

Peng Xie, Zhong Zhou, **Zheng Peng**, Hai Yan, Tiansi Hu, Jun-Hong Cui, Zhijie Shi, Yunsi Fei, Shengli Zhou Underwater Sensor Network Lab University of Connecticut

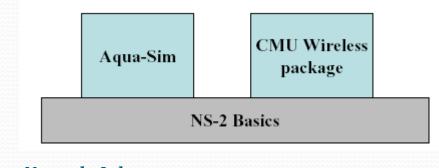
Outline

UCORN

- Motivations
- System Overview
- Aqua-Sim Components
- Experimental Results
- Conclusions

Motivations

- Increasing interests in underwater networks
- High costs in doing large scale field tests
- Hard to evaluate the performance
- Lack of simulation tools
 - Channel model
 - Long propagation delay
 - Three dimensional topology

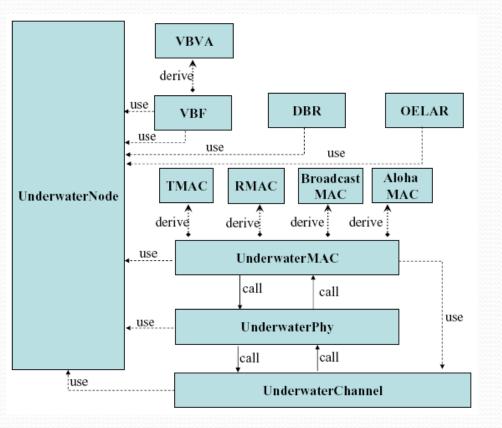

- NS-2 simulator
 - A discrete event simulator
 - Widely used
 - Open source
 - Build in C++
- Limitations
 - 2D topology
 - Designed for wired networks
 - Does not support underwater networks

Aqua-Sim Overview

• CMU wireless extension

u o a a

- Support wireless mobile networks
- Not applicable to underwater networks
- Still for 2D network
- Aqua-Sim underwater extension
 - In parallel with CMU wireless extension
 - Designed for underwater networks
 - Support 3D topology
- Implementation
 - Object-oriented
 - Dual interfaces
 - C++ : Developers
 - Otcl : Users



5

Class Structure

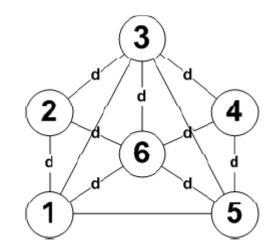
- Basic classes
 - Entities
 - underwaterNode
 - RMAC, etc.
 - Interfaces
 - underwaterMAC
 - Functions
 - hash-table, etc.

• Channel

UCOHN

- Network entity Class:
 - UnderwaterChannel
- Attenuation model
 - Distance
 - Frequency
- Transmission range
 - Power
 - Range
- Propagation
 - Class UnderwaterPropagation
 - Introducing delays
- Collision
 - Packets copied to IncomingChannel
 - Maintained by each node
 - Collision decided by UnderwaterPhy
 - Receiving time
 - Receiving power level
- Can be extended to use any complex model

- Abstract interface class:
 - UnderwaterMac
- Available protocols:
 - Broadcast MAC
 - Aloha
 - T_u -MAC
 - R-MAC

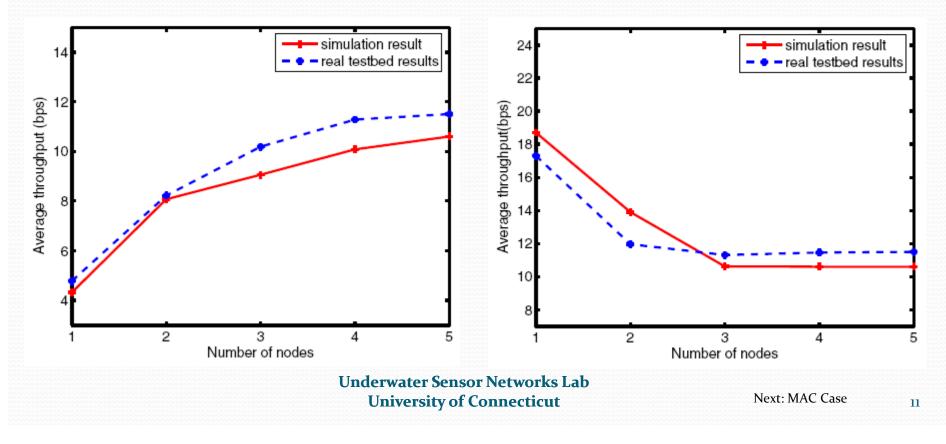


Network Layer

- Implementation
 - Following NS-2 standard
- Customization
 - Providing various interfaces
- Configuration
 - Using Tcl script
- Available protocols:
 - Vector-Based Forwarding (VBF)
 - Depth-Based Routing (DBR)
 - QELAR

Case Study: Fidelity Testing

- Experiment settings
 - Sending speed: 80 bps
 - Topology:
 - 6 nodes in a one hop network
 - Frame length: 32 bytes
 - Traffic pattern:
 - Exponential distribution

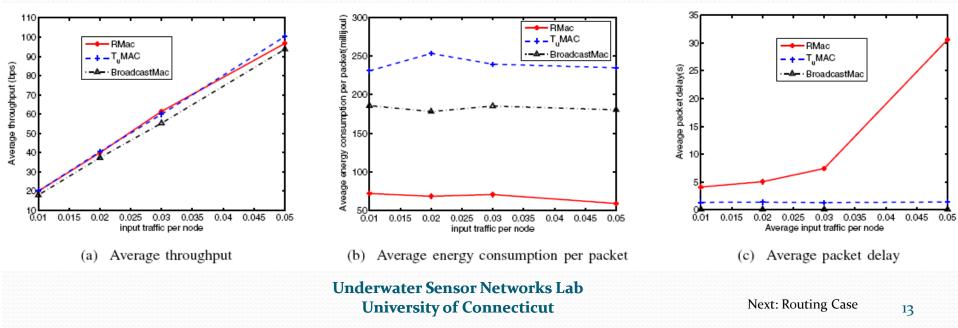


Case Study: Fidelity Testing (cont.)

Throughput with increasing overall traffic Network load: 0.02 pkt/node/sec

u o a a

Throughput with fixed overall traffic Network Load: 0.1 pkt/sec



Experiment settings

- MAC protocols:
 - R-MAC
 - T_u-MAC
 - Broadcast MAC
- Packet length 64 bytes
- Data rate 10 kbps
- Traffic: 0.01~0.05 pkt/sec

Case Study: MAC Protocols (cont.)

- Metrics
 - Average throughput
 - Average energy consumption per packet
 - Average packet delay

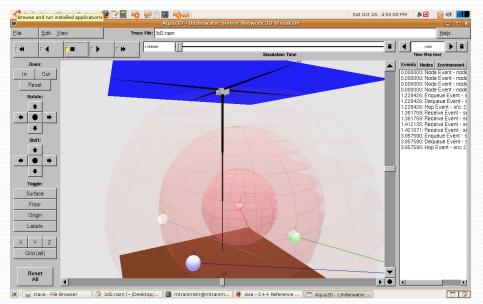
Conclusions

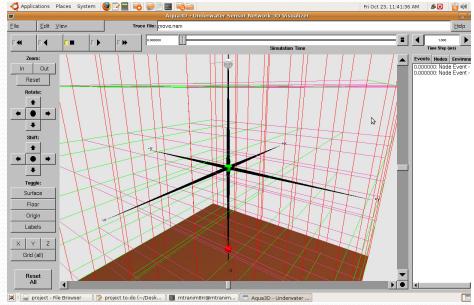
• Aqua-Sim

U O A

- An extension of NS-2 simulator
- Specifically designed for underwater networks
- Support large scale networks
- Available at

http://ubinet.engr.uconn.edu/mediawiki/index.php/Aqua-Sim


http://uwsn.engr.uconn.edu/aquasim.tar.gz


- Future work
 - 3D Animator
 - Advanced channel models
 - More protocols

• ...

Aqua-3D Pictures

Aqua-3D Video

Thanks!

UCOHN

