereo vision on mobile platforms and thus study the issues of dynamic calibration and view 

planning.   We propose a novel concept of mutual calibration and give a detailed error analysis of 

panoramic stereo that leads to dynamic stereo configurations with adaptive baselines and 

viewpoints for best depth estimation. The distinctive feature of our approach is the ability to 

compose cooperative sensing strategies across the distributed panoramic sensors of a robot team 

to synthesize optimal "virtual" stereo vision for human detection and tracking. 

The idea of distributing sensors and cooperation across different robots stems from the 

requirements of potentially limited (sensor) resources for a large robot team and the need for 

mobile placement of sensor platforms given the limited resolution in panoramic sensors. 

Nevertheless, the advantages of cooperative vision arise from more than this compromise. Any 

fixed-baseline stereo vision system has limited depth resolution because of the physical 

constraints imposed by the separation of cameras, whereas a system that combines multiple 

views allows the planning system to take advantage of the current context and goals in selecting 

viewpoints. In this paper, we focus on the cooperative behavior involving cameras that are aware 

of each other, residing on different mobile platforms, to compose a virtual stereo sensor with a 

flexible baseline. In this model, the sensor geometry can be controlled to manage the precision of 

the resulting virtual sensor. The cooperative stereo vision strategy is particularly effective with a 
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pair of mobile panoramic sensors that have the potential of almost always seeing each other. 

Once calibrated by "looking" at each other, they can view the environment to estimate the 3D 

structure of the scene.  

The organization of the paper is as follows. After the introduction of two depth estimation 

methods using panoramic sensors in Section 2, we will mainly focus on the following critical 

issues of a panoramic virtual stereo system:  

1) Dynamic “mutual calibration” between the two cameras on two separate mobile robots 

that forms the dynamic "virtual" stereo sensor with a full 360-degree view (Section 3);   

2) A detailed numerical analysis of the error characteristics of the panoramic virtual stereo in 

order to derive the rules for optimal view planning of the moving sensor platforms 

(Sections 4 and 5); and 

3) View planning by taking advantage of the current context and goals, based on a thorough 

error analysis of panoramic virtual stereo (Section 6).  

Experimental systems and results for multiple human detection and localization will be given 

in Section 7, and conclusion and future work will be discussed in the last section. 

 

2 Panoramic Virtual Stereo Geometry 

In our experiments we use the panoramic annular lens (PAL) camera system [9] as it can capture 

its surroundings with a field of view (FOV) of 360-degrees horizontally and -15 ~ +20 degrees 

vertically (Fig. 1). In the application of human tracking and identification by a mobile robot, a 

vertical viewing angle that spans the horizon is preferred. After image un-warping, distortion 

rectification, and camera calibration [22, 24], we obtain cylindrical images generated by a 

panoramic "virtual" camera from the virtual viewpoint on the axis of the cylindrical image 

surface (Fig. 1c). Other omnidirectional sensors can also be applied; for example, the 
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omnidirectional cameras proposed by Nayar’s research group [7] have been used in our current 

experiments.   

Panoramic virtual stereo vision is formed by two panoramic cameras residing on two separate 

(possibly mobile) platforms. Let’s assume that both of them are subject to only planar motion on 

the floor and are at the same height above the floor. Suppose that in Fig. 2a, O1 and O2 are the 

viewpoints of the two cameras and they can be localized by each other in the panoramic images 

as P12  and P21 respectively. B is the baseline (i.e. distance O1O2) between them. The projection of 

a target  T is represented by T1 and T2 in the two panoramic images. Then a triangle O1O2T can be 

formed. By defining an arbitrary starting orientation for each cylindrical image, three angles φ1, 

φ2 and φ0 of the triangle can be calculated from the following four bearing angles: θ1 and θ2, the 

bearings of the target in image 1 and image 2 respectively, β12 and β21, the bearing angles of 

camera 1 in image 2, and camera 2 in image 1 respectively. Therefore the distances from the two 

cameras to the target can be calculated by triangulation as 
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With stationary cameras, triangulation error, i.e. the error in estimating D1(or D2) varies with the 

target location –  larger errors when the target is close to the baseline and smaller errors when 

better triangulation is possible. Here we show first that panoramic stereo can almost always 

estimate the distance of the target in the full 360° view. It is commonly known that the 

triangulation relation in Eq.(1) approaches singularity as the target moves towards the baseline 

O1O2.  Fortunately, near colinearity of the sensors and the target can be easily verified, and even 

then the 3D location of the target can still be estimated by using the size-ratio of the target in two 

panoramic images 
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where w1 and w2 are the widths of the target in the panoramic image pair. Note that the cosines in 

the above equations only give signs since the angles are either 0° or 180°. As an example, if the 

target lies between O1 and O2 (Fig. 2b), the distances to them can be calculated as  

21

2
1 ww

wBD
+

= , 
21

1
2 ww

wBD
+

=  (3) 

In the size-ratio method, since the two cameras view the target (e.g., a human) from exactly the 

opposite direction, the widths of the objects in the two images correspond approximately to the 

same width in 3D space (Fig. 2b), which makes the estimation plausible. As an alternative, we 

can also use the height information (in the same way as we use width) since the height of an 

object is more invariant. However, it is only applicable when the top and/or bottom of the figure 

are visible in both of the panoramic images and can be accurately localized. In contrast, the width 

information is easier to extract and more robust since we can integrate the results from different 

heights of the object. Realizing that the object and the robots may occlude (part of) each other 

when in a collinear alignment, we will use the width and height information adaptively. 

In panoramic virtual stereo where the viewpoint and baseline relation can change, it is interesting 

to find the best configuration for estimating the distance of a target. For this purpose, first a 

dynamic mutual calibration approach will be presented in Section 3. Then a detailed numerical 

analysis of the distance estimation error by the panoramic virtual stereo (with both the 

triangulation and size-ratio methods) will be given in Section 4, which will lead to useful results 

for view planning between the two mobile platforms with panoramic cameras.  

 

3 Dynamic Mutual Calibration 

In order to estimate the distance of a target, we need to first estimate the baseline and the 

orientation angles of the two panoramic cameras. In stereo vision, an epipole is defined as the 

projection of one camera’s center in the other camera’s image plane. In a stereo system with 

normal FOVs, epipoles are usually out of the FOVs in both cameras, therefore we must use a 
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third target in the scene for stereo calibration. In contrast, the panoramic stereo has two “visible 

epipoles” because the two panoramic cameras can see each other. Here we propose a special 

dynamic calibration procedure called mutual calibration based on the visible epipole property in 

panoramic stereo. Mutual calibration neither needs to setup any additional calibration targets nor 

requires the use of a third object in the environment. Instead, each of the panoramic cameras can 

use the other as the calibration target. The advantage of “sensor as the target” in mutual 

calibration is that the geometric structures and the photometric properties of the sensors as well 

their platforms can be well designed and are known a priori.  

Several practical approaches have been proposed for this purpose by using special structures, 

such as cylinders, vertical lines and rectangular planar surfaces [24]. The basic idea is to make the 

detection and calculation robust and fast. One of the approaches is to design the body of each 

robot as a cylinder with some vivid colors (e.g. white in the intensity images of our current 

implementation), which can be easily seen and extracted in the image of the other robot's camera 

(Fig. 3a). We assume that the rotation axis of each panoramic camera is coincident with the 

rotation axis of the cylindrical body of the corresponding robot, therefore the baseline between 

the two panoramic cameras can be estimated using the occluding boundary of either of the two 

cylinders, e.g., from the image of camera 2 we have 

 )
2

sin(/ αRB =  (4) 

where α is the angle between two occluding projection rays measured in the image of camera 2, 

and R is the radius of the 1st cylindrical body (Fig. 3b). The orientation angle (β12) of the line 

O2O1 is simply the average of the bearings of two occluding boundary points P1 and P2. We can 

do the same in the image of camera 1.  

Fig. 4 shows a calibration result. The cylindrical body of each robot (pointed at by an arrow in 

Fig. 4a and Fig. 4b) is detected and measured in the panoramic image of the other robot. In the 

experiment, the perimeter of the cylindrical image is 1000 pixels, so the angular resolution in 

degrees is 360/1000 = 0.36 ° per pixel. We define the angular resolution of the panoramic image 
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as χ in radians for future use, which is 6.28 mrad/pixel in this experiment. The radius of the 

cylindrical body of each robot is designed as R=18.0 cm. 

 

4 Error Analysis 

Previous work (e.g., [21]) only gave the error distribution of the panoramic stereo with a fixed 

stereo geometry. Shum et al [25] studied the case of an omnidirectional camera moving within a 

circular region of the plane and concluded that it was the best to choose a pair of cameras that are 

vergent on a point with maximum vergence angle in order to accurately localize the point. In this 

paper we will discuss a more general case where the relations between the two panoramic 

cameras can change arbitrarily. Our task is to find the distance of a given target point from camera 

1 by finding its correspondence in camera 2, so the localization error turns out to be the distance 

error.  For this reason, we use a different error formulation: for a certain distance D1 from camera 

1 to the target, what is the error distribution of this distance with different locations of camera 2, 

which determines the configurations of baselines and angles of the panoramic stereo?  Can we 

achieve a better distance estimation for distant targets with a larger baseline, which is also 

dynamically determined by the mutual calibration?  Eq. (1) and Eq. (2) show that the accuracy of 

distance estimation depends on the accuracy in estimating the baseline and the bearing angles.  

Here we derive an analysis of the error of estimating distance D1 from the first camera to the 

target. First, with the triangulation method, the estimated distance error can be computed by 

partial differentials of Eq. (1) as 
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where B∂ is the error in computing the baseline B, and 1φ∂ and 2φ∂ are the errors in estimating the 

angles 1φ and 2φ from the two panoramic images. Analyzing Eq. (5), we have found that the 

distance error comes from three separate error sources: mutual calibration error, stereo matching 

error and stereo triangulation error, which will be discussed below.  

4.1 Calibration error 

Dynamic mutual calibration estimates the baseline B, and the bearing angles β12 and β21 of the 

two cameras, all of which are subject to errors in localizing the calibration targets. The error in 

estimating the baseline by Eq. (4) can be derived as  

 αα ∂≤∂
−

=∂
R

B
R

RBBB
22

222
  (6) 

where R << B, and α∂ is the error in estimating the angle α in an image.  From Eq. (6) we can find 

that the baseline error B∂ is inversely proportional to the dimension of the cylindrical body for 

dynamic calibration given the same angle error α∂ . On the other hand, given the radius R and the 

angle error, the baseline error is roughly proportional to the square of the baseline itself.  The 

angle error ( α∂ ) is determined by the errors in localizing the occluding boundaries of the second 

(or first) cylinder in the first (or second) panoramic image (Fig. 3).  The errors in estimating the 

bearing angles β21 and β12 will introduce errors to the angles φ1 and φ2 of the stereo triangle (Fig. 

2a). Since each bearing angle is the average of the orientations of the two occluding boundaries, 

their errors can be roughly modeled as the same as α∂ , i.e. 21β∂ = 12β∂  = α∂ .  Note that these 

errors ( B∂ , 21β∂ , 12β∂  ) are derived from the specific mutual calibration method we are using in 

this paper. However, the following general relations hold: larger distance (baseline) between two 

cameras will introduce larger errors in estimating the baseline, but the errors in bearing angles are 

independent of the distance as long as the calibration targets can be detected.  
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4.2 Matching error 

We want to find the distance of a given point T1 in view 1 by finding its corresponding point T2 in 

view 2. In this sense, there will be no error in providing the bearing angle θ1 in view 1, i.e. 1θ∂ =0, 

which implies that the error 1φ∂  is solely determined by the error of the angle 21β  via 

calibration, i.e. 1φ∂  = α∂ + 1θ∂ = α∂ . However, the perspective view difference in O1 and O2 will 

introduce a stereo "matching error" (denoted as 2θ∂ ) in θ2, the localization of T1's matching point 

T2, which could be a function of the location of the view point O2 (related to O1). Thus, 2φ∂  = 

α∂ + 2θ∂  is a (complicated) function of the viewpoint location and is generally larger than 1φ∂ . 

Generally speaking, the “matching error” is determined by three aspects – visibility (the size of a 

target in the panoramic image), detectability (the contrast of the target with the background) and 

similarity (appearance differences between images of an object in two widely separated views). 

In the panoramic virtual stereo, the sizes and the appearances of a target can suffer from 

significant perspective distortion due to widely separated views. The matching error will be 

directly related to the primitives we are using for stereo matching.  

4.3 Triangulation error and overall distance error 

Now we want to find a numerical result of the following problem: for a certain distance D1 from 

camera 1 to the target, what is the error distribution for different locations of camera 2, which 

determines configurations of baselines and angles of the panoramic stereo? Since it is hard to give 

a numerical function of the error 2φ∂  versus the location O2, we will use the same measure error 

bounds for all the angles, i.e. α∂ = 1φ∂ = 2φ∂ ≡ φ∂ . We will re-examine this matching error 

qualitatively after we find the optimal baseline/viewpoints. We decompose the analysis into two 

steps. First, by fixing the baseline, we find the optimal angle 1φ . It is equivalent to finding the 

optimal position of O2 on a circle of origin O1 and radius B (Fig. 5). Second, under the optimal 

angle configuration of all possible baselines, we find the optimal baseline B. An additional 
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consideration is that a human has a size comparable to the robots, so the distances between a 

robot and the target should be at least greater than the dimension of the robot, 2R.   We have the 

following results by combining the error analysis in the triangulation method (Appendix 1) and in 

the size-ratio method (Appendix 2): 

Case (1) . When B ≤ D1-2R, the best estimation can be achieved when 
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where BD1∂ and φ
1D∂  are the distance errors due to the baseline error and angular errors 

respectively. Note that in this case, the minimum error is achieved when o901 <φ , o902 >φ and 

o900 <φ (see Appendix 1). For example, when R=0.18 m, D1=4.0 m, φ∂ = 6.28 mrad (1 pixel), 

we have the best configuration of B=1.70 m and o2.541 =φ , and the relative error is 

11 / DD∂ =5.4%. 

Case (2) . When B ∈ (D1-2R, 22
1 4RD + ), the best estimation can be achieved when 
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Note that in this case, o901 <φ  is the minimum angle by physical constraint of the minimum 

object distances, and 02 φφ = . 

Case (3) . When B ≥ 22
1 4RD + , the best estimation can be achieved when 

 22
1 4RDB += ,  

B
D1

1cos =φ  (11) 

and the error in the optimal configuration is  
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Note that in this case, the minimum error is achieved when o901 <φ , o902 <φ and o900 =φ .  

Case (4).  In the case of colinearity of sensors and the target, triangulation is invalid. However we 
can use the size-ratio method. A similar error analysis (Appendix 2) shows that if the target lies 
between the two cameras, minimum error is obtained when the second camera O2 moves as close 
as possible to the target, i.e. D2= 2R,  or  

B = D1+ 2R, 

and the minimum error can be expressed by 

 w
W
R

R
RDRD

DD s ∂+
++

=∂ )2
2

)3)((
( 11

11   (13) 

We always have −∂>∂ 11 DDs  given that B>D1, , w∂ = φ∂  and W << D1. Similar results can be 

obtained when the target lies in one side of both sensors. It can be also proved that we always 

have 0
11 DD ∂<∂ − , which means that it is better to set the baseline slightly greater than the 

distance D1 when they have to be approximately equal. (In addition, the equality condition cannot 

be satisfied before we have an accurate estimation of D1).  By some tedious mathematical 

comparison of  Eq. (8) and Eq. (12) under different D1, we arrive at the following observation:  
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Conclusion 1. If the distance from camera 1 (the main camera) to the target is greater than 

11.5 times the radius of the robot, i.e. D1 > 11.5 R, we have −+ ∂<∂ 11 DD , which means that 

the best configuration is RDB 12= , 
22

1

1
1 2

3
cos

BD

BD

+
=φ  (Eq. (7)). Otherwise, we have 

−+ ∂>=∂ 11 DD  i.e. the best configuration is 22
1 4RDB += , 

B
D1

1cos =φ  (Eq. (11)). 

It is also interesting to compare the panoramic virtual stereo with a fixed baseline stereo. Assume 
that in a fixed baseline stereo system on a robot, the two cameras are mounted as far apart as 
possible. For a robot with cylindrical body of radius R,  the maximum stereo baseline in that case 
would be B=2R. Let us assume that there is no error in stereo camera calibration (i.e. B is 
accurate). Since we always have B < D1 in fixed-baseline stereo, we can use Eq. (19) in Appendix 
1 to estimate the distance error in the best case, i.e.  

 φ∂≈∂ = R
DD RB

fix
2
1

21   (14) 

Comparing Eq. (14) with Eq. (8), we have the following conclusion:  

Conclusion 2. The flexible baseline triangulation method is almost always more accurate 

than a fixed baseline stereo. The error in fixed baseline stereo is proportional to 2
1D , but 

the error in flexible baseline stereo is proportional to 5.1
1D . The error ratio is  

 
1

2121 2:
1 D

RDD RB
fix

RDB =∂∂ ==
+

 (15) 

and RB
fix

RDB DD 2121 1 ==
+ ∂<∂  when D1 > 4R, which is almost always true.  

The above error analysis results can be used in the optimal view planning. Though the exact 

number 11.5R in Conclusion 1 is deduced from the calibration method we are using, the 

guidelines apply to general cases. The distance error map under different viewpoints of camera 

O2 is given in Fig. 6 for D1= 34R = 6 m  to verify the above conclusion. Minimum error is 

φ∂∂ 11 / DD =11.2 when B=220cm, o1.621 =φ  (We have two such symmetric locations for O2). 
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The upper bound of the relative error is 11 / DD∂ =7.0% when φ∂  is equivalent to 1 pixel. The 

selection of optimal viewing angle and baseline for different distances is shown in Fig. 7. Note 

that parameters in Fig. 7 are slightly different from those in Fig. 6 because the curves in Fig. 7 are 

drawn using Eq. (8) and Eq. (12) with some approximation and practical consideration. The error 

analysis can also be used in the integration of the results from more than two such stationary 

sensors. 

 

5 Matching Primitives and Matching Error Revisited 

Since our primary goal is to detect and to track moving targets (humans) in 3D space, the 
primitives of the panoramic virtual stereo are image blobs of human subjects that have already 
been extracted from the two panoramic images. A fast moving object extraction and tracking 
algorithm using motion detection and background subtraction with a stationary panoramic 
camera has been developed [24].  Fig. 8 depicts the results of our multiple human detection and 
tracking procedure. Multiple moving objects (4 people) were detected in real-time while moving 
around in the scene in an unconstrained manner; the panoramic sensor was stationary. Each of the 
four people was completely extracted from the complex background, as depicted by the bounding 
rectangle, direction and distance of each object. The dynamic track, represented as a small circle 
and icon (elliptic head and body) for the last 30 frames of each person is shown in Fig. 8b in 
different colors. The frame rate for multiple object detection and tracking was about 5 Hz in a 
Pentium 300MHz PC for 1080*162 panoramic images, and thus can be 15-20 Hz with current 
standard CPUs. 

We have realized that the bearing of the centroid of an entire blob is subject to the effects of the 

positions of arms and legs, and the errors in body extraction. We have found that the bearing of 

the head of a human is more accurate than the entire blob of the human subject for three reasons: 

(1) it is usually visible in the panoramic images; (2) it is almost symmetric from all directions of 

the robot’s viewpoints; and (3) it is easy to extract from the background (see Fig. 8 and Fig. 9).  

The quasi-symmetry property of a head makes it more suitable for matching across two widely 
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separated views. The idea to select invariant features for stereo matching can be further extended 

by extracting different parts of a human blob for partial match between two views. 

The head part of a blob is extracted by using the knowledge that it is the topmost part of the blob 

and it has roughly a fixed height-width ratio (e.g., 3:2) in a panoramic image. Here the exact 

height of the head segment is not critical since we only use the bearing angle of the head for 

triangulation. Fig. 9 shows the extracted human blobs and heads from a pair of panoramic 

images. Bearing of the head is more suitable for building up correspondence between a pair of 

human blobs from two widely separated views because of the aforementioned reasons. Notice 

that the centroid of each head region gives correct bearing of the head even if the size and view 

differences are large between two images of the same human subject. The estimated height is not 

accurate and not consistent across the corresponding image pair. For example, the second human 

subject in the images shows that the bearing of the head is more accurate than the entire blob, 

which is an inaccurate detection of the human body: the left side is “underestimated” due to the 

similarity between the shirt and the door, and the right side is “overestimated” due to its shadow.  

From each panoramic image, a set of objects (blobs) is extracted, which is annotated by the 

following parameters 
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where k (1 or 2)  is the number of cameras, )()()()( ,,, k
i

k
i

k
i

k
i hwI θ are the photometric feature, bearing 

angle of the head of the target i in camera k, the width of the image blob, and the vertical 

coordinate of the top of the blob (indicating the height of the human ). 

The best triangulation configuration is derived when all the angular errors ( α∂ , 1φ∂ , 2φ∂ ) are 

treated as the same, and are assumed to be independent to the view configuration of the 

panoramic stereo. However, as we discussed in Section 4.2, the error 2φ∂  should be a function of 

the position of O2 (given the locations of O1 and T). A quantitative result can be derived in the 

same manner as above if the function is known or can be approximated;  but here we only give a 
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qualitative analysis. The error map in Fig. 6 shows that there is a relatively large region (black 

part of the minimum-error curve) with errors that are less than twice the minimum error. The 

large errors only occur when angle 0φ is very close to 0° and 180°. Therefore a tradeoff can be 

made between the matching error (resulting from widely separated views) and the triangulation 

error (resulting from small baseline).  The target appears similar from both the cameras at the best 

triangulation configuration (in the typical case when D1>11.5R), since the distances from the two 

cameras to the target are comparable ( RDDD 1
2
12 4−= ). In addition, it is interesting to note that 

larger view difference can give a better measurement of the dimension of the 3D object (person), 

which is similar to the volume intersection method (Fig. 10).  

 

6 Cooperative Strategies in the Real System 

In our panoramic virtual stereo vision approach, we face the same problems as in traditional 

motion stereo: dynamic calibration, feature detection, and matching. In our scenario, we are also 

dealing with moving objects before 3D matching, which seems to add more difficulty. 

Fortunately, the following cooperative strategies can be explored between two robots (and their 

panoramic sensors) to ease these problems: a “monitor-explore” working mode, mutual 

awareness, information sharing and view planning.  

6.1 Monitor-explore mode 

 In the two-robot scenario of human searching, one of the robots is assigned as the "monitor" and 

the other as the “explorer”. The role of the monitor is to monitor the movements in the 

environment, including the motion of the explorer. One of the reasons that we have a monitor is 

that it is advantageous for it to be stationary while detecting and extracting moving objects. On 

the other hand, the role of the explorer is to follow a moving object of interest and/or find a better 

viewpoint for constructing the virtual stereo geometry with the camera on the monitor. However, 

the motion of the explorer introduces complications in detecting and extracting moving objects, 
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so we assume that the explorer remains stationary in the beginning of an operational sequence in 

order to initialize moving objects to be tracked. Then a tracking mechanism that can handle 

ego-motion of the robot continues to track objects of interest. Such a tracking procedure may 

integrate the motion, texture and other cues, which need future work. We also expect that the 

explorer will remain stationary in an advantageous location after it has found a good viewpoint 

for 3D estimation. The role of the monitor and the explorer can and will be exchanged during 

mission execution. The exchange of roles as well as the motion of the explorer may be 

determined by evaluating expected gain in triangulation accuracy.  For example, when the 

expected improvement is not significant, the robots may just remain in their current state.   

6.2 Mutual awareness and information sharing 

Mutual awareness of the two robots is important for their dynamic calibration of relative 

orientations and the distance between the two panoramic cameras. In the current implementation, 

we have designed a cylindrical body with known radius and color, so it is easy for the cooperating 

robots to detect each other. It is interesting to note that while the motion of the explorer increases 

the difficulty of tracking other moving objects by itself, tracking information from the monitor is 

quite useful. It is also possible to use more complicated but known natural appearances and 

geometrical models of a pair of robots to implement the mutual awareness and dynamic mutual 

calibration.  

The two panoramic imaging sensors have almost identical geometric and photometric properties. 

Thus it is possible to share information between them about the targets as well as the robots in the 

scene. For example, when some number of moving objects are detected and extracted by the 

stationary monitor, it can pass the information of the number of objects and their geometric and 

photometric features of each object to the explorer that may be in motion, thereby increasing 

robustness of tracking by the moving explorer.  Information sharing is especially useful for the 

mutual detection of "cooperative" calibration targets since models of the robots are already 

known a priori. In our simplified case, the cylindrical bodies of both robots always have the same 

appearances from any viewing angle. Therefore, whenever the monitor has detected the 
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cylindrical body of the moving explorer, it can estimate the bearing and distance to the explorer. 

On receiving this information from the monitor, the explorer can try to search for the cylindrical 

body of the monitor in its image by predicting its size and color under the current configuration 

and illumination conditions.   

6.3 View planning for a pair of robots and a single target 

View planning is applied whenever there are difficulties in object detection and 3D estimation by 

the virtual stereo system. In our case, we define the view planning as the process of adjusting the 

viewpoint of the exploring camera so that the best view angle and baseline can be achieved for 

the monitoring camera to estimate the distance to the target of interest. Occlusion of the human or 

the robot may occur when an object (either a human or a robot) is between the observing camera 

and the target, the configuration when triangulation is invalid (we use the size-ratio method in 

that situation for an initial estimate). The error analysis in Section 4 provides guidelines for "best" 

viewing planning as follows: 

(1) Observation rule - This rule is applied when the two robots "observe" the target from a 

distance. If the initial estimated distance from viewpoint O1 to the target, D1, is greater than 

11.5R, the explorer should move as close as possible to an optimal position that satisfies the 

minimum distance error conditions, i.e., baseline constraint 12 RDB =  and the viewing angle 

constraint 22
1

1
1 2

3cos
BD

BD
+

=φ  .  

(2). Approaching rule - This rule is applied when both the two robots are close to the target and 

the explorer is trying to "approach" the target.  If the estimated distance is smaller than 11.5R, the 

explorer should approach to the target to satisfy the baseline constraint 22
1 4RDB += and the 

viewing angle constraint 
B
D1

1cos =φ .  

 (3). Mutual-awareness rule - When two panoramic cameras are aware the existence of each 

other, the maximum distance of the baseline is B = 2R/wχ, given the angular resolution of the 
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panoramic image, χ, the size of the cylindrical robot body, R, and minimum number of detectable 

pixels of the robots, w.  

For example, assume that w=10 pixels is the minimum detectable width, then the maximum 

baseline is B=2.8 m given R=0.18 m and χ = 6.28 mrad/pixel. This constraint on the baseline still 

allows the optimal configuration of the panoramic virtual stereo to provide an effective 

estimation of the distance of a target 10 meters away (Fig. 7). 

 (4). Navigation rule – The view planning strategy should also consider the cost of moving in 

finding a navigable path to the selected position. This cost is also a function of distance, 

smoothness of the path and time to travel. 

Note that the explorer is always trying to find a best position in the presence of a target's motion. 

It is a more difficult problem than localizing a stationary target. For a stationary target, as the 

robot is moving, the system could collect many stereo estimates (of the target) along the way and 

integrating them to form a much higher quality estimate of the actual position. However, for a 

continuously moving object, the integration (if possible) requires formation of the dynamic track 

of the moving object. This integration could use our derived error model with a Kalman filter 

methodology. 

6.4 View planning for multiple robots and multiple objects 

These strategies can be extended to more than two cooperative robots, and in fact more than two 

robots will make the work much easier.  For example, we can keep two of the three robots in a 

team stationary so that they can easily detect the moving objects in the scene, including the third 

robot in motion. Thus the locations of all the moving objects can be estimated from the pair of 

stationary panoramic cameras. Then, for a target of interest, we can find (dynamically) the best 

viewpoint for the third robot in order to estimate the target’s distance from either of the two 

stationary robots. By using the knowledge of the (dynamic) locations of the target, other moving 

objects and the three robots, a navigable path for the third robot can be planned to the desirable 

goal. These measurements can also facilitate the detection of the target and the two stationary 
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robots by the mobile robot, for example, by tracking the objects with visual features inherited 

from the other two robots. Thus, the stereo triangulation relation can be constructed between the 

moving and the stationary platforms.  

On the other hand, the view planning rules for a single moving object can also be extended to deal 

with multiple moving objects. There are three interesting cases. 

(1). In general, N+1 robots can construct optimal configurations for N moving objects (N >2), i.e. 

a main robot can cooperate with each of the N robots for the detection and localization of each of 

the N objects (Fig. 11a).  However, this method is inefficient and needs to move the N robots.  

(2). As a special case (Fig. 11b), two moving robots with panoramic cameras (O1 and O2) can 

construct optimal configurations for estimating the distances of two moving objects(T(1) and T(2)), 

by the alignment of the two viewpoints of the cameras to mirror each other. 

(3). As an approximation method, two moving robots with panoramic cameras can construct near 

optimal configurations for estimating the distances of multiple moving objects. This can be done 

by clustering the targets into two groups, and the two cameras then configure two best 

triangulations for the centers of the two groups (Fig. 11b). It should be apparent that  more than 

two robots usually can do a better job in view planning. 

 

7 Experimental System and Results 

In our experimental system, we mounted one panoramic annual lens (PAL) camera on an RWI 

ATRV-Jr. robot (the explorer), and the other PAL camera on a tripod ( the monitor)(Fig. 3a). Two 

Matrox-Meteor frame grabbers, each connected to a PAL camera were installed on the ATRV-JR 

and a desktop PC respectively, at the time both had 333M Hz PII processors. The communication 

between two platforms is through sockets over an Ethernet link (wireless Ethernet 

communication will be used in the future system). The 3D moving object detection and 

estimation programs run separately on the two machines at about 5 Hz. Only camera and object 
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parameter data (i.e., baseline, bearing angles, sizes, and photometric features in Eq. (16) ) were 

transmitted between two platforms so the delay in communication can be ignored at the current 

processing rate (5Hz). In the implementation of examples shown in this paper, we assume that the 

most recent results from both platforms correspond to the events at same time instant. 

Synchronized image capture is currently using network time protocol (NTP) with temporal 

interpolation [26], and it not an issue with higher speed CPUs.  

Fig. 12 shows the result from an experiment to evaluate the panoramic stereo's performance of 

tracking a single person walking along a known rectangular path when the two cameras were 

stationary. Each red dot (dark in B/W print) represents a location of the person. The dense 

clusters of dots show the six locations where the person made turns during the walking. We used 

two methods to localize the moving subject – the triangulation method when a good triangle of 

the target and the two cameras can be formed, and the size-ratio method when the target was near 

the locations of colinearity. The theoretical error bounds superimposed on the 2D map in Fig. 12 

(d), were computed assuming that all the angular errors in Eq. (5) and Eq. (6) were equivalent to 

1 pixel. The target (T) position where the theoretical best triangulation on this track can be 

expected is shown in the figure (Fig. 12(b) as well as (d)), which is consistent with the real 

experimental results.  Even if the localization errors in images are larger than the assumed 1 pixel 

error in our previous analysis, the average error of the estimated track is ±10 cm, which is 

comparable to the theoretical error bounds.  The bad localizations occurred when the extraction 

of the human blobs is not correct. For example, in the beginning and the end of the walk where 

the size-ratio method is used, large errors occurred not because the size-ratio method is not stable 

computationally, but because the detection of the human figure is not correct when it is small and 

occluded by one sensor platform. 

Fig. 13 shows the results of detecting and tracking two people who walked from the opposite 

directions along the same known rectangular path. In this example, a simple “greedy” match 

algorithm [22, 27] was used where the similarities of the matching primitives in intensity and the 

consistencies in 3D measurements are calculated. In the 2D map of the room (center of each 
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picture in Fig. 13), the red (which is darker in B/W print) dot   sequence shows the path of one 

person, and the green (which is lighter in B/W print) dot sequence shows that of the other. The 

proposed 3D match, localization and tracking algorithms produced rather good results with 

consistent 3D localization for both people. The average localization error is about 20 cm. There 

are about 5% mis-matches in this set of experiment, which happened in two places. One place is 

when the shadow of a person was projected on the wall and was detected and mis-matched by the 

system. The second place of error is when the two people met.  Further improvements and 

experiments on stereo match, view planning and evaluation are needed. 

 

8 Concluding Remarks  

This paper has presented a panoramic virtual stereo approach for two (or more) cooperative 

mobile platforms. There are three main contributions in our approach: (1) a simple but effective 

dynamic mutual calibration between two panoramic sensors; (2) a thorough error analysis for the 

panoramic virtual stereo vision system; and (3) viewing planning based on optimal stereo 

configurations. The integration of omni-directional vision with mutual awareness and dynamic 

calibration strategies allows intelligent cooperation between visual agents, which provides an 

effective way to solve problems of limited resources, view planning, occlusions and motion 

detection of mobile robot platforms. Experiments have shown that this approach is encouraging. 

At the system level, the panoramic virtual stereo is one of the important modules to localize 

multiple moving human subjects in the distributed sensor network architecture proposed in [26]. 

In particular, the error modeling and the view planning strategy developed in this paper are 

applied.  Interesting future work include the following:  

(1) Improvement of the mutual calibration accuracy - By integrating a panoramic camera 

with a pan/tilt/zoom camera, the system can increase the capability in both viewing angle 

and image resolution to detect the cooperating robots as well as the targets. Robust and 

accurate dynamic mutual calibration is one of the key issues in cooperative stereo vision.  
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(2) Improvement of 3D matching - By using the image contours of objects and more 

sophisticated features (color, texture, etc), more accurate results can be expected. This is 

another significant factor that affects the robustness and accuracy of 3D estimation.  

(3) Tracking of 3D moving objects - More sophisticated algorithms for tracking moving 

objects should be incorporated, in the presence of occlusion, and by moving cameras as 

well as stationary cameras.  
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Appendix 1. Best baseline and viewpoint when B < D1 

In the first step, we are trying to find the minimum value of the error due to the second and third 

terms of Eq. (5), i.e. 

2
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It is equivalent to find the optimal position of O2 on a circle of origin O1 and radius B. We first 

consider the case where B < D1. In this case, )( 21 φφ + >90°, so Eq. (17) can be re-written as a 

function of φ1  by using the sine and cosine laws 
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where we assume that  the same measure errors in angles, i.e. 1φ∂ = 2φ∂ = φ∂ . By some 

mathematical deductions, we can find that the minimum error can be achieved when 
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The error in Eq. (18) increases from the minimum value to ∞ when the angle φ1 changes from the 

optimal value to 0° and 180° respectively (Fig. 6a).  Note that in this case, the minimum error is 

achieved when o901 <φ , o902 >φ and o900 <φ . Here we compare this result with three special 

cases (Fig. 14): 

(1). Max-vergent configuration: Two rays O1T and O2T have the maximum vergent angle given 

the fixed baseline B. In this case o902 =φ , the distance error due to angular errors is 

 min1
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(2). Symmetric configuration: Two rays O1T and O2T have the same length given the fixed 

baseline B. In this case 21 φφ = , the distance error due to angular errors is 
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(3). Mirror configuration: The ray O1T is perpendicular to the baseline B. In this case o901 =φ , 

which seems to be a “mirror” of case (1), however, the distance error is larger 
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By a simple comparison we have  
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which implies three conclusions: (1). Given the fixed baseline, the distance error in the max- 

vergent configuration or the symmetric configuration is slightly larger than the best 

configuration. (2). The errors in all the three configurations (max-vergent, symmetric and the 

best) are smaller than φ∂
B
D2

12 , which is smaller than the mirror configuration error. (3). Given 

the fixed baseline, the max- vergent configuration is the closest to the best configuration. 

In the second step, we will find the optimal baseline in the case of optimal angle. Inserting Eq. (6) 

and Eq. (19) into Eq. (5) and assuming that the angle error α∂ in Eq. (6) also equals to φ∂ , we 

have 
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It is intuitive that the larger is the baseline, the better the triangulation will be (term 2 in Eq.(24), 

however the estimated error in the baseline is also larger (term 1). The minimum value can be 

achieved when RDB 12≈ , which means that 1) more accurate baseline estimation can be 

obtained given a larger cooperative robotic target (i.e. R), hence the optimal baseline for 

estimating distance D1 can be larger, and 2) the farther the target is, the larger the baseline should 

be.  

Assuming that the human object has a size comparable to the robots, the distances between a 

robot and the target should be at least greater than the dimension of the robot, 2R. So Eq.(19) is 
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only valid when D2≥2R, hence we should have D1≥ B+2R.  Similarly, we can find the optimal 

solutions when B = D1 and B > D1.  

 

Appendix 2 Comparison between triangulation and size-ratio approach  

The error for the size-ratio method can be calculated in a similar way, For example, the distance 
error for Eq. (3) is 
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Using the mutual calibration error Eq. (6) we have 
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where W is the width of the target, and we have )
2

11(
1

21 DD
Www +=+ . We assume that 

1w∂ = 2w∂ = α∂ = w∂ , where w is measured in radians. Obviously, we have B>D1, D1>2R and 

D2>2R.  Eq. (26) implies that a larger target means better distance estimation. The minimum 
error is obtained when the baseline is as large as possible (B = D1+ 2R), i.e., the second camera 
O2 moves as close as possible to the target (D2= 2R). So the minimum error can be expressed by 
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We always have −∂>∂ 11 DDs  given that B>D1, , w∂ = φ∂  and W << D1. 
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Figure Captions 

Fig. 1. Panoramic Annular Lens and images. (a) PAL camera  (b) An orignal PAL image (768*576)  (c) 

Cylindrical panoramic image 

Fig. 2. Two 3D estimation methods. (a) Panoramic triangulation (top view) (b) Panoramic size-ratio 

method (top view) 

Fig. 3. Finding the orientation and the distance using a cylinder. (a) Setup  (b) Geometry (top view) 

Fig. 4. Dynamic calibration by cylinders (which are pointed by arrows) 

Fig. 5.  Best view angles and baselines 

Fig. 6.  Error map for distance D1 when camera O2 is in different locations of the map by fixing camera O1 

and the target T (D1 = 34R = 6m, R = 18 cm).  The labels in the two axes are distances (in meters); the 

black-white curve shows where the minimum errors can be achieved for viewpoint O2 on circles with 

different radii around O1 (see explanation in the text); the error value ( φ∂∂ 11 / DD ) is encoded in intensity: 

see the corresponding bar. 

Fig. 7.  Best baselines and angles vs. distance curves (The numbers in the parentheses are given when R 

= 0.18m) 

Fig. 8. Tracking multiple moving objects.  (a) Cylindrical images with bounding rectangles around moving 

objects superimposed,  (b) Object tracks, each track is for the last 32 frames 

Fig. 9. Head extraction and bearing estimation. The large rectangle around each human subject is the 

bounding rectangle of the corresponding blob, and the small rectangle inside indicates the centroid of the 

head. 

Fig. 10.  Viewing differences and distance/dimension estimation . (a) small viewpoint difference  (b) large 

viewpoint difference 

Fig. 11. View planning for multiple robots and multiple objects. (a). N objects, N+1 robots;  (b) 2 (groups of) 

objects, 2 robots  

Fig. 12.  Panoramic stereo tracking result. The images in (a) and (c) are the panoramic image pair from 

two panoramic cameras. Each image is actually the corresponding background with the superimposed 

blob images and their annotations of the blobs. In (c) the real localization results are plotted in the top view 

of the room where each grid is 50x50 cm2. Each small circle (red in color version) represents a location of 
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the person in walking. In (d) The theoretical distance error bounds from camera 1 are shown for the same 

track. The real estimates for best triangulation results validate the theoretical analysis. 

Fig. 13.  Panoramic stereo tracking two people. The four pictures show localizing and tracking results (1) 

before they met, (2) when they met, (3) after they departed and (4) when they arrived at their goals, out of 

214*2 localization results. Each picture of (1) to (4) has the same layout as in Fig. 12. Each small circle in 

darker tone (red in color version) or in lighter tone (green in color version) represents a location of the 

corresponding person marked by a bounding rectangle with the same tone (color) in images. 

Fig. 14. Best viewpoints given the baseline distance 
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                        (a) PAL lens and camera        (b) an orignal PAL image (768*576) 

 
(c). Cylindrical panoramic image 

Fig. 1. Panoramic Annular Lens and  image 

 

 

 

 

 

 

 

    (a)                                                                                            (b) 

Fig. 2. Two 3D estimation methods. (a)  Panoramic triangulation (top view) (b) Panoramic size-ratio 

method (top view) 
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(a) Setup                                           (b) Geometry (top view) 

Fig. 3. Finding the orientation and the distance using a cylinder  

 

 

            (image of the cylindrical body of the second robot) 

(a) Pano 1:  α=11.52° (32 pixels), β21 = 23.76°, B = 180 cm 

 

                               (image of the cylindrical body of the first  robot) 

(b) Pano 2:  α=11.52° (32 pixels), β21 = 227.88°, B = 180 cm 

Fig. 4. Dynamic calibration by cylinders (which are pointed by arrows) 
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                               (a)                                        (b)                                             (c)  

Fig. 5.  Best view angles and baselines.  (a). B ≤ D1-2R;  (b). B ∈ (D1-2R, 22
1 4RD + );  (c). B ≥ 22
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Fig. 6.  Error map for distance D1 when camera O2 is in different locations of the map by fixing camera O1 

and the target T (D1 = 34R = 6m, R = 18 cm).  The labels in the two axes are distances (in meters); the 

black-white curve shows where the minimum errors can be achieved for viewpoint O2 on circles with 

different radii around O1 (see explanation in the text); the error value ( φ∂∂ 11 / DD ) is encoded in intensity: 

see the corresponding bar. 

 

 

 

 

 

 

 

Fig. 7.  Best baselines and angles vs. distance curves (The numbers in the parentheses are given when R 

= 0.18m) 
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(a) Cylindrical images with bounding rectangles around moving objects superimposed 

 

(b) Object tracks, each track is for the last 32 frames 

Fig. 8. Tracking multiple moving objects 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Head extraction and bearing estimation. The large rectangle around each human subject is the 

bounding rectangle of the corresponding blob, and the small rectangle inside indicates the centroid of the 

head. 
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(a) small viewpoint difference                (b) large viewpoint difference 

Fig. 10.  Viewing differences and distance/dimension estimation 

 

 

 

 

 

 

 

(a). N objects, N+1 robots       (b) 2 (groups of) objects, 2 robots 

Fig. 11. View planning for multiple robots and multiple objects 
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Fig. 12.  Panoramic stereo tracking result. The images in (a) and (c) are the panoramic image pair from 

two panoramic cameras. Each image is actually the corresponding background with the superimposed 

blob images and their annotations of the blobs. In (c) the real localization results are plotted in the top view 

of the room where each grid is 50x50 cm2. Each small circle (red in color version) represents a location of 

the person in walking. In (d) The theoretical distance error bounds from camera 1 are shown for the same 

track. The real estimates for best triangulation results validate the theoretical analysis. 
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(1)                                                          (2) 

      

(3)                                                                       (4) 

 

Fig. 13.  Panoramic stereo tracking two people. The four pictures show localizing and tracking results (1) 

before they met, (2) when they met, (3) after they departed and (4) when they arrived at their goals, out of 

214*2 localization results. Each picture of (1) to (4) has the same layout as in Fig. 12. Each small circle in 

darker tone (red in color version) or in lighter tone (green in color version) represents a location of the 

corresponding person marked by a bounding rectangle with the same tone (color) in images.  

camera1 camera 2 camera1 camera 2 

camera1 camera 2 camera1 camera 2 
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Fig. 14. Best viewpoints given the baseline distance 
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