

Qt in Education

© 2012 Digia Plc.

Exercises Lecture 2 – The Qt Object Model and Signa l Slot
Mechanism

Aim: This exercise will help you explore the Qt object model (inheritance,
properties, memory management) and the signal slot mechanism.

Duration: 1h

© 2012 Digia Plc.

The enclosed Qt Materials are provided under the Creative Commons Attribution-Share Alike 2.5 License Agreement.

The full license text is available here: http://creativecommons.org/licenses/by-sa/2.5/legalcode.

Digia, Qt and the Digia and Qt logos are the registered trademarks of Digia Plc. in Finland and other countries worldwide.

Qt in Education

© 2012 Digia Plc.

Exploring Inheritance
Start by creating a new, empty Qt 4 project in Qt Creator. Add the following to your project:

� A C++ class, ValueObject, inheriting from QObject

� A C++ source file, main.cpp

In main.cpp, create a main function and include the ValueObject header file. In your main function,
implement the following function body.

{
 ValueObject o;

 // Insert code here

 return 0;
}

Using the function QObject::inherits(const char *className), write qDebug statements testing if o
inherits QObject and ValueObject.

Note! If using Qt Creator on Windows, you might have to run your code in the
debugger to see the qDebug printouts!

Try commenting out the Q_OBJECT macro from the valueobject.h header file. Discuss and explain the
results. Remember to re-enable the Q_OBJECT macro after having tested this.

Now, try testing a QFile object. Does it inhert QIODevice, QDataStream, QObject or QTemporaryFile?
Can you find this information in the documentation as well as through testing?

Properties
For this step, we keep the class that we created in the previous step.

Start by adding two member functions to the ValueObject class:

� setValue, setting an integer value of the object

� value, returning the set integer value of the object

These methods set and get an int value. You will have to add a private int member variable to
keep that value. Do not forget to initialize the private value in the constructor.

Qt in Education

© 2012 Digia Plc.

Now, modify your main function to look like this.

int main(int argc, char **argv)
{
 ValueObject o;

 qDebug("Value: %d = %d", o.value(), o.property("value").toInt());
 o.setValue(42);
 qDebug("Value: %d = %d", o.value(), o.property("value").toInt());
 o.setProperty("value", 11);
 qDebug("Value: %d = %d", o.value(), o.property("value").toInt());

 return 0;
}

You will have to include the QVariant header file as well for the property calls to work.

Run the code, discuss and explain the results.

Now, add a Q_PROPERTY macro defining the value property with a READ and a WRITE function. Add the
macro just after the Q_OBJECT macro in the class declaration.

Re-run the code, discuss and explain the different result.

Memory Management
Continuing from the previous step, we now add a qDebug statement in the constructor along with a
destructor with a qDebug statement. Make sure that the destructor is virtual. The qDebug statements
should inform you when an object is constructed and when it is destructed. In the destructor, add a
reference to the QObject::objectName property as well.

Replace the property setting and debugging from the last step with the following line.

 o.setObjectName("root");

Running the code should now yield an output looking something like this.

ValueObject constructed.
ValueObject root destructed.

Now, add the following code just after the setting of the object name of of o.

 ValueObject *c1 = new ValueObject();
 c1->setObjectName("child 1");
 ValueObject *c2 = new ValueObject();
 c2->setObjectName("child 2");
 ValueObject *c1c1 = new ValueObject();
 c1c1->setObjectName("child 1 of child 1");
 ValueObject *c2c1 = new ValueObject();
 c2c1->setObjectName("child 2 of child 1");
 ValueObject *c = new ValueObject();
 c->setObjectName("child");

Run the code and evaluate the result. The code is leaking memory.

Qt in Education

© 2012 Digia Plc.

Now, provide a parent pointer to the constructors of c1, c2, c1c1 and c2c1 so that the ownership
tree looks like the illustration below.

Finally, assign c2 as the parent of c using the QObject::setParent method.

Run the code and verify that all objects are properly destructed. Discuss and explain the order of
destruction, as well as why having the root object on the stack instead of the heap simplifies the
situation.

Signals and Slots
Again, building on the results from the last step, we will now add signals and slots to our
ValueObject class.

Set functions are natural slots, and are also natural points for adding signals tracking the value of
the property being set. Update the ValueObject class declaration with these changes.

� Move setValue to the public slots section

� Add a signal called valueChanged carrying an integer argument

Alter setValue so that it prints the new value and emits the valueChanged signal upon the value
changing.

Now, replace the contents of your main function with the following code.

int main(int argc, char **argv)
{
 ValueObject o1;
 ValueObject o2;

 o1.setValue(1);
 o2.setValue(2);

 // Connect here

 qDebug("o1: %d, o2: %d", o1.value(), o2.value());

 o1.setValue(42);
 qDebug("o1: %d, o2: %d", o1.value(), o2.value());

 o2.setValue(11);
 qDebug("o1: %d, o2: %d", o1.value(), o2.value());

 return 0;
}

root

child 1

child 1
of child 1

child 2
of child 1

child 2

Qt in Education

© 2012 Digia Plc.

Running the code shows that o1 and o2 are completely independent.

Now, establish a connection from o1 to o2, making the value of o2 follow o1.

Run the code, discuss and explain the behavior.

Now establish another connection from o2 to o1, making the two ValueObject instances follow each
other.

Run the code, discuss and explain the behavior.

If the program hangs here, setting the same value over and over again, you have
forgotten to add a check in your setValue. If the value isn't changed, the setValue slot
should simply return.

Try to come up with situations in a user interface where the two connection relationships are
useful, i.e. one object following another, versus two objects following each other.

The Signal Mapper
This step uses the calculator project as the base. Please open the project in Qt Creator and
familiarize yourself with the components of the project.

The project is divided into three parts.

� main.cpp, containing a boilerplate main function

� The class CalculatorInterface, providing a user interface for a basic calculator

� The class Calculator, providing a trivial calculator engine implementation

In the file calculatorinterface.cpp, you will find the constructor shown below.

CalculatorInterface::CalculatorInterface(QWidget *parent) :
 QWidget(parent),
 ui(new Ui::CalculatorInterface),
 m_calculator(new Calculator(this))
{
 ui->setupUi(this);

 // Add code here

 m_calculator->allClear();

Qt in Education

© 2012 Digia Plc.

}

The user interface, made available through the ui variable, holds the following set of widgets:
� buttonZero

� buttonOne

� buttonTwo

� buttonThree

� buttonFour

� buttonFive

� buttonSix

� buttonSeven

� buttonEight

� buttonNine

� buttonClear

� buttonAllClear

� buttonAdd

� buttonSubtract

� buttonCalculate

� entryLabel

The Calculator class, object m_calculator, holds the following slots:

� numEntered(int) – the number provided has been entered (0-9)

� clear() - clear the current entry

� clearAll() - clear the calculator state completely

� additionMode() - switch to addition mode, calculates before switching mode

� subtractionMode() - switch to subtraction mode, calculates before switching mode

� calculate() - calculate the next result, clears the current entry

The class also provides a signal, displayChanged(QString), used to update any display showing the
status of the calculator.

In the CalculatorInterface constructor, make all the connections you can see fit. Run the code and
discuss the result.

Extending the Calculator
The Calculator class is far from perfect. The interested student can extend the calculator in various
ways:

� Add more operations (e.g. multiplication and division)

� Add support for entering negative numbers

� Add memory operation (M+, M-, MC, MR)

� Add support for larger numbers (the current limit is the size of int)

Qt in Education

© 2012 Digia Plc.

Solution Tips

Step 1 - Inheritance

Test if the object o inherits from QObject using the following line.

 qDebug("ValueObject inherits QObject: %s",
 o.inherits("QObject")?"yes":"no");

Step 2 – Properties

The class declaration looks like this when the member functions and private variable have been
added.

class ValueObject : public QObject
{
Q_OBJECT
public:
 explicit ValueObject(QObject *parent = 0);

 void setValue(int value);
 int value() const;

private:
 int m_value;
};

The property declaration to be added at the end of the exercise reads like this.

Q_PROPERTY(int value READ value WRITE setValue)

Step 3 – Memory Management

The constructors need to be called with the following parent pointers.

 ValueObject *c1 = new ValueObject(&o);
 ValueObject *c2 = new ValueObject(&o);
 ValueObject *c1c1 = new ValueObject(c1);
 ValueObject *c2c1 = new ValueObject(c1);

The parent of c is assigned using the following line.

 c->setParent(c2);

Qt in Education

© 2012 Digia Plc.

Step 4 – Signals and Slots

The class declaration looks like this when the slot and signal have been added.

class ValueObject : public QObject
{
Q_OBJECT

Q_PROPERTY(int value READ value WRITE setValue)

public:
 explicit ValueObject(QObject *parent = 0);
 virtual ~ValueObject();

 int value() const;

public slots:
 void setValue(int value);

signals:
 void valueChanged(int);

private:
 int m_value;
};

The connections for interconnecting o1 and o2 look like this.

 QObject::connect(&o1, SIGNAL(valueChanged(int)),
 &o2, SLOT(setValue(int)));
 QObject::connect(&o2, SIGNAL(valueChanged(int)),
 &o1, SLOT(setValue(int)));

The implemented slot looks like this.

void ValueObject::setValue(int value)
{
 if(m_value == value)
 return;

 m_value = value;
 qDebug("Value set to %d", m_value);
 emit valueChanged(m_value);
}

