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This paper discusses the principles of tradi-
tional mosaics and describes a technique for
implementing a digital mosaicing system.
The goal of this work is to transform digital
images into traditional mosaic-like render-
ings. We achieve this effect by recovering
free-form feature curves from the image and
laying rows of tiles along these curves. Com-
position rules are applied to merge these tiles
into an intricate jigsaw that conforms to clas-
sical mosaic styles. Mosaic rendering offers
the user flexibility over every aspect of this
craft, including tile arrangement, shapes, and
colors. The result is a system that makes this
wonderful craft more flexible and widely ac-
cessible than previously possible.
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Nonphotorealistic rendering has enjoyed a surge of
interest in recent years. Rendering algorithms have
been introduced to mimic various classical art forms,
including engraving [22, 29], pen-and-ink illustra-
tions [23, 27], digital watercolors [3], line-art draw-
ing [6, 7, 15], expressive painting [11, 19], and Celtic
art [10]. This paper addresses computer techniques
to render one of the most ancient of classical art
forms: mosaics.
Mosaics are designs and pictures formed from the
juxtaposition of small tesserae (tiles) of stones, terra-
cotta, or glass. The ancient art of mosaic is among the
oldest, most durable, and most functional art forms.
It was used in ancient Greece and Rome to adorn
architectural surfaces. Intricate and fascinating mo-
saics were prominent in floor pavements, wall mu-
rals, and vault (ceiling) decorations [4].
The durability of the materials used has allowed mo-
saics to survive the ravages of time far more grace-
fully than paintings. As a result, there is much ev-
idence that mosaics permeated many cultures and
periods. They played a central role in Greco-Roman,
early Christian, Byzantine, Islamic, medieval, and
post-Renaissance art. Mosaics continue to be per-
vasive today in public buildings, plazas, subways,
gardens, and restaurants. Interested readers may con-
sult [1, 2, 17, 26] for further background.
Mosaics derive much of their splendor from scale.
Upon close scrutiny, the skillful placement of tiles
and the intricate tessellations that define the work
are prominently visible. At a larger scale, the tiles
fit together like jigsaw pieces into an abstract puz-
zle, forming a unique and striking blend of colors,
designs, and images. The interplay between these
different levels of abstraction and our ability to re-
solve the “big picture” from the individual tiles is
what makes mosaics visually compelling.
It is important to distinguish the term “mosaic” from
its uses in other fields. In image processing and com-
puter vision, an image mosaic refers to a single large
image stitched together from several smaller images.
This is necessary for panoramas and terrain imagery,
where a single image is not adequate to capture a suf-
ficiently large field of view. In visual effects work for
commercial advertising, photomosaics has recently
been used to piece together many small images to
form a single composite image [25]. This approach is
more closely related to halftones where the true color
of a region is approximated by an appropriately cho-
sen textured pattern. Carrying this analogy further,
classical mosaics can be considered to be general-
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izations of the uniform tessellation of digital images,
whereby pixels (tiles) are not confined to a rectilin-
ear grid, but rather may be oriented along arbitrary
curves.
This paper presents a technique for simulating the
classical mosaic art form. Rendering mosaics is
essentially an exercise in establishing a tessella-
tion that conforms to the principal features and
strokes in a digital image. Once feature curves
are extracted from the image, we compute off-
set curves to delimit rows of rectangular mosaic
tiles. Since the offset curves may self-intersect,
we trim them using Voronoi diagrams that are
computed using a Z-buffer. Finally, composition
rules are applied to merge these tiles into an in-
tricate jigsaw that conforms to classical mosaic
styles.
An early attempt at mimicking traditional mosaics
was described in [11]. In that work, a Z-buffer ap-
proach is used to compute the Voronoi diagram of
a set of points in the plane, namely, the Dirich-
let domain. This use of a Z-buffer to compute the
Dirichlet domain is also described in the OpenGL
user manual [28]. The computed regions of the
Dirichlet domain comprise a simple tiling of the
plane that crudely mimics a traditional mosaic. The
method does not attempt to align mosaic tiles along
prominent strokes, a property common to classical
mosaics.
There are several commercial software packages that
claim to offer mosaic-like renderings. An Adobe
Photoshop plug-in attempts to achieve this effect by
tessellating the image into tiles. Unfortunately, the
tiles do not conform to the principal features and
strokes in the image. More compelling visual effects
are possible in Painter from Metacreations through
the use of hand-drawn strokes along which a trail of
mosaic tiles are rendered. The tile colors are sam-
pled from an underlying image. Although the re-
sulting mosaics can be quite impressive, this man-
ual approach is very tedious and cumbersome as the
user must draw all the strokes that constitute the ren-
dering. Successive rows of tiles are due to painting
successive strokes; that is, there is no attempt at in-
ferring adjacent strokes from a few key hand-drawn
strokes.
Recent work has attempted to address the tile align-
ment problem. In [12], tiles are made to conform to
user-specified image features. A centroidal Voronoi
diagram (CVD) is used to create a point distribu-
tion in the plane. A CVD is a Voronoi diagram

with the property that each site is located at the
centroid of its region. An iterative algorithm is in-
voked by which a Voronoi diagram is computed
from a set of site points, and the site of each re-
gion is then moved to the region’s centroid. Al-
though no proof is given, the regions of the re-
sulting site points empirically converge to a nearly
optimal tiling of the plane. The tiling is hexago-
nal when minimizing a Euclidean distance metric.
Since square tiles are desired, a Manhattan distance
metric is used. A gradient field derived from im-
age feature curves is then used to orient the tiles
properly.
In this paper, a different approach is taken. Examin-
ing the results of [12], we note that many of the re-
sulting tiles are misaligned, an artifact that is clearly
present in regular domains where a uniform tile
placement is expected. In traditional mosaics, several
rows of tiles are precisely placed along the feature
curves, a behavior that the gradient field of [12] can-
not preserve. This paper overcomes these difficulties
as well as others by offering a more precise and geo-
metrically oriented approach.
This paper is organized as follows. Section 2 presents
the algorithm, including the extraction of feature
curves, trimmed offset curves, and tile placement.
Examples are given in Sect. 3. Finally, Sect. 4 dis-
cusses conclusions and future work.

2 Algorithm

A key observation derived from traditional mosaics
is the fact that they emphasize feature curves of im-
portance in the picture. Rows of tiles are arranged
along these feature curves. Here, two typical ar-
rangements can be found: the rows along feature
curves continue throughout the picture, or alterna-
tively a small number of rows follows the feature
curves whereas a background tiling covers the rest of
the picture.
In order to emulate the placement of mosaic tiles
along feature curves, we seek a model that is able
to compute arrangements of tiles along freeform
curves. An algorithm that is capable of such a re-
quirement must obey the following steps:

• Detecting and extracting feature curves from the
picture. This stage is described in Sect. 2.1.

• Computing the offsets of these feature curves for
all the rows of tiles that are expected to follow this



G. Elber, G. Wolberg: Rendering traditional mosaics 69

feature curve. The offset computation procedure
is presented in Sect. 2.2.

• Trimming the offset curves in self-intersecting
locations so the tiling is indeed proper. The prob-
lem, as well as the computation of properly
trimmed offsets, is described in Sect. 2.3.

• The placement of the tiles of the mosaics. This
process is presented in Sect. 2.4.

2.1 Extraction of feature curves

The automatic extraction of feature curves from an
image is a computer vision problem [24] that is be-
yond the scope of this work. In this work, we shall
require the user to specify feature curves in much the
same manner that it is done for morphing [16] and
digital facial engraving [22]. Herein, we emphasize
this feature extraction stage in the context of place-
ment of mosaic tiles. Feature curves in real mosaics
are, almost exclusively, edges that delineate the fore-
ground from the background. In that respect, they are
relatively simple to extract using image-processing
techniques. In practice, however, we found that the
semi-automatic approach is much more attractive,
and tools such as intelligent scissors [21] could be
employed toward the definition of the feature curves.
In this application, we assume that the feature curves
were extracted and are least squares fitted into free-
form B-spline curves. Hence, a set C = {Ci(t)}n−1

i=0 ,
t ∈ [0, 1] of n feature curves in the original picture is
the result of this stage.

2.2 Offset of feature curves

The mosaic tiles are to be arranged along parallel
curves to the feature curve Ci(t) = (xi(t), yi(t)). De-
note by δ the width of a square tile. Then, we seek
to compute m parallel curves C j

i (t), 0 ≤ j ≤ m −1 to
Ci(t), δ distance apart, as in Fig. 1.
Since Ci(t) is a planar curve, the unit tangent field,
Ti(t), and the unit normal fields, Ni(t), of Ci(t) are
also planar. Let

Ti(t) =
(
x ′

i(t), y′
i(t)

)
√(

x ′
i(t)

)2 + (
y′

i(t)
)2

,

be the unit tangent field of Ci(t). Differentiating
with respect to the arc length parameter s yields
〈T ′

i (s), Ti(s)〉 = κ(s), 〈Ni(s), Ti(s)〉 = 0, where κ(s)

Fig. 1. Parallel curves to a given curve (in gray) can be
computed as offsets of the given curve

is the scalar curvature field of Ci(t) and 〈Ti(t), Ti(t)〉
= 1. Ti(t) is orthogonal to Ni(t) in the plane, and
hence we constructively have

Ni(t) =
(−y′

i(t), x ′
i(t)

)
√(

x ′
i(t)

)2 + (
y′

i(t)
)2

.

Moreover, from the Frenet equations [5] we know
that N ′

i(s) = −κTi(s) for a planar curve. With this
differential geometry analysis we are ready to show
that the offset curves,

C j
i (t) = Ci(t)+ j δ Ni(t),

0 ≤ i ≤ n −1, 0 ≤ j ≤ m −1,

= Ci(t)+ j δ

(−y′
i(t), x ′

i(t)
)

√(
x ′

i(t)
)2 + (

y′
i(t)

)2
, (1)

do indeed satisfy the parallel conditions. In other
words, Ci(t) and C j

i (t) are parallel for all j and t in
the domain. Two curves are said to be parallel if their
tangent fields point in the same direction:

C j
i

′
(t) = C′

i(t)+ j δ N ′
i(t),

= αTi(t)+βTi(t),
= (α+β)Ti(t),

= γC′
i(t), (2)

for some scalars α, β, γ ∈ R.
Since Ni(t) is not rational, one cannot represent the
offset as a B-spline or a NURB curve, even if Ci(t)
is a B-spline curve. Numerous approximation meth-
ods have been derived for rational offsets of rational
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(a)

(b)

Fig. 2. Local (a) and global (b) self-intersections in an
offset of a free-form curve

curves, and a recent survey can be found in [9]. Here,
we only assume the availability of a robust offset ap-
proximation scheme of B-spline curves that provides
an error bound on the approximation. In this mosaic
application, the error bound is selected to be in the
order of a single pixel.
Unfortunately, even if we employ a robust offset ap-
proximation scheme that creates a rational form, the
result can be invalid in many cases. If the curvature
κ of the curve is larger than 1

jδ , the offset curve will
self-intersect.
Examining Eq. (2), C j

i

′
(t) might vanish if α = −β.

Intrinsically, this condition occurs when j δ κ = 1.
If the offset amount, j δ, equals the radius of cur-
vature, 1

κ
, C j

i

′
(t) vanishes into a cusp. Furthermore,

when j δ > 1
κ
, the direction of the tangent vector of

C1
i
′
(t) is reversed with respect to C′

i(t)! This type of
self-intersection, which we denote as local, is seen in
Fig. 2a.
Self-intersections in the offset could also occur be-
tween two independent locations of the curve, a type
of self-intersection we denote as global. Figure 2b
shows one such example.

2.3 Trimming the offset

The elimination of the self-intersection in offset ap-
proximations is a very difficult problem. In essence,
we seek the true offset of the curve Ci(t). Recall that
‖C j

i (t)−Ci(t)‖ = j δ, ∀t in the domain and up to the
offset approximation accuracy. We seek all points

C j
i (t0) in curve C j

i (t) such that ‖C j
i (t0)− Ci(t)‖

≥ j δ, ∀t in the domain.
As demonstrated in Sect. 2.2, two reasons could re-
quire the trimming of the offset curve: a local and
a global self-intersection. Due to the distinctive in-
trinsic curvature property of local self-intersections,
they are fairly simple to detect [8]. In contrast, global
self-intersections are far more difficult to detect due
to the lack of any intrinsic behavior that could be an-
alyzed beyond the computation of the intersections
themselves.
Requiring a highly robust trimming procedure for
offset curves, the traditional numeric approach is dif-
ficult to employ. However, the application at hand
is discrete, which suggests that a discrete solution
might be sufficient. In [14, 18], Voronoi diagrams
are computed using a discrete image-based approach
that approximates the Euclidean distance. In [11],
the use of a Z-buffer approach to the computation
of a discrete Voronoi diagram of a set of points in
the plane is introduced, an approach that is also cited
in the OpenGL user manual [28]. In [13], this ap-
proach is extended to employ graphics hardware.
One can exploit the Z-buffer computation of Voronoi
diagrams to robustly trim the offset curves, bene-
fiting from the inherent robustness of the Z-buffer
paradigm.
Interestingly enough, the application of mosaics is
discussed in [11] as well as in [13], employing the
Voronoi cells as the tiles of the mosaics. A Voronoi
cell of planar entity Ci(t) contains all the pixels that
are closer to Ci(t) than to any other planar entity
C j(t), j 
= i. In [11, 13], however, the Voronoi di-
agrams are computed on a collection of points that
are distributed more densely along edges in the im-
age. They do not attempt to compute offset curves.
Herein, we use Voronoi diagrams only to assist in
trimming the offset curves.
Let the orthographic viewing direction be the +z di-
rection. Then, for each point in Ci(t0) ∈ Ci(t), con-

struct the cone z = +√
(x − xi(t0))2 + (y − yi(t0))2

and render it into the Z-buffer in a color that is unique
to entity Ci(t). Doing so for all n curves in the plane,
one ends up with color-coded Voronoi cells such that
the Voronoi cell of Ci(t) is uniquely painted with
the color allocated to entity Ci(t). See Fig. 3 for an
example.
In practice, Ci(t) is approximated by linear seg-
ments and the sweep of a cone along Ci(t) is ap-
proximated by small ravine-like shapes, such as
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3

4
Fig. 3. A Voronoi diagram could be approximated dis-
cretely, using a Z-buffer. Feature curves of the sunflower
drawing shown in Fig. 11
Fig. 4. One interior segment of the piecewise linear
approximation of Ci(t) contributes two quadrilaterals,
P 1

i (t j) and P 2
i (t j), to the cones swept along Ci(t)

the one presented in Fig. 4. Hence, the process of
sweeping a cone along a curve can be approxi-
mated by linear segments and two quadrilateral
polygons per segment. The two polygons, P 1

i (t j)
and P 2

i (t j), form the ravine that emanates from
the curve segment (Ci(t j), Ci(t j+1)). They each
fan out of the curve at a 45-degree angle. Again,
see Fig. 4.
We are now ready to adapt the discrete, Z-buffer,
Voronoi diagram computation scheme to our aid.
Before we present this adaptation, we must also

realize a crucial difference. If point P is in the
Voronoi cell of curve Ci(t), it is clearly closer
to Ci(t) than to any other curve. In other words,
there exists Ci(t0) such that ‖Ci(t0)− P‖ ≤ ‖Ck(t)−
P‖, ∀k, t. However, here one needs to find this t0
so as to align the tile at P parallel to the curve
Ci(t) at t0. Finding t0 in Ci(t), given a point P in
the Voronoi cell of Ci(t) is a query that the ba-
sic Z-buffer approach to the computation of the
Voronoi diagram cannot answer in the forms pre-
sented by [11, 13, 14].
Let point Ci(t0) be denoted as the foot point of P.
We need to extend this Z-buffer approach to support
the efficient detection of the foot points. Instead of
giving a unique color to the entire Voronoi cell of
Ci(t), we are going to allocate a unique color to each
pixel of Ci(t) as it is rendered in the image space. Let
(Ci(t j), Ci(t j+1)) be one linear segment approximat-
ing Ci(t) (Fig 4). We then color vertex Ci(t j) with
a unique color index, Ci(t j), such that

Ci(t j) = Ci(0)+
j∑

k=1

‖Ci(tk)−Ci(tk−1)‖,

having t0 = 0.
In other words, each vertex is assigned a color in-
dex that equals the chord length of the curve up to
that vertex. Having a typical color space of 24 bits
and a typical chord length on the order of a thou-
sand pixels, one can allocate unique color indices
to tens of thousands of curves before exhausting
the entire color space. Now we have assigned ev-
ery rendered pixel of every curve with a unique
color. Assign the same colors of vertices Ci(t j) and
Ci(t j+1) to the two other vertices of quadrilater-
als, P 1

i (t j) and P 2
i (t j). Then, rendering polygons

P 1
i (t j) and P 2

i (t j) with the prescribed vertex col-
ors would assign a unique color for each pixel over
all Voronoi cells. Given point P in the Voronoi cell
of Ci(t), one needs to examine that color under P
and search for that color in Ci(t). Because the col-
ors are assigned based on the chord length, this
search becomes trivial. Moreover, as will be seen in
the next section, tiles are placed consecutively, and
one could also exploit this spatial coherence as we
march along an offset curve and place one tile after
another.
Figure 5 shows the same Voronoi diagram of Fig. 3,
but this time with the assignment of each pixel along
the path, with a unique color.
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5

6

Fig. 5. The extended Voronoi diagram that assigns each
pixel along the path a unique color. Compare with Fig. 3
Fig. 6. Tile placement for the curve in Fig. 1

2.4 Placement of mosaic tiles

Having been able to compute parallel curves and
properly trim them, the last stage is the placement
of the tiles. One can march along the parallel curves
and place the tiles so that they are tangent to the
curve along one edge of the tile while packed as
closely as possible against the adjacent tiles in this
row. This intuitive description is followed in the
algorithmic approach taken. We place one tile at
a time along a row. The next tile is oriented to be
tangent to the curve, while we “slide” the tile in
until it comes into contact with the previous tile
(see Fig. 6).
While this simple algorithm works reasonably well
in low curvature areas, near high curvature re-
gions of the curve, the gaps could be quite large
(see Fig. 6). Even more disturbing are the arti-
facts that result near the trimmed zones. Here, the
two fronts of two different Voronoi cells of the
curves meet and we must decide what tile from
what front to employ. Clearly, one can decide to
break the tiles into non square or even non rectan-
gular shapes. Straight clipping all too clearly de-

marcates the meeting edges of the different Voronoi
cells and these undesirable artifacts can be vis-
ible in the final result, as will be demonstrated
in Sect. 3.
Superior results can be obtained by randomly allow-
ing the penetration of tiles from one front into its ad-
jacent front, in an attempt to alleviate some of these
artifact. Examples of this approach, as well as others,
can be found in the next section.

3 Examples

This section demonstrates the algorithm on various
input images. Figures 7 and 8 depict pairs of input
and output images. In Fig. 9, the feature curves used
to place the tiles of Fig. 8 are shown. Notice that
the tiles conform to image features. Furthermore, the
composition of tiles across wavefronts is well be-
haved. Figure 10 depicts the use of only a few rows
of tiles along the features curves and the use of either
uniform squares or hexagonal tiles as background.
Figure 11 shows a similar example of only a few
rows of tiles over a background formed of diamond
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7

8

9

Fig. 7. An image of a dinosaur (left) and a mosaic reconstruc-
tion (right). Image from the Utah dinosaur museum in Ogden
Fig. 8. An image of a dinosaur (left) and a mosaic reconstruc-
tion (right). Image from the Utah dinosaur museum in Ogden
Fig. 9. The feature curves used to place the tiles for Fig. 8

and hexagonal tiles. Note that the feature curves
for Fig. 11 were shown in Fig. 3. The seven flow-
ers in Fig. 11 correspond to the seven oval shapes
in Fig. 3.

The tile size may vary across the mosaic. Figure 11a
depicts an example in which the mosaic tiles grow
larger as the tiles move away from the feature curves.
The same mosaic pattern is rendered with less grout
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10

11

Fig. 10. Placement of few rows of tiles along feature curves. Small tiles and square background tiles (left) and large tiles and
hexagonal background tiles (right). Compare with Fig. 8
Fig. 11. Placement of few rows of tiles along feature curves. Diamond background tiles (left) and hexagonal background tiles (right)

spacing inFig.11b.Theeffectofgroutonoverall color
perception is an important issue that remains to be
investigated. Currently, the user must apply artistic
discretion when specifying the grout size and texture.

Tiles need not necessarily be of uniform color. Fig-
ure 14 is a preliminary attempt to employ the bank
of images, shown in Fig. 13, to tile a mosaic. In
Fig. 14a, a mosaic similar to that of Fig. 8 is shown



G. Elber, G. Wolberg: Rendering traditional mosaics 75

12a 12b

13

Fig. 12. Spatially varying tile size: a moderate grout spacing;
and b minimal grout spacing
Fig. 13. Tiles could employ images instead of a uniform color.
Presented here is a bank of images in RGB space that is used in
Fig. 14 to tile a mosaic

except that the tiles are now actual images. Fig-
ure 14b shows a close-up of the photomosaic of the
back of the dinosaur head.

4 Conclusions

We have presented a technique for rendering tradi-
tional mosaics. The proposed system exploits ex-
tracted and drawn feature curves to generate a tes-
sellation in which to lay down tiles. The colors
of the tiles are sampled from the underlying im-
age. We reviewed the use of Voronoi diagrams
to help trim the offset curves. A fast algorithm

based on a hardware Z-buffer was used for this
purpose [13].
Although the use of Voronoi diagrams has been sug-
gested in the literature to produce mosaic images, it
is important to note that we use Voronoi diagrams
only as a means to trim offset curves. The straight-
forward application of Voronoi diagrams for tessel-
lation, as is used in some commercial software, does
not produce tile placement consistent with traditional
mosaics.
While this paper lays out the basic approach to per-
form traditional mosaicing, a number of enhance-
ments are possible. Future work remains in imple-
menting the ideas described below.
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a b

Fig. 14. Generalized photomosaic of dinosaur. Also see Figs. 8 and 10

The presented approach leaves visual artifacts in the
forms of virtual lines along the skeleton of the fea-
ture curves, or the locus of singular points of the
offset curves. Further, due to the precise nature of the
proposed approach, the placement of the tiles seems
too precise at times. One can expect that by employ-
ing a gradient field, proposed by [12], this synthetic
artifact can be mitigated. Here, tiles in the neighbor-
hood of the skeleton will be allowed to move under
the influence of the gradient field an amount that is
a function of the distance to the skeleton, thereby
preserving the overall precise placement of tiles.
Visually interesting effects are possible if we use
tiles textured with another image. This idea is actu-
ally a generalization of photomosaics [25]. In pho-
tomosaics, an abstract version of an image is gener-
ated by packing a dense set of smaller images into
a nonuniform upright grid. In mosaics, we may aban-
don the rectilinear grid with intricately flowing rows
of tiles, each consisting of a small image.
It is also possible to scan a set of mosaic tiles to cre-
ate a library of interesting tile textures. Then, the un-
derlying color of the digital image in the tile neigh-
borhood can be applied to tile textures randomly se-
lected from the library to produce a visually interest-
ing effect.

Although traditional mosaics place tiles along rows
that grow from designated feature curves, it seems
reasonable to consider other tile placement strate-
gies. Indeed, the digital engraving system described
in [22] shares similar goals for orienting lines in re-
sponse to image features. This suggests the use of
engraving lines, as produced by that system, for tile
placement.
The mosaic image need not be constructed from flat
2-D tiles. Instead, we can render the image in 3-D
with any desirable reflection model. Interesting ef-
fects are possible if we integrate the stone-generation
algorithm of [20] to render the mosaic tiles. It is in-
teresting to note that during the Byzantine era, mo-
saic tiles were often set at oblique angles to achieve
a shimmering effect. This effect can be simulated
easily once we impose specular reflection on the 3-D
tiles.
The proposed system deals primarily with rectangu-
lar and triangular tiles. A future enhancement will
permit the user to introduce other tile shapes, includ-
ing hexagons, diamonds, and irregular shapes.
There are several benefits to a digital mosaic ren-
dering system. Every aspect of the creative process
can now be edited and rendered at near real-time
rates. The user may readily alter the set of feature
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curves, edit the offset curves, designate the compo-
sition rules, and control the tile shapes and colors.
The result is a system that makes this wonderful craft
more flexible and widely accessible than previously
possible.
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