Ocean-TUNE: A Community Ocean Testbed for Underwater Wireless NEtworks

Jun-Hong Cui, Shengli Zhou, Zhijie Shi, James O'Donnell, Zheng Peng University of Connecticut

Sumit Roy and Payman Arabshahi

University of Washington

Mario Gerla and Burkard baschek

University of California Los Angeles

Xi Zhang Taxas A&M University

Motivations

- Simulations have limitations
 - No commonly accepted acoustic channel model
 - Unique features of the practical systems
- No common platform to validate research work in real world scenarios
- No real experiment data repository and advanced configurable acoustic modems

Objectives

- Explore practical issues such as communication/network dynamics and cross-layer optimization
- Encourage a rapid growth of the UWN community
- Facilitate the research of the community
- Move the whole field to the next milestone

Broader Impacts

- Societal Impacts
 - Enable a wide range of research within the community:
 - Communication
 - Networking
 - Engineering
 - Marine science
 - Promoting unprecedented progress towards practical solutions in diverse aquatic applications
- Educational Impacts
 - Afford a unique hands-on learning environment for undergraduate and graduate students
 - Serve as a powerful means for engaging K-12 students and teachers

Broader Impacts (Cont.)

- Industrial Impacts
 - Demonstrate the capacity of underwater wireless networks
 - Encourage commercial applications:
 - Surveillance
 - Health
 - Climatology
 - Meteorology
 - Oceanography
 - etc.

Ocean-TUNE Overview (1)

- Ocean Testbed for Underwater NEtworks
- An open testbed "suite" accessible to the public
- Collective efforts from four universities
 - University of Connecticut (UConn)
 - University of Washington (UW)
 - University of California Los Angeles (UCLA)
 - Texas A&M University (TAMU)
- Diverse Coverage of the US coast

Ocean-TUNE Overview (2)

- Key features
 - Ubiquity
 - Economy
 - Flexibility
 - Openness
 - Configurability
 - User-friendliness
- Supported by NSF CRI
 - UConn (lead), UW, UCLA, TAMU
 - \$2,635,000 for 3 years
- URL: <u>http://www.oceantune.org/</u>

Ocean-TUNE Overview (3)

• Sea Testbed with 4 sites:

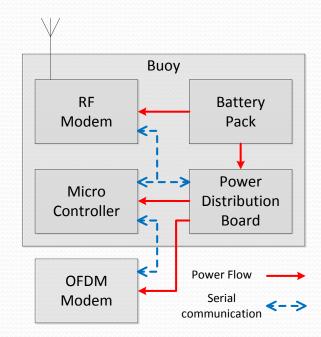
- Long Island Sound
- Santa Monica Bay
- Galveston Bay
- Hood Canal

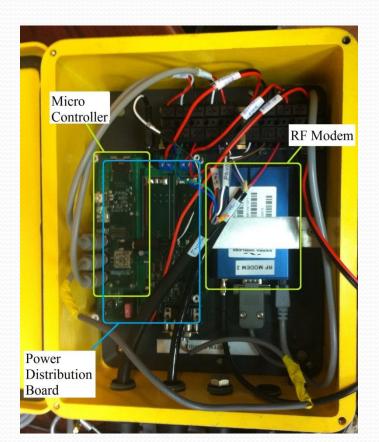
Site	Location	Surface Nodes	Bottom Nodes	Mobile Nodes	Reconf. Modems
UConn	Long Island Sound	3	5	2 Slocum Gliders	2
UW	Hood Canal	2	2	1 Seaglider	2
UCLA	Santa Monica Bay	1	2	1 Drogue	-
TAMU	Galveston Bay	2	1	-	2

Research Activities

- Tempo-Spatial Multi-level Dynamics (UConn)
 - Robust Channel Solutions
 - Reliable Link Solutions
 - Resilient Network Solutions
- Adaptive Physical and MAC Layers (UW)
 - Adaptive physical layer modulation and modem signal processing based on OFDM modulation
 - Adaptive cognizant MAC protocols that effectively support broadcast functionalities
- Efficient Localization Schemes (UCLA)
 - Dive'N'Rise (DNR) Positioning
 - Network-based Localization
- Software-Defined Acoustic MIMO-OFDM (TAMU)
 - Space, time, frequency, power, and code

Ocean-TUNE Hardware (1)


- Acoustic Modems
 - Benthos ATM-885
 - Handle multipath up to 25ms at 600bps
 - High speed mode up to 15,360 bps
 - AquaSeNT modem
 - Handle multipath up to 150ms at 6,300bps
 - High speed mode up to 9,000 bps



Ocean-TUNE Hardware (2)

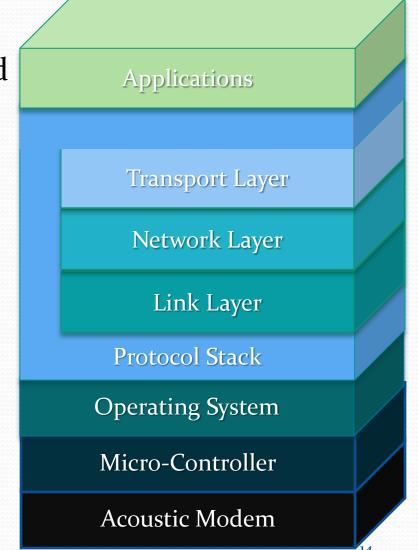

- System Board (UConn Version)
 - RF modem
 - Power Distribution Board
 - Micro-controller
 - Battery Pack

Ocean-TUNE Hardware (3)

- Surface Nodes (UConn Version)
 - Solar panels
 - A radar reflector and flasher
 - A surface wireless communication system
 - A splash-proof compartment
 - Acoustic modems
 - A GPS unit
 - An anchor

Ocean-TUNE Hardware (4)

- Bottom Nodes (UConn Version)
 - A bottom A-frame
 - A waterproof compartment
 - An acoustic releases
 - An Acoustic modem
 - A small floatation device

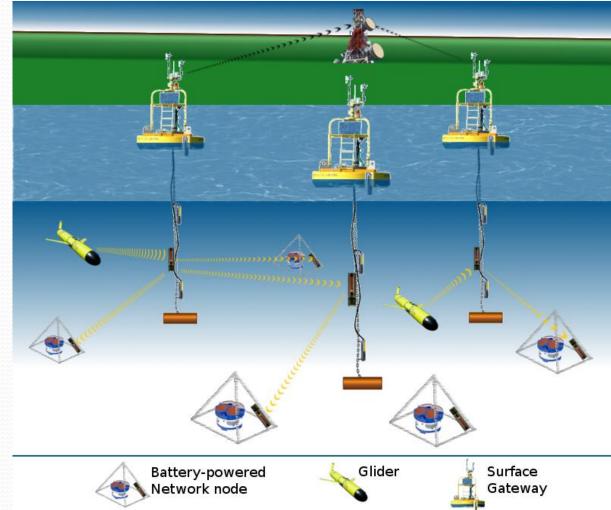


• Slocum Gliders (from Webb Research)

Ocean-TUNE Software (1)

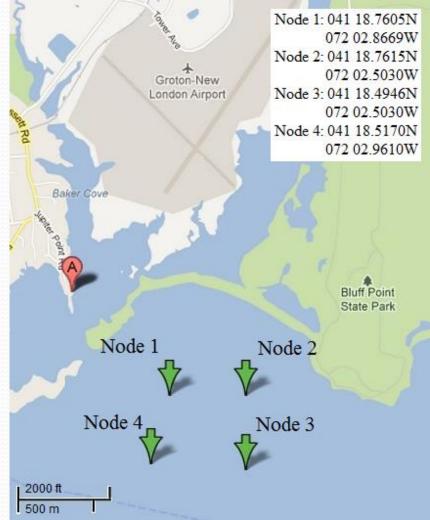
- Networking Development Kit
 - A comprehensive, reliable, and configurable underwater acoustic network solution
 - Each kit includes:
 - A network development framework
 - Customized acoustic modem driver(s)
 - A set of sample networking protocols

Ocean-TUNE Software (2)


- Web-based Graphic User Interface (GUI)
 - Easy access
 - Remote control
 - Online monitoring - 0 × × + mail.com - G... × Minbox (2) - james@aquasent.com Minbox - jamespayne79@cmail.com TESTBED GUI Experiment management 🟫 🔻 😋 🛃 - Google 2 8 10 Access control Map [11]:34× Map Satellite Experiment reservation Node Name: 34 Latitude: 41,772 orgitude: -72.1770000000002 IP: 12.123.543.2-111 Status: Offline Mansheld Bay B & 8 tate Park Map data 82012 Google - Terms of Use Report a map erro uwsn.engr.uconn.edu/testbed/# × Find: 🕹 Mext. 🔮 Brevious 🖌 Highlight al 🔽 Match case

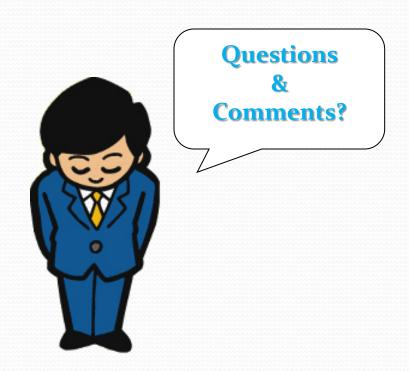
Ocean-TUNE Software (3)

- Acoustic Remote Control
 - Necessity
 - Enable remote control and monitoring for underwater nodes
 - Responsibilities
 - Remote control
 - Online monitoring
 - Node reprogramming
 - Real-time data collection
 - Practical Issues
 - Security
 - Reliability
 - Multi-hop networks
 - Overheads: bandwidth, energy, efficiency, etc.


UConn Testbed Vista

- Location:
 - Long Island Sound
- Water depth:
 - 20~80 meters
- Facilities
 - 3 surface nodes
 - 5 underwater nodes
 - 3 underwater gliders

Long Island Sound Deployment


- Initial testbed deployment
- Location:
 - Near Avery Point Campus
- Experiment date:
 - Aug 14~27, 2012
- Number of nodes:
 - 4 surface buoys

Conclusions

- Ocean-TUNE is a community testbed that opens to public
- It consists of four test beds in the US
- Diverse coverage in terms of geography and weather
- Major properties
 - Ubiquity
 - Economy
 - Flexibility
 - Openness
 - Configurability
 - User-friendliness

THANKS!

