

Comparisons of Underwater Acoustic Network Protocol Stacks

UCONN

Yibo Zhu, Lina Pu, Zigeng Wang, Xiaoyan Lu, Robert Martin, Yu Luo, <mark>Zheng Peng</mark>, and Jun-Hong Cui

> Underwater Sensor Network Lab University of Connecticut

Objectives

- To answer the following questions:
 - Types of protocol stacks?
 - Representative protocol stacks?
 - Differences between them?
 - How to evaluate their performance?

Outline

- Introduction
- Underwater protocol stacks
- Performance criteria
- Case study
- Conclusions

Underwater protocol stack

- A computer networking software platform
 - Accommodate a number of networking protocols
 - Provide interfaces for different networking layers
 - Similar to Internet protocol stack
- Consider restrictions and challenges to underwater system design
 - Limited computing resources
 - Memory-constrained
 - Less powerful CPU
 - Battery-powered

Representative platforms for underwater networks

- Simulator based platform
 - DESERT, SUNSET
- OS-based platform
 - SeaLinx
- AF-based platform
 - UnetStack

Representative platforms for underwater networks

- Simulator based platform
 - DESERT, SUNSET
- OS-based platform
 - SeaLinx
- AF-based platform
 - UnetStack

Problem: how to evaluate the performance of underwater network platform?

Performance Criteria

- Timing accuracy
 - Timing accuracy affects system performance
- Memory usage
 - Underwater nodes have limited memory
- Power consumption
 - Underwater nodes are powered by battery
- Support of simulation and emulation
 - Provide seamless transitions from simulations to field tests
- Learning curve
 - Reduce the development cycle

8

Comparing SUNSET and SeaLinx

• SUNSET

- Based on the architecture of ns-2, with enhanced realtime scheduler and new I/O related modules
- Support both simulation and emulation
- A similar timing scheme as in ns-2
- SeaLinx
 - An OS-based protocol stack, built from scratch.
 - Support both simulation (SeaLinx-Mate) and emulation

Behavior of SUNSET real-time scheduler (1)

 Sunset's real-time scheduler may have adopted a special method to decide when to invoke events

Behavior of SUNSET real-time scheduler (2)

MTS/IEEE OCEANS 2014, St. John's, Canada

Behavior of SUNSET real-time scheduler (2)

MTS/IEEE OCEANS 2014, St. John's, Canada

Handling overlapping events

SeaLinx

MTS/IEEE OCEANS 2014, St. John's, Canada

Memory usage

- OS-based protocol stack has small memory footprint
- Simulator-based protocol stack can have high memory usage

MTS/IEEE OCEANS 2014, St. John's, Canada

Next: Summary of differences 13

Platform comparison: OS-Based V.S. simulator-based

	OS-Based (SeaLinx)	Simulator-Based (SUNSET)
Time drift	Low, depends on OS system timer	High, due to discrete event queue & single threaded
Memory usage	Very low base memory usage, several KB	High base memory usage, about 10MB
Stack feature	Multiple process and multi- threaded	single-threaded
Support of Simulation and emulation	Yes. By using a dedicated simulator.	Yes. It has both simulation mode and emulation mode.
Result consistency	Yes, consistent	No, due to the time drift in simulation mode

Platform comparison: OS-Based V.S. simulator-based (cont.)

	OS-Based (SeaLinx)	Simulator-Based (SUNSET)
Code reuse	Yes	Yes, but may cause problems if NS ₂ centralized modules are used
Simulation time	Actual time	Different from actual time
Modem support	Currently limited, but can support other modems	Currently support a number of popular acoustic modems
Remote control	Yes	Yes
Learning curve	General Linux programming	Need to master NS-2 framework first

Conclusions

- Discussed different types of networking platforms
- Proposed several performance criteria
- Evaluated two representative protocol stacks as a case study

Thank you!

MTS/IEEE OCEANS 2014, St. John's, Canada