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Abstract We address the problem of warping 2D images
of garments onto target mannequins of arbitrary poses. The
motivation for this work is to enable an online shopper to
drag and drop selected articles of clothing onto a single man-
nequin to configure and visualize outfits. Such a capability
requires each garment to be available in a pose that is con-
sistent with the target mannequin. A 2D deformation system
is proposed, which enables a designer to quickly deform im-
ages of clothing onto a target shape with both fine and coarse
controls over the deformation. This system has retargeted
thousands of images for retailers to establish virtual dress-
ing rooms for their online customers.

Keywords Shape deformation · Image warping · Moving
least squares · As-rigid-as-possible shape manipulation

1 Introduction

The online experience in shopping for garments has re-
mained largely unchanged over the years. Consumers are
typically presented with a myriad of clothing images pre-
sented on mannequins or flat surfaces. The ability to drag
and drop clothing onto a single mannequin to configure and
visualize outfits is considered to be highly useful. A few
companies, such as Looklet and Schway, already help users
design custom looks by allowing them to virtually dress
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model mannequins with clothing items available on their
websites. To facilitate this capability, all clothing items must
either be placed on the mannequins when obtaining their
pictures, or be deformed from different poses to fit the tar-
get mannequins. The former approach is generally more ex-
pensive and involves more manual labor. Moreover, the lat-
ter approach allows showcasing any clothing item, which
may have been previously photographed for other purposes.
Therefore, having a system that allows designers to manipu-
late images of clothing items to fit a target shape is desirable.
Retargeting of images of garments among arbitrary poses,
however, is a challenging problem, since the images come
from disparate sources, including mannequins and human
models in many poses, sizes, and shapes.

This paper describes a deformation system for warping
images of garments from any pose onto a target mannequin
upon which a fashion ensemble can be created by the user.
We treat this problem as an exercise in 2D shape deforma-
tion that is governed by user-specified control points. Vari-
ous image deformation techniques exist in the graphics lit-
erature. However, to the best of our knowledge, none pro-
vide a general framework capable of handling the challenges
that arise when designing a system for this problem. The
main difficulties faced by the system are allowing the user
to perform the deformations with as few operations as pos-
sible, while, at the same time, providing fine control over
the shapes of the deformed images. Additionally, providing
the user with the ability to assign depth values to different
parts of the items that are being deformed is another crucial
feature needed in such a system.

Figure 1 shows an overview of the deformation pipeline
of our system. First, the input shape of the garment is tri-
angulated (Fig. 1(a)). Next, the user performs coarse adjust-
ments to the input shape (Fig. 1(b)). Finally, the user makes
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Fig. 1 Deformation pipeline:
(a) the user traces the contour of
the garment to define a closed
region; (b) the triangulated
mesh of the region with
user-specified interior (red) and
exterior (blue) control points;
(c) the user deforms the mesh to
align it with a target mannequin
by inserting, deleting, and
moving the control points;
(d) the final result of the
garment retargeted onto the
desired mannequin

finer adjustments to the shape of the garment (Fig. 1(c)) to
obtain the desired result (Fig. 1(d)).

In this work, we improve and employ known deforma-
tion techniques in a complete system for the garment re-
targeting problem. We extend the image-space MLS de-
formation approach of Schaefer et al. [10] to object-space.
This simple extension is used as an initial guess to the as-
rigid-as-possible (ARAP) deformation scheme of Sorkine
and Alexa [11]. As shown in the next section, this improves
the convergence rate of ARAP and reduces the possibility
of convergence to incorrect minima. An additional feature
of our 2D deformation system is the capability of assigning
arbitrary depth values to the control points, which can then
be used to determine the depth values at all mesh vertices.
This feature is required when rendering deformed objects
with overlapping parts. Finally, we show how interior and
exterior control points enable the system to furnish intuitive
local-global control over the shape of the deformed mesh:
exterior points accommodate the fine local detail along the
boundary, while interior points perform coarser global shape
adjustments.

The proposed deformation system was designed to be
easy to use and operate at interactive rates. The behavior of
the system adheres to the following criteria: Ease of use: an
iterative procedure is used to require minimal user input in
quickly creating natural deformations; Fine control: exterior
control points provide the user with fine control over the de-
formations; Global control: interior control points provide
the user with global control over the deformations.

2 Related work

The first ARAP formulation introduced by Alexa et al.
[1] was for morphing between compatibly triangulated 2D
shapes. Igarashi et al. [3] used the ARAP criterion as the
main constraint in designing a deformation system that en-
abled manipulating 2D objects in real time. However, they
reported slow performances for meshes with more than 300

vertices on a 1-GHz system. In [10], Schaefer et al. pro-
posed an MLS-based image-space deformation system ca-
pable of deforming images with thousands of pixels in real
time. They derived closed-form solutions for affine, similar-
ity and rigid control points and lines, which could be used
to guide the deformation. In [13], the authors propose a 2D
deformation system using a non-linear least squares opti-
mization scheme, where the objective is to preserve two ge-
ometric properties of the shape that is being deformed: the
Laplacian coordinates of the boundary curve of the shape
and local areas inside the shape.

In [11], an ARAP system for deforming 3D triangular
surfaces is proposed. Starting with an initial guess for the
deformation, their approach iteratively improves the defor-
mation by minimizing the non-rigidity of the deformation in
vertex cells over the whole mesh. Their approach manipu-
lates a 3D shape through its surface, rather than the volume
enclosed by the surface. Therefore, the approach falls into
the same category as Igarashi’s [3], while being mathemat-
ically simpler. The individual deformation cells used by the
two approaches, however, are different. In [3], each cell con-
sists of a single triangle, while in [11], the cells are defined
on a per-vertex basis and the extent of each cell corresponds
to the 1-ring (star) neighborhood of the vertex. In our exper-
iments, we noticed that as the amount of overlap between
neighboring cells increases, the resulting deformation be-
comes smoother. Moreover, in [3], only one ARAP iteration
is performed as opposed to multiple iterations in [11].

In [5], the authors propose a more general deformation
scheme for deforming images using a similar local-global
scheme to the one used in [11]. Their method is more gen-
eral as it allows incorporating information about the image
content (energy) in the set of allowable transformations the
deformation may employ. They show applications of their
system in content-aware image resizing and 2D image de-
formations.

In [2], the authors propose an extension of the MLS-
based image deformation of [10] to 3D shapes. However,
the approach uses the Euclidean distance as the default met-
ric and also does not attempt to minimize the non-rigidity
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of the deformation within the cells of the deformed surface
(i.e., in the sense of [11]).

One of the main shortcomings of the MLS-based de-
formation approach of [10] is the lack of support for non-
convex objects. We show how their MLS approach can be
extended to handle non-convex objects. In more recent work
[5, 12], the shortcomings of the MLS approach compared to
other approaches have been solely attributed to its use of
Euclidean distance as the driving metric in the deformation.
However, since the approach does not explicitly attempt to
minimize the local non-rigidity of the deformation around
each point of interest, it is not truly ARAP as defined in [1].
Empirically, we show that besides the issues arising from
the employed metric, the MLS approach enforces a weaker
rigidity constraint and that its deformation results can be im-
proved.

More recently, in [4], a deformation system is proposed
where linear blending weights are used to produce smooth
deformations for combinations of points, bones, and cages.
Maximum Entropy Coordinates and Mean Value Coordi-
nates are examples of other techniques that may be used for
deforming the garments. However, these techniques do not
guarantee that no local or global scaling will be introduced
during the deformation process.

In [7], a web-based 3D system is presented where users
can try on physically simulated garments on virtual repre-
sentations of themselves. It is important to note that our ap-
proach operates entirely in 2D and makes no attempt at cloth
simulation due to the constraints of our image-based input.

3 Deformation framework

The deformation of the input shape is guided by the move-
ment of a set of control points. The objective is to update
the positions of all the points in the shape in a manner that
is consistent with the movement of these control points, and
is also “natural.” Since the shapes being manipulated gener-
ally correspond to physical objects, it has been argued that
the most natural deformations are those that minimize the
non-rigidity energy of the deformed object [1]. Even though
garments cannot be regarded as rigid objects, in our exper-
iments we noticed that the rigidity constraint leads to more
desirable deformations compared to other types of defor-
mations such as as-similar-as-possible (ASAP), Complex
Barycentric Coordinates [12], and Conformal Maps. There-
fore, in this work we follow the same as-rigid-as-possible
(ARAP) approach as in the works of refs. [1, 3, 5, 10, 11].

This section is organized as follows: in Sect. 3.1, we
describe the coarse deformation process in our system. In
Sect. 3.2, we describe how complex overlapping scenarios
can be handled by our vertex depth assignment procedure.
Finally, in Sect. 3.3, we describe the fine deformation stage
of our system.

3.1 Coarse deformation

In coarse deformation, the user makes rough adjustments to
the shape of the input using a few interior control points.
The initial deformation in this mode is first obtained using
object-space MLS (Sect. 3.1.1), and then is iteratively im-
proved using ARAP (Sect. 3.1.2). Our system also allows
the user to perform rotations about arbitrary control points
(Sect. 3.1.3).

The input mesh is represented by M = (V , E ), where
V = {vn}Nn=1 is the set of mesh vertices and E = {eij ∈
V × V |vi is connected to vj } is the set of edges that con-
nect the vertices. It is assumed that the topology of the
mesh remains the same throughout the deformation. The
ordered sets P = {pn}Nn=1 and Q = {qn}Nn=1 contain the
2D positions of the vertices in the original and deformed
meshes, respectively. Similarly, ordered sets A = {am}Mm=1
and B = {bm}Mm=1 respectively contain the source and target
positions of the interior control points.

The objective is to determine a warp function ψ : R
2 →

R
2 that yields the positions of the vertices in the deformed

mesh based on the movements of the control points from
am to bm. In the ideal case, ψ must satisfy the following
properties [10]: smoothness, interpolation, identity, and de-
formation constraints. Simultaneously satisfying all of these
properties may not be possible. For example, the deforma-
tion constraints generally lead to warp functions, which are
not smooth.

In real-time deformation systems, as the user moves the
control points, a sequence of warp functions are constructed.
The deformation is guided with a sequence of point-sets
A = A1, . . . , AK describing the source and target positions
of the control points. Given two such sequences A and B,
in addition to the above properties for the warp function, we
require the following property to hold:

– trajectory invariance: If A1 = B1 and AK = BK , then
the deformed meshes corresponding to the two sequences
should be the same.

This guarantees the system does not produce undesirable re-
sults similar to the one shown in Fig. 2(b).

The warp function ψ is obtained by minimizing an en-
ergy functional over the mesh vertices V . We now discuss
the initial guess and the deformation constraints, which are
the main considerations that impact the solution for ψ .

Initial guess One aspect of the ARAP framework, which is
generally ignored in the previously mentioned works, is its
need for an initial guess for the deformation. Since the non-
rigidity energy functional that is minimized in the process
may have multiple local or global extrema, the initial guess
for the deformation plays an important role in both the con-
vergence rate of the approach and in preventing undesirable
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Fig. 2 Comparison of ARAP deformation using different initial
guesses: (a) original shape, (b) previous frame as initial guess
(PFAIG), (c) object-space MLS

deformations. Previous works generally advocate the use of
the “previous frame as the initial guess” (PFAIG) [5, 11].
Alternate solutions for initial guesses have also been used.
For example, an initial guess based on the Least Squares
Conformal Map (LSCM) is discussed in [5]. However, the
authors recommend using PFAIG to achieve convergence to
a minimum with fewer iterations.

The main problem with using PFAIG is that the deforma-
tion error is accumulated across frames. In many instances,
and especially under extreme deformations, this accumu-
lated error can lead to two types of problems: slower con-
vergence rates and/or convergence to a wrong minimum. For
example, in Fig. 2, we compare the deformation results be-
tween PFAIG and our proposed approach discussed in this
paper. In both cases all control points were returned to their
original configuration after a few user manipulations. How-
ever, in Fig. 2(b), the model did not return to its initial shape.
This is in violations of the identity and trajectory invari-
ance criteria for deformations, which were mentioned pre-
viously. The initial guess in Fig. 2(c) was obtained using an
extension of the image-space MLS-based deformation ap-
proach of [10]. The computational overhead of this step is
negligible (less than 4 milliseconds on meshes with approx-
imately 3 K vertices on a 2 GHz CPU). In Sect. 3.1.1, we
describe the approach in detail. Note that in [3], instead of
using PFAIG, the authors always use the original shape as
the initial guess. Although doing this may not result in the
undesirable effects shown in Fig. 2(b), the approach will al-
ways have slower convergence rates than both PFAIG and
our approach.

Deformation constraints In general, an ARAP framework
results in natural-looking deformations. However, under ex-
treme deformations, the rigidity constraint leads to foldovers
and other undesirable effects. For example, in Fig. 3 we
compare the performance of an ARAP deformation system
with a relaxed ARAP system. As can be seen in Fig. 3(a, b),
foldovers develop in the neck of the giraffe when all mesh
cells are required to remain as rigid as possible. On the other
hand, by relaxing the rigidity constraints, more desirable re-
sults, which do not contain any foldovers, can be obtained.

Fig. 3 Preventing foldovers in deformations: deformation results us-
ing (a, b) ARAP, and (c, d) relaxed ARAP. The original model is given
in Fig. 5

This is shown in Fig. 3(c, d). Relaxed ARAP is briefly dis-
cussed in Sect. 3.1.2.

3.1.1 Object-space MLS for 2D shape deformation

We extend the image-space Moving Least Squares (MLS)
deformation approach of [10] to object-space and use it to
obtain the initial guess needed for the ARAP deformation.
The approach has very limited overhead (in the order of a
few milliseconds for meshes with a few thousand vertices)
and is easy to implement.

Given the movements of the control points from their
source positions P to target positions Q, the objective is
to obtain the positions of the mesh vertices such that the
shape undergoes the least amount of non-rigid transforma-
tions. Globally, satisfying the rigidity constraint for all arbi-
trary configurations of source and target control points is not
feasible. Instead, the constraint is enforced on small local
neighborhoods near each point in the domain of ψ . A warp
function is sought at each mesh vertex that depends only on
the movement of the control points by minimizing an error
functional in the least-squares sense. In particular, for each
vertex vn a separate local warp function ψn : R

2 → R
2 is



Image warping for retargeting garments among arbitrary poses 529

found that minimizes

En =
M∑

m=1

θ
(
d(am, vn)

)∥∥bm − ψn(am)
∥∥2

, (1)

where d : R
2 × V → R is a function measuring the geodesic

distance between a point in R
2 and a mesh vertex, and θ :

R → R is a non-negative monotonically decreasing weight
function. This approach for deforming 2D shapes using
Moving Least Squares is based on the work in [10]. One
important difference is that the work in [10] was limited to
convex shapes, whereas our use of geodesic distance extends
our technique to arbitrary shapes.

The geodesic distance between any two vertices on the
mesh is defined as the length of the shortest path that runs
along the edges between the two vertices. Let g : V × V → R

be a function that returns the geodesic distance between
two mesh vertices. Then, the geodesic distance between a
mesh vertex vn and an arbitrary point p ∈ R

2 is computed
as d(p, vn) = ‖p′ − p‖ + g(v′, vn), where v′ denotes the
mesh vertex nearest to p, and p′ refers to that vertex posi-
tion. In our case, p refers to the source position of a control
point am ∈ A. As a result, the geodesic distance only needs
to be computed from each control point am ∈ A to all mesh
vertices. Note that this computation can be performed of-
fline, since it is specified in terms of the anchored source
positions, and not the varying target locations. We use Di-
jkstra’s shortest path algorithm to efficiently compute these
distances.

In order for ψ to be local and interpolating at the control
points, the following respective conditions must hold: θ(r)

must be rapidly decreasing as r → ∞ and limr→0 θ(r) = ∞
[6]. These two conditions reduce the set of possible choices
for θ to asymptotic functions whose asymptotes coincide
with the x and y axes. The hyperbolic cosecant function
θ(r) = csch(r/α) and the rational function θ(r) = r−α , for
some α > 0, are two examples of good candidates for the
weight function. In our experiments, we noticed that weight
functions with a faster rate of decay result in more desirable
(i.e., rigid) deformations. For any α1, α2 > 0, csch(r/α1)

decreases more rapidly than r−α2 as r → ∞. This, theo-
retically, makes csch(r/α1) a more suitable choice as the
weight function for the deformation. However, the fast rate
of decay of csch introduces numerical instabilities. There-
fore, θ(r) = r−α is used as the weight function in all cal-
culations that follow. The same choice of weights was also
used in the original MLS formation of [8] and MLS-based
deformation scheme of [10].

Since we are looking for a rigid deformation, ψn is
restricted to belong to the class of rigid transformations.
Therefore, the warp function at each vertex vn is given as

ψn(x) = Rnx + Tn. (2)

Fig. 4 Comparison of image-space vs. object-space MLS deforma-
tions. The object-space deformation results are preferred since the
movement of control points on one sleeve does not induce extreme
foldover

Consequently, the error functional of Eq. (1) becomes

En =
M∑

m=1

θn
m‖bm − Rnam − Tn‖2, (3)

where θn
m = d(am, vn)

−α for some α > 0, Rn is a rota-
tion matrix, and Tn is a vector representing translation. It
is important to note that the MLS formulation in Eq. (3) at-
tempts to derive a rigid transformation based exclusively on
the source and target positions of the control points. This is
considered to impose a weaker rigidity constraint because it
does not explicitly incorporate the local neighborhood about
each mesh vertex vn.

Figure 4 compares the results for image-space and object-
space MLS deformations. Notice that our object-space MLS
deformation results are superior to the image-space results
because the movement of control points in one part of the
shape does not affect unrelated mesh vertices that may lie
nearby. For instance, the movement of control points on the
sleeve only affects the sleeve region and does not affect the
position of mesh vertices on the nearby torso.

3.1.2 As-rigid-as-possible deformation

As noted earlier, the object-space MLS deformation proce-
dure described in Sect. 3.1.1 is not really “as rigid as possi-
ble” in the sense of [1, 11]. This limitation is due to the fact
that a different rigid transformation is obtained for each ver-
tex in the input mesh and no attempt is made to ensure the
transformations are locally the same. However, the approach
results in a good approximation and can be used as an initial
guess for an iterative ARAP procedure that refines the de-
formation. We adapt the ARAP 3D deformation method of
[11] to iteratively improve the 2D results of Sect. 3.1.1.

The ARAP procedure iteratively minimizes the total non-
rigidity energy of our initial MLS deformation. This energy
is defined as the sum of the local non-rigidity energies in the
vertex cells covering the whole mesh. Each vertex cell Cn is
defined using vertex n and its 1-ring neighbors, given by set
N (n) = {k|enk ∈ E }.

Each iteration of the minimization in the ARAP proce-
dure consists of two steps. In the first step, for each vertex
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Fig. 5 Comparison of MLS and ARAP MLS deformation results. No-
tice that MLS version suffers from excessive distortion along the neck
near the head

cell Cn in the original mesh, we solve for a rotation matrix
that best maps, in a least-squares sense, the positions of the
vertices in Cn onto their corresponding positions in the de-
formed mesh. The sum of squared differences in these posi-
tions defines the local non-rigidity in the cell. In the second
step, the recovered rotation matrices are used to construct
and solve a sparse linear system to recover vertex positions
that minimize the total non-rigidity energy of the deforma-
tion over the whole mesh. The two steps can be iterated to
improve the deformation results. It has been shown that this
iterative algorithm is guaranteed to converge to a local min-
imum [5].

Figure 5 compares MLS and as-rigid-as-possible MLS
(ARAP MLS) deformation results. The giraffe example in
Fig. 5 is chosen to show the superior performance of ARAP
MLS over the object-space MLS under extreme deforma-
tions. In Fig. 6 we compare the coarse deformation results
of our approach to those of [3] and [13]. Our ARAP pro-
cedure with MLS initialization converged to a solution after
approximately 20 iterations. The total deformation time for
meshes with 2 K vertices was approximately 45 millisec-
onds on a 2.4 GHz CPU. The offline precomputation time to
update the MLS and ARAP parameters after user changes
was approximately one second.

One can also relax the rigidity constraint in local regions
of the deformed object to reduce the effects of foldovers
(Fig. 3). This is done by first detecting triangles in the de-
formed object where foldovers occur. The ARAP procedure
is then re-applied to the 2D shape, but this time allowing
the foldover triangles and a small neighborhood near them
to undergo similarity transformations with a pre-specified
maximum amount of allowed scaling. This option serves to
improve the deformation results, as shown in Fig. 3.

3.1.3 Rotation about control points

In some instances, the user may wish to deform the input
mesh by rotating sections of the object around a control
point. To allow this, we associate a rotation angle with each
control point. Rotation about the control points is performed
in two steps. First, an initial guess for the deformation is ob-
tained. Second, the rigidity of the deformation is iteratively
improved using the same approach as in Sect. 3.1.2.

Fig. 6 Comparison of deformation results between our ARAP MLS
approach and other techniques. Our approach clearly outperforms that
of [3]. However, in this simple example, it is not easy to visually eval-
uate the performance of our approach against Weng’s. Due to lack of
proper initialization in Weng’s technique, their results can be expected
to degrade for more complicated examples, as in Fig. 2

The initial deformation is obtained by rotating each mesh
vertex vn by the rotation angle associated with its nearest
interior control point cm. Let pn denote the position of vn,
and Rm be the rotation matrix associated with cm. The new
position qn of vn is then obtained as qn = Rm(pn−cm)+cm.

The initial deformation, however, results in undesir-
able artifacts in the deformed mesh. The result can be im-
proved by applying the ARAP procedure as described in the
Sect. 3.1.2. In this case, since the initial deformation is poor,
more ARAP iterations are required to improve the results.
This considerably increases the computation time. However,
the initial deformation generally only modifies the positions
of a few vertices on the mesh. Therefore, the ARAP de-
formation procedure only needs to be applied to the vertex
cells where the residual of the initial deformation is large.
The modified ARAP procedure for rotations about control
points is given as follows:

1. Using the initial deformation results, for each vertex cell
Cn, obtain rotation matrix Rn as described in Sect. 3.1.2.

2. For each cell Cn, compute the residual

rn =
∑

k∈N (n)

wnk

∥∥(qk − qn) − Rn(pk − pn)
∥∥2

. (4)

3. Construct and solve the sparse linear system

Lq = h, (5)

where L is the discrete Laplace operator, q is a vec-
tor containing the unknown positions qn, and vector h
contains the corresponding equalities for each qn on the
right-hand side of Eq. (4). In order to speed up the com-
putation, add all vertices with residual rn < ε, for some
ε ≥ 0, as constraints to the system.

4. Repeat the above steps K times.

3.2 Handling overlapping elements

An important feature of the deformation system is the abil-
ity to handle shapes with overlapping elements. We resolve
these overlaps by considering each mesh vertex to have
a depth value that is initialized via user-specified control
points. This is an exercise in scattered data interpolation,
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whereby a smooth depth function is fitted through the con-
trol point values.

Let A = {am}Mm=1 denote the sparse set of control point
positions and let Z = {zm}Mm=1 denote their associated depth
values. Our objective is to find a smooth function ξ : P → R

that maps the mesh vertices in P to depth values, with the
following properties:

– Smoothness: the function must be smooth everywhere,
i.e., be at least C1-continuous.

– Interpolation: the depth values at the control points must
be the same as the user-specified values; i.e., ξ(am) = zm,
for m = 1, . . . ,M .

– Identity: if all control points have the same depth value,
then the mesh should remain flat; i.e., if zm = K , ∀m ∈
|Z|, then ξ(pn) = c, ∀pn ∈ P , where c is a constant value.

Note that the desired function has exactly the same proper-
ties as the warp function we sought in Sect. 3.1.1. Therefore,
we apply the MLS technique to solve for the depth function.
At each mesh vertex vn we seek to find ξn : R

2 → R, mini-
mizing

En =
M∑

m=1

θ
(
d(am, vn)

(
zm − ξn(am)

)2)
, (6)

where θ(r) = r−α for some α > 0 and r ∈ R, and d(am, vn)

returns the geodesic distance between mesh vertex vn and
control point am, as defined in Sect. 3.1.1. We know the
function ξn cannot depend on the initial depth values of the
control points, since they are all initially placed on the flat
mesh and, as a result, have the same values everywhere.
Therefore, the local function we are looking for is of the
form ξn(x) = cn; i.e., a constant function. The error func-
tional becomes

En =
M∑

m=1

θn
m(zm − cn)

2. (7)

where θn
m = d(am, vn)

−α . The minimizing cn for the en-
ergy functional is found by taking the partial derivative
of En with respect to cn and setting the result to zero:
∂En

∂cn
= −2

∑
m θn

m(zm − cn) = 0; we obtain cn =
∑

m θn
mzm∑

m θn
m

.
Therefore, the depth value of mesh vertex vn can be effi-
ciently computed as ξn(p) = cn for all p ∈ R

2. Recompu-
tation is necessary only when the user modifies the height
value of a control point. This method enables the user to rep-
resent shapes with complex overlapping elements, as shown
in Fig. 7.

3.3 Boundary deformation

As shown earlier, the ARAP MLS approach can be used
to deform 2D shapes in a natural manner with few control

Fig. 7 Example of complex overlapping elements. Top row: original
ropes; middle and bottom rows: interlaced ropes and their underlying
mesh structure with control points shown in red

points. However, the user may still want to further refine
the deformation, particularly along the boundaries. This is
achieved by enclosing the boundary with a control poly-
line. The polyline vertices define the exterior control points.
By allowing the user to move these points, fine control is
given over the shape of the object’s boundary. In particular,
each line segment in this polyline is an MLS control line.
A closed-form solution for deforming the object using these
lines is given in [10]. Alternatively, these control lines may
be densely sampled to yield MLS control points that will
govern the deformation.

In order for the interior and exterior control points to in-
teract with each other in a consistent and natural manner,
the system has two deformation modes: coarse and fine. In
the coarse (fine) deformation mode, the user can deform the
interior (boundary) by moving the interior (exterior) control
points. When one set of points are moved, the other set of
points are subject to the deforming forces and follow the
shape in tandem.

Since the exterior control points are not part of the tri-
angulated mesh but move with the mesh as it deforms,
their coordinates are given relative to the mesh vertices. Let
p ∈ R

2 denote the position of an exterior control point and
let pm,pn ∈ P denote the positions of the two closest ver-
tices on the undeformed mesh to p, such that ‖pm −pn‖ > ε

for some small ε > 0. Then, the relative coordinates of p

with respect to the mesh are given in terms of the following
inner products:

pu = 〈
(p − pn), û

〉
, (8)

pv = 〈
(p − pn), v̂

〉
, (9)

where û = pm−pn

‖pm−pn‖ and v̂ = û⊥ form an orthonormal basis
at pn. The global coordinates of p can be obtained from û

and v̂ by

p = puû + pvv̂ + pn. (10)
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Fig. 8 Deforming a dress to match a target shape. Deformation using
(a) interior control points only, and (b) interior and exterior control
points. Notice that (b) requires exterior control points to perform finer
adjustments to the shape boundary. The red and blue dots denote the
interior and exterior control points, respectively; (c) and (d) show the
original shape and the final deformation results

Let p′
m and p′

n denote the new positions of pm and pn

on the deformed mesh, respectively. The new position of the
control point on the deformed mesh is given as

p′ = puû
′ + pvv̂

′ + p′
n, (11)

where û′ = p′
m−p′

n‖p′
m−p′

n‖ , v̂′ = û′⊥.
When the deformation mode is changed from coarse to

fine, the original mesh is set to be the deformed mesh and
the interior control points are subjected to the mesh defor-
mation. The exterior control points define the endpoints of
control lines that can be used to adjust the shape of the
boundary. Note that as a result of the coarse deformation,
the control lines which initially enclosed the original shape
may cross into the shape. This, however, does not seem to
degrade the deformation results in the fine adjustment phase.

Figure 8 shows an example where a dress is deformed
to fit a target model. Note that the deformation results of
ARAP MLS (Fig. 8(a)), though close to the desired shape,
still require finer adjustments. This is especially evident in
the regions near the wrists and shoulders of the model. The
shortcomings of the ARAP MLS in those regions are not a
result of the failure of the technique in enforcing the rigid-
ity constraint; the shape of the underlying mesh near the
armpits prevents the arms from correctly rotating around the
shoulder joints without distorting the geometry and texture
in the surrounding regions. Figures 8(b) and (d) show the
improved deformation results with the additional help of ex-
terior control points.

3.3.1 Automatic exterior control point extraction

Manual specification of the exterior control points is unde-
sirable as it may be too tedious for complex shapes. Instead,
we would like the system to be able to pick the most appro-
priate locations for these control points while keeping their
numbers at a minimum. In our system, the control points
are picked at the locations on the contour curve where the
unsigned curvature is locally maximum.

In the continuous setting, the unsigned curvature at a
point on an arc-length parameterized regular curve, S(t), S :
[0,1) → R

2, is given as

κ(t) =
∥∥∥∥
∂T̂

∂t
(t)

∥∥∥∥, (12)

where T̂ (t) = ∂S
∂t

(t) is the unit tangent vector at t . The goal
is to reliably and quickly estimate the curvature values in
the discrete setting, whereby a regularly sampled 2D curve
is represented with the ordered point-set R = {ri}Ii=1, where
ri ∈ R

2 and I is the number of points on the curve. Our
approach is based on the curvature scale-space theory [9],
where the derivatives are computed by convolving the sam-
ple data with Gaussian derivatives. We obtain the tangent
vectors of the sample points by performing circular convo-
lution of the data with the first-order Gaussian derivative

T = R ∗ G1
σ , (13)

where G1
σ denotes the discrete first-order Gaussian deriva-

tive kernel with standard deviation σ and ∗ is the discrete
circular convolution operator. Note that the vectors ti ∈ T

obtained this way do not necessarily have unit length and
their orientations may be incorrect. Therefore, we obtain
new normalized tangent vectors t̂i with correct orientations
by t̂i = s

ti‖ti‖ , where s = 〈ti , r(i+1)%I − ri〉. The vector-set

T̂ = {t̂i}Ii=1 contains the normalized vectors with correct
orientations. The normal directions at the data points are
then computed by convolving T̂ with a first-order Gaussian
derivative in the same manner as before. Let N = {ni} be the
vector-set obtained in this manner. The unsigned curvature
at data point ri is given as κi = ‖ni‖.

Sample points whose unsigned curvatures are greater
than their immediate neighbors’ are then picked as the exte-
rior control points. Note that the robustness of the curvature
computations and the number of extracted control points can
be adjusted by changing the standard deviation of the Gaus-
sian kernel, σ , used in the derivative computations. We use
a default value of σ = I

β
, for some β > 0, which produces

acceptable results for all 2D shapes. However, β is a param-
eter that the user can adjust to alter the number of exterior
control points that are automatically extracted.
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4 Results

Figure 9 shows snapshots of our deformation system during
various stages of the warping process for retargeting gar-
ments among various poses. The top row of Fig. 9 depicts
images of two dresses that need to be warped to fit different
poses. These dresses are shown overlaid upon target mod-
els in the second row of the figure. It is clear that major
adjustments are needed. The third row of Fig. 9 shows the
deformation results using only interior control points. Fur-
ther refinements to the shape boundary are made by adding
and moving exterior control points, as shown in the fourth
row of the figure. Final results of the deformation process
are shown in the bottom row of Fig. 9.

The total time required for a user to warp and obtain the
final result for each dress in Fig. 9 was approximately three
minutes. This performance exceeded the expectations of the
commercial users who employed our system to make thou-
sands of retargeted garment images for use in virtual dress-
ing rooms of retailer websites. The underlying mesh in each
dress in Fig. 9 consists of approximately 1700 triangular
faces. Each ARAP MLS deformation iteration, on average,
took 45 ms on a single 2.4 GHz Intel® CPU core. In each
iteration, the computation time is dominated by the ARAP
deformation step.

5 Conclusion

In this paper, we described a deformation system for warp-
ing images of garments onto target mannequins of arbitrary
poses. The rationale for this work is that input imagery of
garments may come from varied sources. However, in order
to create a compelling online shopping experience, it is use-
ful for a consumer to drag and drop images of clothing onto
a target mannequin to visualize a customizable fashion en-
semble. This can only be achieved if the images available to
the user have already been warped to be readily aligned on
the target mannequin. This warping/alignment problem was
treated as an exercise in 2D shape deformation that is gov-
erned by user-specified control points. A balance was main-
tained to allow the user to perform the deformations with as
few operations as possible, while, at the same time, provid-
ing fine control over the shapes of the deformed images.

We built upon recent advances in MLS and ARAP shape
manipulation, and extended MLS from the image-space to
the object-space domain to handle the concave shapes that
are prevalent in this application. We also exploited ARAP
deformations to yield more natural warps that improve the
MLS results. In addition, our system enabled the user to cor-
rectly deform objects with overlapping elements. Finally, we
showed how the interior and exterior control points enable
the system to furnish intuitive local-global control over the
shape of the deformed mesh.

Fig. 9 Snapshots of our garment retargeting system. Each column of
the five rows respectively depicts an input dress, an overlay of the dress
on a target model, partial deformation results using interior control
points, additional refinement using exterior control points, and the final
result

The work described in this paper has led to a deformation
tool for retargeting images of garments onto mannequins of
arbitrary poses. It supersedes commercially available tools
such as the Puppet Warp module in Adobe® Photoshop®

CS5, which enables deformations using only interior con-
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trol points. The absence of exterior control points in Puppet
Warp makes it difficult to perform local shape adjustments,
as required for carefully retargeting images of garments. Our
use of interior and exterior control points for coarse and fine
shape editing modes facilitates a high-speed workflow to
handle vast image collections.

In future work, we intend to augment the process of mak-
ing finer adjustments to the boundary of deformed objects by
using fewer control points. We will experiment with cage-
based deformation techniques that use mean value coordi-
nates, harmonic coordinates, Green coordinates, and com-
plex barycentric coordinates [12].
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