

COPE-MAC: A Contention-based Medium Access Control Protocol with Parallel Reservation for Underwater Acoustic Networks

Zheng Peng, Yibo Zhu, Zhong Zhou, Zheng Guo and Jun-Hong Cui Underwater Sensor Network (UWSN) Lab Computer Sci. and Eng. Department University of Connecticut

• Overview

- Motivations
- Previous work
- COPE-MAC
- <u>Simulation</u> results
- Conclusions

Underwater Sensor Networks

- Underwater Sensor Networks (UWSNs)
 - Forming sensor networks in underwater environments
- UWSN has a wide range of applications
 - Environment monitoring
 - Persistent surveillance
 - Oil/gas industry
 - Transportation
 - Fishery

• ...

- Overview
- Motivations
- Previous work
- COPE-MAC
- Experiment Results
- Conclusions

Motivation

- Acoustic modems are getting faster
 - higher data rate: 80bps ~ 10kbps
 - Transmission delay is decreasing
- Long propagation delay slows down the network communication
 - Could easily go to a few seconds
 - High costs limit the number of sensor nodes
 - Distance between two nodes would be very long
 - Propagation delay will still be very long, no matter how modem technology improves
 - Old handshaking methods would be less efficient

Objectives

- <u>Improve the efficiency of medium access control</u> (MAC) protocol
- Increase the throughput of the underwater network
- Reduce energy overheads

- Overview
- Motivations
- Previous work
- COPE-MAC
- Experiment Results
- Conclusions

Typical RTS/CTS approach

- Use RTS/CTS/DATA/ACK to establish one connection
- Channel utilization

$$\eta \le \frac{T_D}{T} \le \frac{T_D}{T_D + 4 \times T_P} = \frac{1}{1 + 4 \times \alpha}$$

- T_R: control frame delay
- T_D: data frame delay
- T_P: propagation delay

Limitations of previous protocol

- In UWSN, one round of RTS/CTS could be longer than DATA
- Only one connection can be established with one handshake
- Low channel utilization
- Nodes are suppressed when receiving CTS/RTS messages
- Unable to establish connections when neighbors are handshaking

- Overview
- Motivations
- Previous work
- COPE-MAC
- Experiment Results
- Conclusions

COPE-MAC Overview

- COPE-MAC:
 - COntention based Parallel rEservation Medium Access Control
- Based on RTS/CTS
- Parallel Reservation
- Cyber Carrier Sensing

Parallel Reservation

- Parallel reservation
 - Schedule packet transmissions in the near future
 - Schedule packet transmissions to multiple destination
- Multicast RTS/CTS/ACKs
 - Can contain multiple source, destination addresses
 - One RTS can request for sending data to multiple neighbors at different time
 - One CTS can establish connections to different nodes
 - One ACK can acknowledge Data from multiple nodes

Cyber carrier sensing

- Carrier sensing
 - Full-duplex channel
 - Avoid collision by detecting a carrier wave
 - Example: CSMA/CD in 802.3 Ethernet
- Virtual carrier sensing
 - Half-duplex channel
 - Avoid collision by detecting control packets
 - Example: CSMA/CA in 802.11 with RTS/CTS
- Cyber carrier sensing
 - Half-duplex channel
 - Control messages include local "schedule"
 - Construct a virtual channel
 - Map neighbors' time to "local time"
 - No propagation delay
 - <u>Detect</u> collision by scanning the virtual channel in "cyber space"

States of a COPE-MAC node

- Overview
- Motivations
- Previous work
- COPE-MAC
- Experiment Results
- Conclusions

Simulation Results

Simulation settings

- Number of nodes: 50
- Packet arrival mode: Poisson
- Simulation time: 1000 seconds
- Number of runs: 100
- Scenario I
 - Network size: 5500 x 5500 m²
 - λ range: 0.02 to 0.24
- Scenario II
 - Average neighbor distance: 500 to 900 meters
 - λ is fixed at 0.1

Scenario I

Scenario II

- Overview
- Motivations
- Previous work
- COPE-MAC
- Experiment Results
- Conclusions

Conclusions

COPE-MAC

- Key features:
 - Parallel reservation
 - Cyber carrier sensing
- Performance:
 - High network throughput
 - Better energy efficiency
- Future work
 - Field test with real environment
 - Study the effects of concurrency on network performance

Underwater Sensor Networks Lab University of Connecticut

Thanks!

Underwater Sensor Networks Lab University of Connecticut