

"Busy Terminal Problem" and Implications for MAC protocols in Underwater Acoustic Networks

Yibo Zhu, Jun-Hong Cui, **Zheng Peng**, and Zhong Zhou

UWSN Lab @ University of Connecticut

Outline

- > Background
- "Busy Terminal Problem" (BTP)
- Impact of BTP
- > Modeling BTP
- Simulation Results

Conclusion

2

Underwater Acoustic Networks (UANs)

> Wide range of applications!

Grand challenges!

- Acoustic communication
 - Slow propagation speed
 - > sound speed in water: ~ 1500m/s vs. radio speed: $2x10^8$
 - Low available bandwidth
 - > acoustic: several kbps vs. radio: tens or hundreds of Mbps
- Dynamic environment
 - Water current ...

3

Media Access Control (MAC)

> What is Media Access Control?

Channel control mechanism that allows multiple nodes to communicate through a shared medium

Example: 802.11 (Wi-Fi)

University of Connecticut

Challenges for Underwater MAC Design

Slow propagation speed sound speed in water: ~ 1500m/s vs. radio speed: 2x10⁸

Motivation: behavior of acoustic modems

> A practical issue: non-interruptibility of acoustic modems

> Problem: How the non-interruptibility affects MAC performance?

- Busy terminal problem (BTP) : In half-duplex non-interruptible underwater acoustic networks, a node cannot interrupt reception/transmission to send another packet.
 - Significantly severe in underwater acoustic networks because of long transmission times

How BTP Affects Underwater MAC

- Random access based MAC
 - Nodes cannot transmit at will
- Reservation based MAC
 - > BTP disturbs the schedule and cause collisions
 - > It is possible to avoid BTP for scheduled packets
 - Transmission does not conflict with any reception/overhearing
 - > No intuitive way to avoid BTP for control packets

It is necessary to analytically study how BTP affects random access MAC (ALOHA-like approach).

ALOHA with BTP

Simulation settings:

- 500 nodes
- 5km x 5km x 3km
- Transmission range: 600m
- Transmission rate: 667bps
- Preamble length: 1.5s
- Poisson traffic rate: 0.05

Classic model cannot capture the collision behavior in ALOHA underwater

It is critical to model ALOHA with BTP!

Modeling ALOHA with BTP

Possible conflicts

 $N_H: N_S$'s a hidden terminal $N_N: N_S$'s neighbor

(1) Rx/Tx and Tx/Tx conflicts at N_S

Modeling ALOHA with BTP

Possible conflicts

2 Rx/Rx conflict at N_R by a hidden terminal

Modeling ALOHA with BTP

Possible conflicts

Common neighbor caused collision!

③ Rx/Rx conflict at N_R by a common neighbor

 N_R

Modeling ALOHA with BTP

Possible conflicts

Cannot receive when transmitting

Modeling Framework

Probability of a successful transmission

Model Validation

- Simulation platform: Aqua-Sim
- Default simulation settings:
 - > 500 nodes randomly deployed in 5000m x 5000m x 3000m
 - Transmission range 600m
 - > *BER*: 1e-5
 - Packet size: 500B
 - Traffic generation rate: 0.05 pkt/s
 - > Teledyne Benthos modem:
 - Transmission rate: 667 bps;
 - Preamble:1.5 s
 - UCONN OFDM modem:
 - Transmission rate: 3045 bps;
 - Preamble: 0.486s

Model validation with different packet generation rates

OFDM modem

Benthos modem

The proposed model captures the behavior of ALOHA with BTP!

University of Connecticut

Throughput Optimization – A Case Study

> Maximize ALOHA's nodal throughput by finding the optimal packet generation rate λ

The optimal λ obtained through the proposed model is much closer to the simulation results!

Conclusion

- Identify the busy terminal problem and theoretically analyze its impact on MAC performance
 - Based on real acoustic modem characteristics
 - Can affect the performance of underwater MAC protocols
 - New model of ALOHA with the busy terminal problem
 - Guide the future MAC design and analysis
 - A case study on throughput optimization
- Future Work
 - Model reservation based MAC with BTP
 - Handle BTP in future MAC design

Thanks & Questions?

