

© 2012 Digia Plc.

Qt in Education

Demonstration Script for Lecture 1

© 2012 Digia Plc.

The enclosed Qt Materials are provided under the Creative Commons Attribution-Share Alike 2.5 License
Agreement.

The full license text is available here: http://creativecommons.org/licenses/by-sa/2.5/legalcode.

Digia, Qt and the Digia and Qt logos are the registered trademarks of Digia Plc. in Finland and other countries
worldwide.

© 2012 Digia Plc.

Qt in Education

Demonstration Script
This demonstration shows the basic functionality of QtCreator and Qt. The

intention is not to give a detailed understanding, but to show what Qt is

capable of and what the rest of the course will be about.

QtCreator – Overview

1. Start QtCreator

2. Walk through the welcome pages.

� Getting StarGetting StarGetting StarGetting Started ted ted ted has links to examples and tutorials.

� Community Community Community Community links to entry points in the Qt community.

� Develop Develop Develop Develop lets you create and manage sessions and projects.

3. Create a new Qt4 GUI ProjectQt4 GUI ProjectQt4 GUI ProjectQt4 GUI Project. Name it ListDemo or similar.

4. Do not add any extra modules, but discuss some of them.

� QtNetworkQtNetworkQtNetworkQtNetwork, networking. TCP and UDP, HTTP, FTP, etc.

� QtOpenGLQtOpenGLQtOpenGLQtOpenGL, enables OpenGL acceleration of painting, as well as

direct access to the OpenGL API (for custom 3D graphics).

� QtSqlQtSqlQtSqlQtSql, interaction with databases. Can handle all from in-

memory/single file sqlite databases to remote Oracle servers,

etc.

� QtWebKitQtWebKitQtWebKitQtWebKit, web rendering and processing classes. It is possible

to embedd Qt C++ contents in web pages and add interaction

between HTML, JavaScript, C++ and Qt.

� Phonon,Phonon,Phonon,Phonon, multimedia framework. Interesting not only because of

its features, but that it has been developed in close

collaboration with the KDE project.

5. Let creator create a template application based on QWidgetQWidgetQWidgetQWidget, lets call

the class Widget for simplicity.

6. When the project has been created, walk through the project pane.
Show sources, headers, forms. Also, make sure to right click on the

project and show that this is where you can add new classes (add
new), change release/debug (build configuration), and if you have
multiple projects, change which one you want to run (run
configuration).

Designing User Interfaces

7. Open the form design mode. Go through the panes, tell the class that
this is what we will be using later on, you just want to get the

naming right.

© 2012 Digia Plc.

Qt in Education

� ToolbarToolbarToolbarToolbar (editing modes) – you can work with the design, but

also the connections between different widgets (will be shown

later), as well as the tab order and buddies (QLabels connected

to a specific other widget).

� WidgetsWidgetsWidgetsWidgets – here all the widgets are shown. For those with a

small screen, you can switch it to icon mode (right click). The

widgets are divided into groups (buttons, item views/widgets,

containers, input widgets, display widgets).

� Object treeObject treeObject treeObject tree – shows the hierarchy of the widgets in the current

form.

� PropertiesPropertiesPropertiesProperties – shows the property of the current widget. Notice

that each class' inheritance tree is visible as well. For

instance, the QObject has a name, then QWidget adds the rest of

the properties.

8. Now add three QPushButtons and a QListWidget as shown below.

9. Now rename and re-title the buttons according to the table below. You
can change the name in the property editor (show the inheritance tree

QObject – QWidget – QAbstractButton – QPushButton), the text can be

changed from the property editor or by double clicking on the button

and type.

10.Preview (from the menu

Tools – Form Editor –

Preview) the widget and

show that the widgets do

not stretch or adapt to

different window sizes.

11.Introduce the concept of

layouts. Grids, horizontal

boxes, vertical boxes.

12.Apply a grid layout and

show that the buttons are distributed evenly along the side of the

list widget. Break the layout and add a spacer below the buttons,

ButtButtButtButtonononon PropertyPropertyPropertyProperty New valueNew valueNew valueNew value

Top Name addButton

Top Text Add...

Middle Name deleteButton

Middle Text Delete

Bottom Name clearButton

Bottom Text Clear

© 2012 Digia Plc.

Qt in Education

then re-apply the grid layout.

13.Preview the proper dialog, show that you can preview it in different

styles (Windows, Plastique, etc).

14.Switch to signal/slot editing mode in the toolbar.

15.Connect the clear button's clicked() signal to the list widget's

clear() slot.

16.Show that the connection shows up in the signals slots editor dock

(at the bottom).

17.Switch back to widget editing mode in the toolbar.

18.Right click on the add button and pick Go To Slot...

19.Pick the clicked() signal from the dialog that pops up.

Basic Code Editing

20.Mention that the name of the newly created slot ties it to the

button. Be careful when changing names in either end (slot or

widget).

21.The code editor works as an ordinary editor. Move around, show line

numbers.

22.There are some useful short-cuts to go through:

� F4 switches between header and implementation.

� F2 switches between header and implementation, but also the
current method (if you're standing in your method's name).

� Ctrl+K brings up the locator used for searching and navigation
(can find classes, methods, files, but also go to a specific line,

etc)

23.Now start typing, go to the top and add an include for QInputDialog.

24.Ctrl+k, enter “m on_a” <return>, this brings you to the

on_addButton_clicked method.

25.Enter code “QString newText = QInputDialog::getText(“, emphasis the

code completion.

26.complete the line with “0,”Enter text”, “Text”);”, again emphasis the

help you get as you type arguments.

27.Now complete the slot method to look as this:

void Widget::on_addButton_clicked()
{
 QString newText = QInputDialog::getText(this, "Enter text", "Text:");
 if(!newText.isEmpty())
 ui->listWidget->addItem(newText);
}

© 2012 Digia Plc.

Qt in Education

28.Now build the application (Ctrl+Shift+b) and show the build progress

bar (above the run/debug/compile buttons) and the compile output pane

(Alt+4).

29.Run the application (Ctrl+r), show that the add and clear buttons

work, but that the delete one is dead.

30.Go to the design view and repeat the stages to create an

on_deleteButton_clicked() slot.

31.Enter the following code in the slot method. Mention the foreach

macro and that deleting an item removes it from the list. The

QListWidgetItem tells the parent list about its deletion, i.e. no

dangling pointers.

void Widget::on_deleteButton_clicked()
{
 foreach (QListWidgetItem *item, ui->listWidget->selectedItems())
 delete item;
}

32.Run the application and show that it works.

Handling Enabled States

33.Mention that the delete button always is enabled, that is not

correct. It needs to be enabled or disabled as soon as the selection

of the list changes.

34.Switch to the header (F4) and create a private slot called

updateDeleteEnabled.

35.Switch back to the source (F4) and create the method frame:

void Widget::updateDeleteEnabled()
{
}

36.Now, enter some code in it (DO NOT ADD THE FINAL SEMI-COLON)

ui->deleteButton->setEnabled(ui->listWidget-
>selectedItems().count()!=0)

37.Go to the constructor.

38.Explain that we will connect changes in the selection to this slot.

39.After the ui->setupUi call, enter the following code. Point out the

code completion for both signal and slot (it is our custom slot!).

 connect(ui->listWidget->selectionModel(),

SIGNAL(selectionChanged(QItemSelection,QItemSelection)),
 this, SLOT(updateDeleteEnabled()));

40.Now try to run the project (Ctrl+r).

41.Point out the build issue (“expected ';'...”). Show that this is

visible both from the compile output (Alt+4) as well as the build

© 2012 Digia Plc.

Qt in Education

issues (Alt+1). Also, show the wavy red line under the “}”,

indicating the problem live in the editor.

42.Fix the problem and run the application.

43.Notice that the button is enabled regardless of selection, until you

add an item and remove it. The method needs to be called once to

initialize it.

44.Add a call to the updateDeleteEnabled method just after the

connection in the constructor.

45.Run the application and show that all works as expected now.

Basic Debugging

46.Not all errors are caught at compilation. To hunt these down, a

debugger is used.

47.Add a breakpoint in the first line of the on_addButton_clicked slot

method.

48.Start a debugging session (F5).

49.Click the add button to trigger the break point.

50.Show the components of the debugger (call stack, locals, breakpoints,

threads).

© 2012 Digia Plc.

Qt in Education

51.Step over the current instruction (F10, or the button in the debug

toolbar).

52.Enter a string in the dialog and see that string in the locals

window. (Use international characters, they work.

53.Continue (F5) and close the application.

54.To exit the debugger, switch to edit mode (the left side buttons or

Ctrl+2).

End of demonstration!

