Aqua-Net: An Underwater Sensor Network Architecture Design, Implementation and Initial Testing

Zheng Peng, Zhong Zhou, Jun-Hong Cui, Zhijie Jerry Shi Underwater Sensor Network (UWSN) Lab Computer Sci. and Eng. Department University of Connecticut

Outline

UCOHN

- Motivations
- Aqua-Net
 - Features
 - Architecture
 - Components
- Case Study
 - UW-Aloha
- Conclusions

Motivations

- System architecture is application specific
- New implementation is time consuming
- Difficult to re-use existing code
- Hard to compare and evaluate performance

What is Aqua-Net

- A framework for Underwater sensor networks (UWSN)
- A set of standard interfaces for developers
- Make it easier to implement
 - Protocols
 - Applications
- Design philosophy
 - Lowering the "Narrow Waist"
 - Cross-layer design
 - User-friendly

Aqua-Net Features

- Easy to
 - Modify an existing protocol
 - Add a new protocol
- Developer friendly
 - Socket style (TCP/IP)
 - Implemented in user space
- High
 - Reusability
 - Portability

- Hardware platform
 - Acoustic modem
 - Micro-modem, Benthos modem, OFDM modem, etc.
 - Micro-controller
 - Gumstix
- Software platform
 - Operating system
 - Embedded linux
 - Network protocol stack
 - Interfaces and protocols

UCORN

University of Connecticut

Next: Hardware

Hardware Platform

• Gumstix

- Processor:
- Speed:
- Memory:
- Features:

- Operating system:
- Size:

XScale[™] up to 600MHz up to 128MB RAM up to 32MB Flash Serial port USB support Audio support LCD support CCD camera signals Embedded Linux, etc. 80mm x 20mm

Underwater Sensor Networks Lab University of Connecticut

Next: OS

Operating System

- Embedded Linux
 - Designed and optimized for embedded system
 - Well supported by open source community
 - Linux kernel
 - Applications
 - Development tools
 - Widely used in commercial products
 - Mobile phones
 - Game consoles
 - Video cameras

Case Study: UW-Aloha

Underwater Sensor Networks Lab University of Connecticut

Next: UW-Aloha

10

UW-Aloha

UCOHN

- Traditional Aloha
 - Doesn't work in UWSN
- Underwater Aloha (UW-Aloha)
 - Effective back-off scheme
 - Automatic repeat-request (ARQ)
- UW-Aloha work flow

UW-Aloha Back-off Schemes

- Binary exponential back-off
 T_{bk}=(2ⁱ-1) x t_o
 i: number of retransmissions
 t_o: minimal frame time

 Poisson back-off
 - $T_{bk} = -\lambda^{-1} ln U$ λ : traffic load U: random variable, uniform on (0,1)

Lab Test Setup

- Topology:
 - One hop network
 - Multiple sources
 - Single sink
- Testing environment
 - Aqua-Lab
 - a. Micro-Modem
 - b. Sound mixer
 - c. Water tank
 - d. Hydrophone
 - e. Underwater speaker

Lab Test Setup (cont.)

- Parameters:
 - Sending rate: 80 bps
 - Frame size: 32 bytes
- Testing scenarios
 - Increasing total traffic by increasing sending nodes

KONN SAN

Performance

15

Theoretical vs Lab Testing Results

u o a a

16

- Aqua-Net
 - Developer/User friendly
 - Robust & Reliable
 - Extendable & Configurable
 - Cross-layer design possible
 - Tested in many field trials
- Future work
 - Include more protocols
 - Support new techniques

Thanks!

UCOHN

