
.

Qt Quick
Qt in Education

© 2012 Digia Plc.

The enclosed Qt Materials are provided under the Creative Commons
Attribution-Share Alike 2.5 License Agreement.

The full license text is available here:
http://creativecommons.org/licenses/by-sa/2.5/legalcode.

Digia, Qt and the Digia and Qt logos are the registered trademarks
of Digia Plc. in Finland and other countries worldwide.

Introducing Qt Quick

� C++ is great for developing applications

� Data structures

� Algorithms

� Business logic

� Structured user interfaces

� C++ is not so great for modern device user interfaces

� Many objects active in parallel

� Many, potentially overlapping states

� Timer-driven, fluid changes

Introducing Qt Quick

� Using Qt Quick, the business logic and
performance critical operations can be
implemented in C++

� The user interface can be written using QML

� Qt Meta-object Language

� Declarative

� Based on JavaScript

Introducing Qt Quick

� Qt Quick consists of
� QML – the language

− Designed for building device user interfaces

− Can be used in other application too

� Qt Declarative – the Qt module
− Contains the QML engine, context and view

− Qt bindings for QML

− Mechanisms for integrating C++ and QML

� Tooling support in Qt Creator (coming)

Working with QML

� Qt Creator 2.0 supports QML
� Can create QML projects

� Can run and debug QML

Introducing QML

� QML is a declarative language based on
JavaScript

import QtQuick 1.0

Rectangle {
width: 200
height: 200
color: "red"

}

Declare a Rectangle
element – i.e. create an

object instance

Component names always start
with capital letters

Bind properties
to values

Import QtQuick
components

Importing Resources

� Importing component definitions

� The import directive imports:
� Component classes from C++ modules

� Other QML modules

� JavaScript files

� When importing C++ modules, the version must
always be specified

import Qt 4.7
import MyCppClasses 1.2
import "from-qml"
import "scripts.js"

Creating Object
Hierarchies

� When declaring elements inside other element
declarations, you create object hierarchies

Rectangle {
Rectangle {

Text {
}

}
Text {
}

}

Text

Text

Navigating the Objects
Tree

� It is possible to refer to the parent object
using the parent name

Rectangle {
Rectangle {

width: parent.width

Text {
color: parent.color

}
}
Text {
}

}

Naming Elements

� Using the id property, you can name
elements

� You can then refer to them by name

Rectangle {
id: outerRectangle
...

{
height: outerRectangle.height
...

Binding Values

� In QML, values are bound, not assigned
� Changing input on the right side of the “:” operator

updates the left side

Rectangle {
id: firstRect
x: 10
...

}

Rectangle {
x: 400 - firstRect.x
...

}

Animating Values

� Property values can be animated

Rectangle {
id: firstRect

}

Rectangle {
x: 400 – firstRect.x
...

}

SequentialAnimation {
running: true
loops: Animation.Infinite
NumberAnimation { target: firstRect; property: "x"; to: 300 }
NumberAnimation { target: firstRect; property: "x"; to: 50 }

}

Available Components

� Qt provides a range of components

� Rectangle

� Text

� Image

� BorderImage

Setting up an Element

� There are a number of common
properties for these components
� x, y, width, height

� color, opacity

� visible

� scale, rotation

Anchor Layouts

� Anchor layouts can be used to anchor
elements to each other

Rectangle {
Rectangle {

anchors.fill: parent
...

}
...

}

Rectangle {
id: leftRectangle
...

}

Rectangle {
anchors.left: leftRectangle.right
...

}

Layouts and Margins

� You can combine anchor layouts with margins
Rectangle {

Rectangle {
anchors.fill: parent
anchors.margins: 5
...

}
...

}

Rectangle {
id: leftRectangle
...

}

Rectangle {
anchors.left: leftRectangle.right
anchors.leftMargin: 10
...

}

Anchor Layout Properties

� You can anchor items to
� left, top, right, bottom

� verticalCenter, horizontalCenter

� baseline

� You can specify individual
margins or anchors.margins

Other Layouts

� Using the Grid, Row and Column
containers, classic layouts can be built
� Does not work if x or y are bound

� The spacing property is available for all

� The columns property controls the size of grids
Grid {

columns: 2
spacing: 5

Rectangle { width: 20; height: 20; color: "red" }
Rectangle { width: 20; height: 20; color: "green" }
Rectangle { width: 20; height: 20; color: "blue" }

}

Break

Adding Interaction

� Interaction is handled through areas
separated from the visuals
� MouseArea – an area accepting mouse events

� GestureArea – an area accepting gesture events

− Requires touch events

− Single touch devices might only provide mouse
events, check your device's documentation

� Keyboard events are handled through focus

Creating a Button

� You can build a button from a Rectangle,
Text and MouseArea

Rectangle {
width: 200; height 100;
color: "lightBlue"

Text {
anchors.fill: parent
text: "Press me!"

}

MouseArea {
anchors.fill: parent
onClicked: { parent.color = "green" }

}
}

JavaScript

Rectangle {
width: 200; height 100;
color: "blue"

Text {
anchors.fill: parent
text: "Press me!"

}

MouseArea {
anchors.fill: parent
onClicked: { parent.color = "green" }

}
}

What happened here?
We bound an anonymous

JavaScript function to a
signal.

Building Components

� Having to create each button as a set of three
elements is not a feasible solution

� It is possible to create components in QML

� A component can then be instantiated as an
element

� Components can be kept in modules that are
included into your QML files

A Button Component

� Place the button in the Button.qml file
import Qt 4.7

Rectangle {
width: 200; height: 100;
color: "lightBlue"
property alias text: innerText.text

Text {
id: innerText
anchors.fill: parent

}

MouseArea {
anchors.fill: parent
onClicked: { parent.color = "green" }

}
}

A Button Component

� Instantiate buttons from your main QML file
� The main QML file must be placed in the same directory as Button.qml

� If not, you must import the directory containing Button.qml as a Module

import Qt 4.7

Row {
spacing: 10

Button { text: "Oslo" }
Button { text: "Copenhagen" }
Button { text: "Helsinki" }
Button { text: "Stockholm" }

}

States

� Using states, you can easily make smooth
transitions between sets of property values

normal large

rotated

Defining States

� The states property holds the states
import Qt 4.7

Rectangle {
width: 400; height: 400;

Rectangle {
id: myRect
width: 100; height: 100;
anchors.centerIn: parent
color: "green";

}

states: [
State { name: "normal" },
State { name: "large" },
State { name: "rotated" }

]
}

Defining States

� Each state contains a set of property changes

Rectangle {
states: [

State { name: "normal"
PropertyChanges {

target: myRect
width: 100; height: 100;
rotation: 0

}
},
...

]
}

Making Smooth
Transitions

� The transitions property defines how to
animate properties between states

Rectangle {
transitions: [

Transition {
from: "*"; to: "normal"
NumberAnimation {

properties: "width, height"
easing.type: Easing.InOutQuad
duration: 1000

}
NumberAnimation {

properties: "rotation"
easing.type: Easing.OutElastic
duration: 3000

}
},
...

]
}

Switching Between States

� Set the state property
import Qt 4.7

Rectangle {
...
MouseArea {

anchors.fill: parent
onClicked: { if(parent.state == "normal") {

parent.state = "rotated";
} else if(parent.state == ...

}
}

Switching Between States

� Or bind the state property to a value...

� ...which can form the link to C++

import Qt 4.7

Rectangle {
...
state: myState

}

Global Variables

� It is possible to bind to values exposed
from JavaScript or C++

� By binding to values from C++, the
business logic can control the state

� QML only controls the user interface,
including transitions and effects

Integrating QML and C++

� QML is executed by an QDeclarativeEngine

� Each component can be created

� The common component is a QGraphicsObject,
but can be any QObject

QGraphicsScene *scene = myExistingGraphicsScene();

QDeclarativeEngine *engine = new QDeclarativeEngine;

QDeclarativeComponent component(engine, QUrl::fromLocalFile("myqml.qml"));
QGraphicsObject *object =

qobject_cast<QGraphicsObject *>(component.create());

scene->addItem(object);

Integrating QML and C++

� The convenience widget
QDeclarativeView can be used
� Contains an engine

� Handles the creation of components

QDeclarativeView *qmlView = new QDeclarativeView;

qmlView->setSource(QUrl::fromLocalFile("myqml.qml"));

Controlling Properties
from C++

� The rootContext of an engine can be
accessed

� The setContextProperty method can be
used to set global variable values

QDeclarativeView *qmlView = new QDeclarativeView;

QDeclarativeContext *context = qmlView->rootContext();
context->setContextProperty("myState", QString("normal"));

qmlView->setSource(QUrl::fromLocalFile("myqml.qml"));

Bound, not Assigned

� As QML binds values, instead of assigning them,
changing a context property from C++ changes the
value in QML

void Window::rotateClicked()
{

QDeclarativeContext *context = qmlView->rootContext();
context->setContextProperty("myState", QString("rotated"));

}

void Window::normalClicked()
{

QDeclarativeContext *context = qmlView->rootContext();
context->setContextProperty("myState", QString("normal"));

}

void Window::largeClicked()
{

QDeclarativeContext *context = qmlView->rootContext();
context->setContextProperty("myState", QString("large"));

}

Exposing QObject

� Exposing a QObject as a context
property, exposes slots

QDeclarativeView *qmlView = new QDeclarativeView;

QLabel *myLabel = new QLabel;
QDeclarativeContext *context = qmlView->rootContext();
context->setContextProperty("theLabel", myLabel);

MouseArea {
anchors.fill: parent
onClicked: { theLabel.setText("Hello Qt!"); }

}

