

A Two-phase Broadcast Scheme for Underwater Acoustic Networks

Haining Mo, Zheng Peng, Zhong Zhou and Jun-Hong Cui

Presented by Zheng Peng

Underwater Sensor Networks Lab University of Connecticut

Applications

Resource exploration

Marine animal study

Disaster prevention

Tactical surveillance

Challenges

- Acoustic channels
 - Low available bandwidth
 - Long propagation delay
 - High error probability
- High T/S dynamics
 - Link quality
 - Network topology
- Hardware constraints
 - Half-duplex acoustic modems
 - Battery powered nodes

Reliable and Efficient Broadcast

A critical service for UANs

- Network wide file distribution
- OS update
- Requirements:
 - Reliability
 - 100% packet delivery ratio
 - Efficiency
 - Time efficiency
 - Energy efficiency

Roadmap

- Existing Approaches
- TBS Overview
- Fast Spreading Phase
- Data Recovery Phase
- Simulation Results
- Summary and Future Work

Existing Approaches

Broadcast in Ad-hoc networks

- Fixed probability based approaches:
 - -- Lack adaptability
- Neighbor or topology information based:
 - -- Difficulty to obtain and maintain neighbor information
 - -- Large overhead with message exchanges
- Broadcast in UANs
 - Hop by hop advancement
 - -- Bottleneck link decides per-hop broadcast completion time
 - Overlooks overhearing opportunities
 - -- Up to 3 rounds of overhearing

TBS Overview

- Fast Spreading phase: efficiency
 - Opportunistic overhearing + network coding
- Data Recovery phase: reliability
 - A hybrid-ARQ approach
- System model
 - Half duplex modem
 - Transmission delay $D_{tx} = L_{pre} + \frac{8L}{R}$
 - Decoding delay $D_{de} = \frac{0.17NL}{80}$
 - Propagation delay $D_{pr} = \frac{D}{V}$

Fast Spreading Phase

- Objectives
 - Alleviate broadcast storm: whether to rebroadcast
 - Reduce collision probability: when and how many to rebroadcast
- Whether to rebroadcast

•
$$P_R = \frac{K'}{K} e^{-\frac{p_i - p_r}{p_i}}$$
 (K': number of linearly independent packets accumulated)

- Factor 1: number of accumulated packets
- Factor 2: power constraint
- No need for topology or neighbor information

8

Fast Spreading Phase

- How many to rebroadcast
 - Uniformly K encoded packets
 - For a forwarder with K' linearly independent packets
 -- regenerate (K-K') encoded packets
- When to rebroadcast
 - $T_{BF} = D_{de}[MP_e]$
 - -- *D*_{de}: decoding delay for K packets
 - -- M: maximum back-off number
 - -- P_e : [0,1] uniform distribution
 - A1, A2 and A3 waits 0,1 and 2 D_{de}
 - 3 blocks arrive at B3 with *D*_{de} as interval
 - Enough for decoding and collision free
 - Cannot guarantee zero collision but can reduce it

Data Recovery Phase

- Data Recovery happens when a node fails to recover all the *K* original data packets in the first phase.
- A hybrid ARQ procedure
 - A node sends request
 - Neighbors coordinate to respond
- Interference with Fast Spreading
 Delaws conding request until nodes
 - Delays sending request until nodes within 3 hops finish fast spreading
 - $T_{BD} = 4(D_{tx} + D_{pr} + MD_{de})$

Simulation Setting

- Uniform and random topology with 73 nodes
- Packet length: 80 bytes
- Decoding delay (modem block): 170 milliseconds
- Distance: 1500 meters

Broadcast Completion Time

- Network wide broadcast completion time
- Compared with
 - FCH: FEC coding based hop-by-hop advancement
 - Probability: pure probability based method
- Topology: random
- PER: low and high

More Simulation Results

Number of nodes into the Data Recovery phase

Energy consumption

Summary and Future Work

- TBS: Two-phase Broadcast Scheme
- Fast Spreading phase
 - Combines opportunistic overhearing and network coding
 - Alleviates broadcast storm and reduces collision
- Data Recovery phase
 - Guarantees reliability
 - Minimizes interference
- Future work
 - More effective scheduling algorithm (maximum back-off number)
 - Lab tests and field tests

Thanks & Questions?

Underwater Sensor Networks Lab University of Connecticut