

Qt in Education

© 2012 Digia Plc.

Exercises Lecture 8 – The Model View Framework

Aim: This exercise explores the standard model view classes, as well as the
support classes used to customize the look and feel of views.

Duration: 1h

© 2012 Digia Plc.

The enclosed Qt Materials are provided under the Creative Commons Attribution-Share Alike 2.5 License Agreement.

The full license text is available here: http://creativecommons.org/licenses/by-sa/2.5/legalcode.

Digia, Qt and the Digia and Qt logos are the registered trademarks of Digia Plc. in Finland and other countries worldwide.

Qt in Education

© 2012 Digia Plc.

Viewing a model
This exercise comes with a source code package. The contents are a number of starting point
projects for the different steps of this exercise. Please extract the package and use the
standardmodel project as the starting point for this step.

The application creates an instance of QStandardItemModel and an instance of QTableView. The goal
is to populate the model with data of a simple todo list and assign the model to the table view.
Each todo item is contained on a row. Each row is then composed from three columns: the name
of the activity, its deadline and the percentage (integer value in a range of 0-100) of completeness.

Field Name Field Type

Name string

Deadline date

Completeness integer (0-100)

Start by calling the QStandardItemModel::setHorizontalHeaderLabels() method to set titles for the
columns. The list of labels are provided in the source code.

The next step is to add three rows of tasks according to the table below. Each row is built from one
QStandardItem object (one for each column) which are added to the model using the appendRow
method.

Name Deadline Completeness

Clean house 5/3 2011 0

Buy groceries 10/4 2011 50

Exercise 1/1 2011 25

Creating a standard item containing a text string is easy. To get a proper representation of other
data types such as integers and dates, one has to use the setData method as shown below:

 QList<QStandardItem*> row;
 QStandardItem *item;
...
 row.clear();
...
 item = new QStandardItem();
 item->setData(QDate(2011, 4, 10), Qt::DisplayRole);
 row << item;
...
 model->appendRow(row);

Testing the application now, you will realize that you can edit the contents of the model. This might
be good or bad, but it is easy to control.

For each QStandardItem of the first column, set the flags ItemIsSelectable and ItemIsEnabled using
the setFlags method. This will make them selectable and enabled, but not editable. For editable
items, the ItemIsEditable flag must be set as well. This flag is enabled by default for QStandardItem

Qt in Education

© 2012 Digia Plc.

instances.

Additional roles
In this step, you will extend the model from the first step with more data using different roles. As
the project has been restructured slightly, use the multirolesmodel project as the starting point.

In this step the todo list application will be enhanced with visual hints. For instance, by changing
the background color of items as well as the font used.

For QStandardItem objects, it is possible to use dedicated methods to set the different roles (e.g.
setForeground() for setting the item color). In order to familiarize yourself with the actual roles, you
are encouraged to use the setData() method instead. This lets you specify the data for each role
in a more specific manner.

Start by setting a more detailed description for each item as the ToolTipRole role of the first column
items. When running the application, try hovering the first column items to verify that a tool tip
popup appears.

The next step is to implement and setup the updateEntry() method so that the background color of
each row reflects the completeness of the task in question. Completed items are green, started
items yellow and items that are now started are marked as red.

First, implement the updateEntry method. The method takes a single item as argument. You can
retrieve the row of the item using the item->row() method. You can then call m_model->item(row,
column) to get access to the rest of the row.

Using the data method of the completeness column, you can access the DisplayRole data. Use the
toInt method to convert the returned QVariant to an integer.

When you have determined which color to use, set the BackgroundColorRole for all items of the row

using the setData method.

As the program stands now, the updateEntry method is called for all new items, but not when items
are changed. You can fix this by converting updateEntry to a slot (move it from the private section
to the private slots section) and adding the Q_OBJECT macro to the class. Then connect the model's
itemChanged signal to the updateEntry slot.

When you have the updateEntry slot working, there is one more alteration to implement. Given the
due date, compare it to QDate::currentDate. If the task is overdue, apply a bold font to the item,
otherwise, apply a normal font.

Qt in Education

© 2012 Digia Plc.

You can get the date of an item using the toDate function on the QVariant returned from the data
method.

You get the default font of the system by creating a QFont instance. You can then make it bold or
not using the setBold method.

 QFont font;
 font.setBold(isOverdue);

Add all this to the updateEntry slot and verify that it works.

Custom rendering
Until now, you have relied on the standard features of the graphics view framework. In this step,
you will customize the view by implementing a delegate of your own. This will let you visualize the
completeness value using custom painting.

Use the customdelegate project as the starting point. The goal is to visualize the completeness as
a pie chart. This is done using a custom delegate. There is already a skeleton for the delegate in
the starting point project that draws the outline of the pie.

Your task is to extend the paint method of the delegate to draw a pie corresponding to the
completeness value. The rectangle to draw within is given, but you have to setup a pen and brush.

To actually draw the pie, you need to calculate the angle to be drawn – multiply 360 degrees by
the percentage (i.e. 20% will be 72 degrees). You can use qRound() to round the value to the
nearest integer.

 qreal spanInDegrees = 3.6*index.data().toInt();
 painter->drawPie(rect, 0, -qRound(16*spanInDegrees));

Tracking selections
For the final step of this exercise, use the selectioncount project as your starting point. When you
run the project, you will see a model with rows and columns and a label under the view that
contains text “No items selected”.

Qt in Education

© 2012 Digia Plc.

The goal is to make the text of the label reflect the current selection in the model. In the project,
there is a method called updateLabelText. Your task is to call that method with a proper value.

To do that, you need to connect to the selectionChanged() signal from the view's selection model to
a slot of your own. When your slot gets called you will be able to query the selection model for
selectedIndexes() and call the updateLabelText() slot with that value.

Start by adding a slot to the Widget class. It does not have to accept any arguments. Then connect
it to the selectionChanged signal from the view's selectionModel.

Next, implement your slot to call updateLabelText with the value from the selection model's
selectedIndexes method.

Qt in Education

© 2012 Digia Plc.

Solution Tips

Step 2

To color the whole row you need to set the background color for each column separately.

Having added the Q_OBJECT macro to your class, you have to re-run qmake on the project for Qt to
recognize the change.

Step 4

To get the selection model use m_view->selectionModel(). The selection model is only available
when there is a model set on the view.

