
Qt Essentials - PaintingModule
Training Course

Visit us at http://qt.digia.com

Produced byDigia Plc.

Material based on Qt 5.0, created on September 27, 2012

Digia Plc.

http://qt.digia.com

Module: Painting and Styling

Painting onWidgets

Color Handling

Painting Operations

Style Sheets

2/37

Painting and StylingPainting and Styling

Custom painting or stylesheets

• Painting
• You paint with a painter on a paint device during a paint event
• Qtwidgets know how to paint themselves
• Oftenwidgets look like wewant
• Painting allows device independent 2D visualization
• Allows to draw pie charts, line charts andmanymore

• StyleSheets
• Fine grained control over the look and feel
• Easily applied using style sheets in CSS format

3/37

Painting and StylingPainting and Styling

Module Objectives

Covers techniques for general 2D graphics and styling applications.

• Painting
• Painting infrastructure
• Painting onwidget

• Color Handling
• Define and use colors
• Pens, Brushes, Palettes

• Shapes
• Drawing shapes

• Transformation
• 2D transformations of a coordinate system

• Style Sheets
• How tomake small customizations
• How to apply a theme to a widget or application

4/37

Painting and StylingPainting and Styling

Module: Painting and Styling

Painting onWidgets

Color Handling

Painting Operations

Style Sheets

Painting onWidgets 5/37

Painting and StylingPainting and Styling

Low-level painting with QPainter

• Paints on paint devices (QPaintDevice)

• QPaintDevice implemented by
• On-Screen: QWidget
• Off-Screen: QImage, QPixmap
• And others ...

• Provides drawing functions
• Lines, shapes, text or pixmaps

• Controls
• Rendering quality
• Clipping
• Compositionmodes

Painting onWidgets 6/37

Painting and StylingPainting and Styling

Painting onWidgets

• Override paintEvent(QPaintEvent*)

void CustomWidget::paintEvent(QPaintEvent *) {

QPainter painter(this);

painter.drawRect(0,0,100,200); // x,y,w,h

}

• Schedule painting
• update(): schedules paint event
• repaint(): repaints directly

• Qt handles double-buffering

• To enable filling background:
• QWidget::setAutoFillBackground(true)

Painting onWidgets 7/37

Painting and StylingPainting and Styling

Coordinate System - Surface to render

• Controlled byQPainter

• Origin: Top-Left

• Rendering
• Logical - mathematical
• Aliased - right and below
• Anti-aliased - smoothing

• Rendering quality switch
• QPainter::setRenderHint()
Painting onWidgets 8/37

Painting and StylingPainting and Styling

Geometry Helper Classes

• QSize(w,h)

• scale, transpose

• QPoint(x,y)

• QLine(point1, point2)

• translate, dx, dy

• QRect(point, size)

• adjust, move
• translate, scale, center

QSize size(100,100);

QPoint point(0,0);

QRect rect(point, size);

rect.adjust(10,10,-10,-10);

QPoint center = rect.center();

Painting onWidgets 9/37

Painting and StylingPainting and Styling

Module: Painting and Styling

Painting onWidgets

Color Handling

Painting Operations

Style Sheets

Color Handling 10/37

Painting and StylingPainting and Styling

Creating Color Values

• Using different color models:
• QColor(255,0,0) // RGB
• QColor::fromHsv(h,s,v) // HSV
• QColor::fromCmyk(c,m,y,k) // CMYK

• Defining colors:

QColor(255,0,0); // red in RGB

QColor(255,0,0, 63); // red 25% opaque (75% transparent)

QColor("#FF0000"); // red in web-notation

QColor("red"); // by svg-name

Qt::red; // predefined Qt global colors

• Many powerful helpers for manipulating colors

QColor("black").lighter(150); // a shade of gray

• QColor always refers to device color space

.See QColor Details Documentation

Color Handling 11/37

Painting and StylingPainting and Styling

http://qt-project.org/doc/qcolor.html#details

Drawing lines and outlines with QPen

• A pen (QPen) consists of:
• a color or brush
• awidth
• a style (e.g. NoPen or SolidLine)
• a cap style (i.e. line endings)
• a join style (connection of lines)

• Activate with QPainter::setPen().

QPainter painter(this);

QPen pen = painter.pen();

pen.setBrush(Qt::red);

pen.setWidth(3);

painter.setPen(pen);

// draw a rectangle with 3 pixel width red outline

painter.drawRect(0,0,100,100);

Color Handling 12/37

Painting and StylingPainting and Styling

TheOutline

.
Rule
..
......The outline equals the size plus half the penwidth on each side.

• For a pen of width 1:

QPen pen(Qt::red, 1); // width = 1

float hpw = pen.widthF()/2; // half-pen width

QRectF rect(x,y,width,height);

QRectF outline = rect.adjusted(-hpw, -hpw, hpw, hpw);

• Due to integer rounding on a non-antialiased grid, the outline is shifted by
0.5 pixel towards the bottom right.

• .Demo painting/ex-rectoutline

Color Handling 13/37

Painting and StylingPainting and Styling

file:painting/ex-rectoutline

Filling shapes with QBrush

• QBrush defines fill pattern of shapes
• Brush configuration

• setColor(color)
• setStyle(Qt::BrushStyle)

• NoBrush, SolidPattern, ...

• QBrush(gradient) // QGradient's
• setTexture(pixmap)

• Brushwith solid red fill

painter.setPen(Qt::red);

painter.setBrush(QBrush(Qt::yellow, Qt::SolidPattern));

painter.drawRect(rect);

Color Handling 14/37

Painting and StylingPainting and Styling

Drawing gradient fills

• Gradients usedwith QBrush
• Gradient types

• QLinearGradient

• QConicalGradient

• QRadialGradient

• Gradient from P1(0,0) to P2(100,100)

QLinearGradient gradient(0, 0, 100, 100);

// position, color: position from 0..1

gradient.setColorAt(0, Qt::red);

gradient.setColorAt(0.5, Qt::green);

gradient.setColorAt(1, Qt::blue);

painter.setBrush(gradient);

// draws rectangle, filled with brush

painter.drawRect(0, 0, 100, 100);

• .Demo painting/ex-gradients

Color Handling 15/37

Painting and StylingPainting and Styling

file:painting/ex-gradients

Brush on QPen

• Possible to set a brush on a pen

• Strokes generatedwill be filled with the brush

• .Demo painting/ex-penwithbrush

Color Handling 16/37

Painting and StylingPainting and Styling

file:painting/ex-penwithbrush

Color Themes and Palettes

• To support widgets color theming
• setColor(blue) not recommended
• Colors needs to bemanaged

• QPalettemanages colors
• Consist of color groups

• enum QPalette::ColorGroup

• Resemble widget states
• QPalette::Active

• Used for windowwith keyboard focus

• QPalette::Inactive

• Used for other windows

• QPalette::Disabled

• Used for disabled widgets

Color Handling 17/37

Painting and StylingPainting and Styling

Color Groups and Roles

• Color group consists of color roles

• enum QPalette::ColorRole

• Defines symbolic color roles used in UI

QPalette pal = widget->palette();

QColor color(Qt::red);

pal.setColor(QPalette::Active, QPalette::Window, color);

// for all groups

pal.setBrush(QPalette::Window, QBrush(Qt::red));

widget->setPalette(pal);

• QApplication::setPalette()

• Sets application wide default palette

Color Handling 18/37

Painting and StylingPainting and Styling

Module: Painting and Styling

Painting onWidgets

Color Handling

Painting Operations

Style Sheets

Painting Operations 19/37

Painting and StylingPainting and Styling

Drawing Figures

• Painter configuration
• penwidth: 2
• pen color: red
• font size: 10
• brush color: yello
• brush style: solid

• .Demo painting/ex-figures

Painting Operations 20/37

Painting and StylingPainting and Styling

file:painting/ex-figures

Drawing Text

• QPainter::drawText(rect, flags, text)

QPainter painter(this);

painter.drawText(rect, Qt::AlignCenter, tr("Qt"));

painter.drawRect(rect);

• QFontMetrics

• calculate size of strings

QFont font("times", 24);

QFontMetrics fm(font);

int pixelsWide = fm.width("Width of this text?");

int pixelsHeight = fm.height();

Painting Operations 21/37

Painting and StylingPainting and Styling

Transformation

• Manipulating the coordinate system
• translate(x,y)
• scale(sx,sy)
• rotate(a)
• shear(sh,sv)
• reset()

.Demo painting/ex-transform

Painting Operations 22/37

Painting and StylingPainting and Styling

file:painting/ex-transform

Transform and Center

• scale(sx, sy)
• scales aroundQPoint(0,0)

• Same applies to all transform operations

• Scale around center?
painter.drawRect(r);

painter.translate(r.center());

painter.scale(sx,sy);

painter.translate(-r.center());

// draw center-scaled rect

painter.drawRect(r);

.Demo painting/ex-transform (scale center)

Painting Operations 23/37

Painting and StylingPainting and Styling

file:painting/ex-transform (scale center)

Painter Path - QPainterPath

• Container for painting operations

• Enables reuse of shapes

QPainterPath path;

path.addRect(20, 20, 60, 60);

path.moveTo(0, 0);

path.cubicTo(99, 0, 50, 50, 99, 99);

path.cubicTo(0, 99, 50, 50, 0, 0);

painter.drawPath(path);

• Path information
• controlPointRect() - rect containing all points
• contains() - test if given shape is inside path
• intersects() - test given shape intersects path

.Demo $QTDIR/examples/painting/painterpaths

Painting Operations 24/37

Painting and StylingPainting and Styling

file:examples/painting/painterpaths

Other Painter Concepts

• Clipping
• Clip drawing operation to shape

• Compositionmodes:
• Rules for digital image compositing
• Combining pixels from source to destination

• Rubber Bands - QRubberBand
• Rectangle or line that indicate selection or boundary
• .SeeQRubberbandDocumentation

Painting Operations 25/37

Painting and StylingPainting and Styling

http://qt-project.org/doc/qrubberband.html

Lab: Pie ChartWidget

• Task to implement a pie chart

• Draw pies with painters based on data.

• Data Example: Population of 4 countries
• Sweden
• Germany
• Norway
• Italy

• Guess the population inmillions of citizens ;-)

• Legend is optional

• See lab description for details

.Lab painting/lab-piechart

Painting Operations 26/37

Painting and StylingPainting and Styling

file:painting/lab-piechart

Module: Painting and Styling

Painting onWidgets

Color Handling

Painting Operations

Style Sheets

Style Sheets 27/37

Painting and StylingPainting and Styling

Qt Style Sheets

• Mechanism to customize appearance of widgets
• Additional to subclassing QStyle

• Inspired by HTMLCSS

• Textual specifications of styles
• Applying Style Sheets

• QApplication::setStyleSheet(sheet)

• Onwhole application

• QWidget::setStyleSheet(sheet)

• On a specific widget (incl. child widgets)

.Demo painting/ex-simpleqss

Style Sheets 28/37

Painting and StylingPainting and Styling

file:painting/ex-simpleqss

CSS Rules

.
CSS Rule
..
......selector { property : value; property : value }

• Selector: specifies the widgets

• Property/value pairs: specify properties to change.

QPushButton {color:red; background-color:white}

• Examples of stylable elements
• Colors, fonts, pen style, alignment.
• Background images.
• Position and size of sub controls.
• Border and padding of the widget itself.

• Reference of stylable elements

.See Qt Style Sheets Reference Documentation

Style Sheets 29/37

Painting and StylingPainting and Styling

http://qt-project.org/doc/stylesheet-reference.html

The BoxModel

• Every widget treated as box

• Four concentric rectangles
• Margin, Border, Padding, Content

• CustomizingQPushButton

QPushButton {

border-width: 2px;

border-radius: 10px;

padding: 6px;

// ...

}

• By

default, margin, border-width, and padding are 0

Style Sheets 30/37

Painting and StylingPainting and Styling

Selector Types

• *{ } // Universal selector
• All widgets

• QPushButton { } // Type Selector
• All instances of class

• .QPushButton { } // Class Selector
• All instances of class, but not subclasses

• QPushButton#objectName // ID Selector
• All Instances of class with objectName

• QDialog QPushButton { } // Descendant Selector
• All instances of QPushButtonwhich are child of QDialog

• QDialog > QPushButton { } // Direct Child Selector
• All instances of QPushButtonwhich are direct child of QDialog

• QPushButton[enabled="true"] // Property Selector
• All instances of class whichmatch property
Style Sheets 31/37

Painting and StylingPainting and Styling

Selector Details

• Property Selector
• If property changes it is required to re-set style sheet

• Combining Selectors
• QLineEdit, QComboBox, QPushButton { color: red }

• Pseudo-States
• Restrict selector based onwidget's state
• Example: QPushButton:hover {color:red}

• .Demo painting/ex-qssselector

• Selecting Subcontrols
• Access subcontrols of complex widgets

• asQComboBox, QSpinBox, ...

• QComboBox::drop-down { image: url(dropdown.png) }

• Subcontrols positioned relative to other elements
• Change using subcontrol-origin and subcontrol-position

Style Sheets 32/37

Painting and StylingPainting and Styling

file:painting/ex-qssselector

Conflict Resolution - Cascading

• Effective style sheet obtained bymerging

..1 Widgets's ancestor (parent, grandparent, etc.)

..2 Application stylesheet

• On conflict: widget own style sheet preferred

qApp->setStyleSheet("QPushButton { color: white }");

button->setStyleSheet("* { color: blue }");

• Style on button forces button to have blue text
• In spite of more specific application rule

.Demo painting/ex-qsscascading

Style Sheets 33/37

Painting and StylingPainting and Styling

file:painting/ex-qsscascading

Conflict Resolution - Selector Specifity

• Conflict: When rules on same level specify same property
• Specificity of selectors apply

QPushButton:hover { color: white }

QPushButton { color: red }

• Selectors with pseudo-states aremore specific

• Calculating selector's specificity
• aCount number of ID attributes in selector
• bCount number of property specifications
• cCount number of class names
• Concatenate numbers a-b-c. Highest score wins.
• If rules scores equal, use last declared rule

QPushButton {} /* a=0 b=0 c=1 -> specificity = 1 */

QPushButton#ok {} /* a=1 b=0 c=1 -> specificity = 101 */

.Demo painting/ex-qssconflict

Style Sheets 34/37

Painting and StylingPainting and Styling

file:painting/ex-qssconflict

QtDesigner Integration

• Excellent tool to preview style sheets

• Right-click on anywidget
• Select Change styleSheet..

• Includes syntax highlighter and validator

.Demo Editing Style Sheets in Designer

Style Sheets 35/37

Painting and StylingPainting and Styling

file:Editing Style Sheets in Designer

Project Task

• Tasks
• Investigate style sheet
• Modify style sheet
• Remove style sheet
and implement your own

• Example does not save changes.

Use designer for this.

• Edit style sheet using

File -> Edit StyleSheet

.Lab $QTDIR/examples/widgets/stylesheet

Style Sheets 36/37

Painting and StylingPainting and Styling

file:\protect \char "0024\relax QTDIR/examples/widgets/stylesheet

©Digia Plc.

Digia, Qt and the Digia andQt logos are the registered trademarks of

Digia Plc. in Finland and other countries worldwide.

Style Sheets 37/37

Painting and StylingPainting and Styling

	Painting and Styling
	Painting on Widgets
	Color Handling
	Painting Operations
	Style Sheets

