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m Calibration: Find the intrinsic and extrinsic parameters
e Problem and assumptions
e Direct parameter estimation approach
e Projection matrix approach

m Direct Parameter Estimation Approach

Basic equations (from Lecture 5)

Homogeneous System

Estimating the Image center using vanishing points
SVD (Singular Value Decomposition)

Focal length, Aspect ratio, and extrinsic parameters
Discussion: Why not do all the parameters together?

m Projection Matrix Approach (...after-class reading)
e Estimating the projection matrix M
e Computing the camera parameters from M
e Discussion

m Comparison and Summary

a Anv difforancad
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m  Given one or more images of a calibration pattern,
m  Estimate
e The intrinsic parameters siuit
e The extrinsic parameters, or 4 3 aud 3
e BOTH LA st
3 $° _S St
; s P N L
*

m  [Issues: Accuracy of Calibration 2 N
e How to design and measure the calibration pattern a9l ) 3
= Distribution of the control points to assure stability of
solution — not coplanar
= Construction tolerance one or two order of magnitude R
smaller than the desired accuracy of calibration
= e.g.0.01 mm tolerance versus 0.1mm desired accuracy
e How to extract the image correspondences
= Corner detection?
= Line fitting?
e Algorithms for camera calibration given both 3D-2D
pairs

= Alternative approach: 3D from un-calibrated camera
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mE "
Xim Pose / Camera
Image X
frame (Xim’yim) )
o Frame X
Yim AR Grabber ___.= >
m Coordinate Systems Object /World
e Frame coordinates (X, Yim) pixels Z,
e Image coordinates (x,y) in mm p
e Camera coordinates (X,Y,Z) o
e World coordinates (X,,Y,,Z,) X Y
W

m Camera Parameters
e Intrinsic Parameters (of the camera and the frame grabber): link the
frame coordinates of an image point with its corresponding
camera coordinates

e Extrinsic parameters: define the location and orientation of the
camera coordinate system with respect to the world coordinate

system
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. World to Ca_rnera T r11XW+r12YW+r13ZW +TX R;lr PW +TX
o Camera:P=(XY.2)' o po 1|0 X, 4V +TsZu 4Ty |=| RhPy +T
e World: Pw = (Xw,Yw,Zw) y Y
e Transform: R, T
m Camera to Image
e Camera: P = (X,Y,2)7 (x,y)=(f l f i)
e Image: p=(x,y)T z z
e Not linear equations
m |[mage to Frame X = —(Xjm — Ox)Sx
¢ Neglecting distortion =—(Vir —0.)S
e Frame (xim, yim)T Y=~ im y) y
m World to Frame ¢ A1Xw+ gV +laZy + Ty
o (XW,YW,Zw)T -> (xim, yim)TXim ~Ox ==

X
Xy + oYy + 1332y + T
e Effective focal lengths S1Pw ISz W ISsTwWE 2
n fx:f/Sx, fyzf/Sy

I’31XW + r32YW + I'33ZW +T£ Rg PW +TZ

Yoo — 0y = — f r21XW 4F r22YW 4F r232W +Ty
im y y r31XW aF r32YW aF r332W +TZ
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= Extrinsic Paramgters . e o —f fa Xy + oYy + 132y, + Ty
e R, 3x3 rotation matrix = Aim o Ex T
= Three angles o,B,y
e T, 3-D translation vector

§ M Xy + Yy + 13y + T,
ey~ = oy Xy + oYy + 1052y, + T,
—Jim Ty T ly
I Xy + oYy + 132, + T,
= Intrinsic Parameters

o fx, fy :effective focal length in pixel
= o = fx/fy = sy/sx, and fx
(ox, ay): known Image center -> (x,y) known
k,, radial distortion coefficient: neglect it in the basic algorithm

m  Same Denominator in the two Equations
e Known : (Xw,Yw,Zw) and its (x,y)
Unknown: rpg, Tx, Ty, fx, fy

fy(r21xW + MYy + a2y +Ty)/ y'=f, (X + oYy + 32y + T ) /X

X fy (o Xy + 1Yy +T3Zy, +Ty) = ¥ £ (g Xy, + 1Yy, + 132y, +Ty)
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m Linear Equation of 8 unknowns v = (v1,...,v8)

e Aspect ratio: a = fx/fy

e Point pairs , {(Xi, Yi,, Zi) <-> (xi, yi) } drop the ‘ and subscript “w”

X (g Xy 15y + 32y, +Ty) = Y a1y Xy + oYy + 1132y, +Ty)

B

Xi X1 + XiYilo + X Zirpz + X Ty — ¥ Xj (ar1) - ViYi (ar2) — ViZi (amy3) — Yi(aTy) =0

Xj XV + XjYjVo + X ZjV3 + XjVa — ¥i XiV5 — ¥;YiVe — YiZijV7 — YjVg =0

(V1,V2,V3,V4,Vs5,V6,V7,Vg)
= (121,12, 123, Ty, oMy, a1, oMy 3, aT)
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m  Homogeneous System of N Linear Equations
e Given N corresponding pairs {(Xi, Yi,, Zi) <-> (xi, yi) }, i=1,2,...N
e 8unknowns v = (v1,...,v8)T, 7 independent parameters
X Xiv1 + XYiV2 + X ZjV3 + XV4 — ¥ XiV5 — ¥;YiVe — ¥iZijV7 — Yjvg =0
Av=0
C Xy a1 o xZy o -yiXe -y iz -y
XoXo  Xo¥a  XoZp  Xp —YaXp =Yoo —YoZp Yo

IXNXN XNYN XNZN XN —YNXN —YNYN —YNZN YN
m  The system has a nontrivial solution (up to a scale)
e |F N >=7and N points are not coplanar => Rank (A) =7

e Can be determined from the SVD of A
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m  Homogeneous System of N Linear Equations
e Given N corresponding pairs {(Xi, Yi,, Zi) <-> (xi, yi) }, i=1,2,...N
e 8unknowns v = (v1,...,v8)T, 7 independent parameters
Xi XV + XYiVo + X ZjV3 + XjVq — i XjV5 — Y YiVe — ¥iZjV7 — ¥iVg =0
Av=0
(X a1 o xZn o ox —yiXs -yt vz V|
XoXo XYz XpZy X =YXz —YoY2  —V2Zz =Y

IXNXN XNYN XNZN XN —YNXN —YNYN —YNZN YN
m  The system has a nontrivial solution (up to a scale)

e |IFN>=7and N points are not coplanar => Rank (A) =7

e Can be determined from the SVD of A
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an Appendix A.6
m Singular Value Decomposition:

e Any mxn matrix can be written as the product of three

matrices
A=UDV' v,
Ul\ /

a1 ap 3 Upg| U2 Um op O 0 Wﬂv' 8 vl
ay axp an Upg Upp Upm | O o2

_ Vig V22 Vn2

0 onlly v v,
1n 2n nn

ami am2 Amn Upnl Um2 Umm JL O 0

m Singular values ci are fully determined by A
m D is diagonal: dij =0 if i#j; dii = 6i (=1,2,...,n)
B G,>G,>..20,>0
m Both U and V are not unique
m Columns of each are mutual orthogonal vectors
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T
m 1. Singularity and Condition Number A=UDV

e nxn A is nonsingular IFF all singular values are nonzero

e Condition number : degree of singularity of A C =0y /0y,

= Ais ill-conditioned if 1/C is comparable to the arithmetic
precision of your machine; almost singular

m 2. Rank of a square matrix A

e Rank (A) = number of nonzero singular values
m 3. Inverse of a square Matrix

e If Ais nonsingular A 1-vyp iy’

e In general, the pseudo-inverse of A A" = VD'
m 4. Eigenvalues and Eigenvectors (questions)

e Eigenvalues of both ATA and AAT are 62 (c;> 0)

e The columns of U are the eigenvectors of AAT (mxm)

e The columns of V are the eigenvectors of ATA (nxn)

AATUi = o‘?Ui
I

ATAVi = O'_2Vi
i
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[ ]
m Least Square Ax=b

e Solve a system of m equations for n unknowns x(m >= n)
e Ais a mxn matrix of the coefficients
e b (#0) is the m-D vector of the data

e Solution:
T Ayt AT
ATAx=ATb m=) x=(A"A)"A'b
nxn matrix Pseudo-inverse

e How to solve: compute the pseudo-inverse of ATA by SVD
= (ATA)* is more likely to coincide with (ATA)* given m > n
= Always a good idea to look at the condition number of ATA
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m Homogeneous System Ax=0
e m equations for n unknowns x(m >=n-1)
Rank (A) = n-1 (by looking at the SVD of A)
A non-trivial solution (up to a arbitrary scale) by SVD:

Simply proportional to the eigenvector corresponding to the
only zero eigenvalue of ATA (nxn matrix)

ATAVi =O‘?Vi
= Note: '
e All the other eigenvalues are positive because
Rank (A)=n-1

e For a proof, see Textbook p. 324-325

e In practice, the eigenvector (i.e. v,) corresponding to
the minimum eigenvalue of ATA, i.e. 6,2
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m Problem Statements

o Numerical estimate of a matrix A whose entries are not
independent

e Errors introduced by noise alter the estimate to A
m Enforcing Constraints by SVD
e Take orthogonal matrix A as an example

e Find the closest matrix to A, which satisfies the constraints
exactly

- SVDof A A=UDV'
= Observation: D = | (all the singular values are 1) if Ais
orthogonal

= Solution: changing the singular values to those expected

A=UIVT
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me Av=0

m Homogeneous System of N Linear Equations
e Given N corresponding pairs {(Xi, Yi,, Zi) <-> (xi, yi) },
i=1,2,...N
e 8unknownsv = (v1,...,v8)", 7 independent parameters
m  The system has a nontrivial solution (up to a scale)
e IF N >=7and N points are not coplanar => Rank (A) =7
e Can be determined from the SVD of A T
e Rows of VT: eigenvectors {e;} of ATA A=UDV
e Solution: the 8" row e4 corresponding to the only zero
singular value A13=0 —
V =C€g

m Practical Consideration

e The errors in localizing image and world points may make
the rank of A to be maximum (8)

e In this case select the eigenvector corresponding to the
smallest eigenvalue.
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m Equations for scale factor y and aspect ratio o
V =y (1,10, T3, Ty, 0y, Ay, a5, Ty )

2 V, V3V, Vg Vg V5 Vg

m Knowledge: R is an orthogonal matrix
T
1 h2 hs| |Rg

1ifi=j
T _ T
Ri Rj={0 if i R=(rij)3x3= 1 T M3 |= R%
1 fp k3] |R3

m  Second row (i=j=2):
2 2 2 2, T2, o2
rc< +r°c +r° =1 =4V, +V, +V ) | |
o, T, =) |7FEYY 2 W\ 4
m First row (i=j=1)

}a
r? +r? +r23 =1mm) |y |=VE+V +V?
i

11 12
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m Equations for first 2 rows of R and T given a and |y|

V=5|y|(r1, 12,3, Ty, oy, oM p, 0 3,aTy)
m First 2 rows of R and T can be found up to a common sign s (+ or -)
SRI ,SR-2|- STy, STy

m  The third row of the rotation matrix by vector product
RT _ RT T _pT T
3= 1XR2—SR1 XSRZ

T
np fhe n3| |Rg
m Remaining Questions : R=(rij)3><3= M1 Ip Ih3|= RE

e How to find the sign s?
e |Is Rorthogonal?
e How to find Tz and fx, fy?

2
1 fp k3] |R3
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(Xim’yim)

Yimd T Tmeeeeo---mTT

O

~

m Facts:
e fXx>0
e Zc>0
e X known

e Xw,Yw,Zw known

= Solution x=—fxﬁ=—f 1 Xw + MoYw + 3w + Ty

— Check the sign of Xc Zc 13Xy + Yy + 33Zy + T,

= Should be opposite Yc 1 Xw + oY + 1232y + Ty
to x y=-f

y Z_C oy r31XW + r32YW + r33ZW +TZ
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[ 1]
= Question: i hp h3] |R{
e First 2 rows of R are calculated R = (rij) ={ry fy ©s|=|R}
without using the mutual B b Tan T RI
orthogonal constraint st 82 3
e RY =R] xR} =sR] x5k}
= Solution:

e Use SVD of estimate R

R=UDV' =m=) R=UIV'

Replace the diagonal matrix D with
the 3x3 identity matrix
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[ |
= Solution
¢ Solve the system of N linear __f A1 Xw + A2y + 13Zw + Ty
equations with two unknown X=

X r31XW aF r32YW aF I’33ZW +Tz

3

XT; + (11 Xy + oYy + 132y +Ty) fy = —X(r31 Xy + 132Yyy + 133Zy)
N\ ) — J
Y

&1 & 1w bi

)
&J_b

s TX, fX

e Least Square method

‘ A
[T} ] =(ATA)ATD ’

"

e SVD method to find inverse

10
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m Algorithm (p130-131)
1. Measure N 3D coordinates (Xi, Yi,Zi)
{ 2. Locate their corresponding image
points (xi,yi) - Edge, Corner, Hough
3. Build matrix A of a homogeneous
{ system Av=0
4. Compute SVD of A, solution v
5. Determine aspect ratio o and scale |y|
6. Recover the first two rows of R and the
first two components of T up to a sign
7.
8.
{ 0.

Determine sign s of y by checking the
projection equation

Compute the 3 row of R by vector
product, and enforce orthogonality
constraint by SVD

Solve Tz and fx using Least Square
and SVD, thenfy =fx/a

. . 3D Comiuter Vision

m  Questions
e Can we select an arbitrary image center for solving other parameters?
e How to find the image center (ox,0y)?
e How about to include the radial distortion?

e Why not solve all the parameters once ?

= How many unknown with ox, oy? --- 20 ??? — projection matrix method

rllxw aF r12YW aF r132W +TX
X r31XW aF I’32YW aF I’33ZW +TZ

X = Xjm —0x =—f

r21XW + r22YW F r23ZW +Ty

=Vim —0, = —f
Y= Yim y y r31XW R r32YW A I"33ZW +TZ

11



- - 3D Comiuter Vision

L]
= Vanishing points:

e Due to perspective, all parallel lines in 3D space appear to meet in
a point on the image - the vanishing point, which is the common
intersection of all the image lines

. . 3D Comiuter Vision

[ ]
m Vanishing points:

e Due to perspective, all parallel lines in 3D space appear to meet in
a point on the image - the vanishing point, which is the common
intersection of all the image lines

VP1

12
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m  Vanishing points:

e Due to perspective, all parallel lines in 3D space appear to meet in a point
on the image - the vanishing point, which is the common intersection of all
the image lines

m Important property:
e Vector OV (from the center of projection to the vanishing point)
is parallel to the parallel lines
VP1

A
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[ ]
m Vanishing points:

e Due to perspective, all parallel lines in 3D space appear to meet in
a point on the image - the vanishing point, which is the common
intersection of all the image lines

VP1

VP2 =

13
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m Orthocenter Theorem:

e Input: three mutually
orthogonal sets of
parallel lines in an image

e T: atriangle on the image
plane defined by the
three vanishing points

e Image center =
orthocenter of triangle T

e Orthocenter of a triangle
is the common
intersection of the three
altitudes

VP1

VP2

I B 3D computer Vision N VP3

[ ||
m Orthocenter Theorem:

e Input; three mutually
orthogonal sets of
parallel lines in an image

e T: atriangle on the image
plane defined by the
three vanishing points

e Image center =
orthocenter of triangle T

e Orthocenter of a triangle
is the common
intersection of the three
altitudes

VP2

14
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m Orthocenter Theorem:

e Input: three mutually
orthogonal sets of
parallel lines in an image

e T: atriangle on the image
plane defined by the
three vanishing points

e Image center =
orthocenter of triangle T

e Orthocenter of a triangle
is the common
intersection of the three
altitudes

m Orthocenter Theorem:

e WHY?

. . 3D Comiuter Vision

[ ]
m  Assumptions:
e Known aspect ratio
e Without lens distortions

m  Questions:
e Can we solve both
aspect ratio and the
image center?

e How about with lens
distortions?

15
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BMR  Agorithm (p130-131)
0. Estimate image center (and aspect ratio)
1. Measure N 3D coordinates (Xi, Yi,Zi)

Locate their corresponding image (xi,yi) -
Edge, Corner, Hough

Build matrix A of a homogeneous system
Av=0

Compute SVD of A, solution v

Determine aspect ratio o and scale |y|
Recover the first two rows of R and the first
two components of T up to a sign
Determine sign s of y by checking the
projection equation

Compute the 3 row of R by vector product,
and enforce orthogonality constraint by
SVvD

Solve Tz and fx using Least Square and
SVD , thenfy=fx/a

2
3

4.

1
{6
L
{

9
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m  Original assumptions:
e Without lens distortions
e Known aspect ratio when estimating image center
e Known image center when estimating others including aspect ratio

m  New Assumptions
e Without lens distortion

e Aspect ratio is approximately 1, or a = fx/fy = 4:3 ; image center about
(M/2, N/2) given a MxN image

= Solution (?)
1. Using a =1 to find image center (0x, oy)
2. Using the estimated center to find others including a

3. Refine image center using new a ; if change still significant, go to step
2; otherwise stop

‘ Projection Matrix Approach
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oL perspective projection
m Projective Space
e Add fourth coordinate Xim)_(u/w) ¢m UW wa
. F’w: (Xw,Yw,Zw, 1)7 (yim]:(le) V |=MijntMext| Yw
e Define (u,v,w)T such that w) w
= U/W =Xim, VIW =Yim 1
m 3x4 Matrix Eex nofe hs Tx] [RI Ty
e Only extrinsic parameters Mext{rn fp Iy Ty]= R} Ty
e World to camera a1 fp T3 To| |RY T,

m 3x3 Matrix Eint
e Only intrinsic parameters Mint =
e Camera to frame

-fy 0 o
0 -fy oy

0 0 1

m Simple Matrix Product! Projective Matrix M= MinMex
o (Xw,Yw,Zw)T -> (xim, yim)T
e Linear Transform from projective space to projective plane
e M defined up to a scale factor — 11 independent entries

. . 3D Comiuter Vision

[ ]
m World — Frame Transform Uj X
e Drop “im” and “w” Vi [=M ;i_
e N pairs (xi,yi) <-> (Xi,Yi,Zi) Wi . ' )
e Linear equations of m

Ui _ Mg Xj +MypYi + MyaZi + My

Am=0 &= Xi:Wi Mgy X +MgoYj + Mg3Zj + Mgy

U Ma1 Xj +MapYi + MasZi +Mpg
m 3x4 Projection Matrix M () (i) i) ity i

e Both intrinsic (4) and extrinsic (6) — 10 parameters

—fxra+0xr3  —fylp+0xr3p = fylz+0xr33  — fy Ty +04T,
M=|- fyr21+0yr31 = fyl’22 +0yr32 = fyr23 ++oyr33 = fyTy +OyTZ
31 32 33 T,

17
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| T
m World — Frame Transform x =i My X + MypYi +MygZi +Myg
e Drop “im” and “w” Wi Mgy X +MgpYj + M3zl + Mgy
e N pairs (xi,yi) <-> (Xi,Yi,Zi) yi _ Ui _ Mgy X +MppYi +MpsZi + My
Wi Mgq X +M3pYj +MgaZi +May

m Linear equations of m
e 2N equations, 11 independent variables Am=0
e N >=6, SVD => m up to a unknown scale

X1 Y1 Zz 1 0 0 0 0 —-xX; -xY1 -%Z; -X
A=0 0 0 0 X3 Y, Z3 1 -yiX3 -y4 -y1 -y

T
m=[m11 Mo Mz My Moy Mpp Moz Myy Mzp Mgy Ma3 m34]

. . 3D Comiuter Vision

o . 01 Q41
m  3x4 Projection Matrix M ~
e Both intrinsic and extrinsic M = d2 Qa2
a3 qu
—fyfp+0xr3y  — fyfo +0y3p  — fyfg+0x133 — fy Ty +04T,
M=|- fyr21+oyr31 = fyrzz +0yr32 = fyr23 +0yr33 = fyTy +OyTZ
f31 32 f33 T;

m  From M to parameters (p134-135) =
e Find scale |y| by using unit vector R;" M = 7,'\/'
e Determine T, and sign of y from my, (i.e. q43)
e Obtain R,T
e Find (Ox, Oy) by dot products of Rows ql. g3, g2.93, using the
orthogonal constraints of R
Determine fx and fy from g1 and g2 (Eq. 6.19) Wrong???)
e Allthe rests: R;T, R,T, Tx, Ty
e Enforce orthognoality on R?

18
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m Direct parameter method and Projection Matrix method

m  Properties in Common:
e Linear system first, Parameter decomposition second
e Results should be exactly the same

m Differences
e Number of variables in homogeneous systems

= Matrix method: All parameters at once, 2N Equations of 12
variables

= Direct method in three steps: N Equations of 8 variables, N
equations of 2 Variables, Image Center — maybe more stable

e Assumptions
= Matrix method: simpler, and more general; sometime projection
matrix is sufficient so no need for parameter decompostion
= Direct method: Assume known image center in the first two steps,
and known aspect ratio in estimating image center
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m  Pick up a well-known technique or a few

Design and construct calibration patterns (with known 3D)
Make sure what parameters you want to find for your camera
Run algorithms on ideal simulated data

e You can either use the data of the real calibration pattern or using computer
generated data

e Define a virtual camera with known intrinsic and extrinsic parameters
e Generate 2D points from the 3D data using the virtual camera
e Run algorithms on the 2D-3D data set
Add noises in the simulated data to test the robustness
Run algorithms on the real data (images of calibration target)
If successful, you are all set
Otherwise:
e Check how you select the distribution of control points
e Check the accuracy in 3D and 2D localization
e Check the robustness of your algorithms again
e Develop your own algorithms > NEW METHODS?

19
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m 3D reconstruction using two cameras

Stereo Vision

& project discussions

mHomework #3 online, due March 22 before class

20



