Vol. 5, No. 3: 11-33

One-Dimensional Resampling with
Inverse and Forward Mapping Functions

George Wolberg
City College of New York

H. M. Sueyllam, M. A. Ismail, K. M. Ahmed

Alexandria University

Abstract. Separable resampling algorithms significantly reduce the complexity of
image warping. Fant presented a separable algorithm that is well suited for hard-
ware implementation. That method, however, is inherently serial and applies only
when the inverse mapping is given. Wolberg presented another algorithm that is less
suited for hardware implementation and applies only when the forward mapping is
given. This paper demonstrates the equivalence of the two algorithms in the sense
that they produce identical output scanlines. We derive a variation of Fant’s algo-
rithm that applies when the forward mapping is given and a variation of Wolberg’s
algorithm that applies when the inverse mapping is given. Integrated hardware
implementations that perform one-dimensional resampling under either forward or
inverse mappings are presented for both algorithms based on their software descrip-
tions. The Fant algorithm has the advantage of being simple when implemented in
hardware, while the Wolberg algorithm has the advantage of being parallelizable and
facilitates a faster software implementation. The Wolberg algorithm also has the
advantage of decoupling the roundoff errors made among intervals since it does not
accrue errors through the incremental calculations required by the Fant algorithm.

1. Introduction

Separable resampling algorithms are useful in casting image warping into a
framework that is amenable to hardware implementation. Growing interest
in this area has gained impetus from the widespread proliferation of advanced

© A K Peters, Ltd.
11 1086-7651/00 $0.50 per page

12 journal of graphics tools

workstations and digital signal processors. Applications include geometric
image manipulation for medical imaging, remote sensing, and computer vi-
sion, as well as real-time hardware for video effects. The central benefit of
separable algorithms is the reduction in complexity of one-dimensional resam-
pling algorithms, where efficient solutions exist for image reconstruction and
antialiasing.

Resampling requires a mapping function to govern the geometric relation-
ship between each point in the input and output images. The transformation
is said to be a forward mapping if input pixels are mapped to the output.
Similarly, the transformation is said to be an inverse mapping if output pixels
are mapped to the input. Forward mapping is prominent in video processing
where the input stream arrives in scanline order. Inverse mapping is com-
mon in computer graphics, where the output pixels are typically rendered in
scanline order.

This paper demonstrates the equivalence of two separable resampling al-
gorithms previously presented as distinct solutions for forward and inverse
mappings. Fant presented a separable solution that is well suited for hard-
ware implementation when the inverse mapping is given [Fant 86]. Wolberg
presented another solution that is less suited for hardware implementation and
applies only when the forward mapping is given [Wolberg 90]. The unification
of these two approaches offers insight and flexibility in handling forward and
inverse mappings under serial or parallel implementation.

2. Background

Image resampling is the process of transforming a sampled image from one
coordinate system to another. The two coordinate systems are related to
each other by a spatial transformation. The transformation is expressed as a
mapping function that defines the geometric relationship between each point
in the input and output images. The general mapping function can be given in
two forms: either relating the output coordinate system to that of the input,
or vice versa. Respectively, they can be expressed as

[Ia y] = [X(ua U)) Y(ua U)] (10’)
[ua ’U] = [U(ZL‘, y)v V(xv y)} (1b)

where [u,v] refers to the input image coordinates corresponding to output
pixel [z,y], and X, Y, U, and V are arbitrary mapping functions that uniquely
specify the spatial transformation. Since X and Y map the input onto the
output, they are referred to as the forward mapping. Similarly, the U and V'
functions are known as the inverse mapping since they map the output onto
the input.

Wolberg et al.: One-Dimensional Resampling 13

Geometric transformations have traditionally been formulated as either for-
ward or inverse mappings operating entirely in two dimensions. Their ad-
vantages and drawbacks are given below to motivate the case for separable
algorithms.

2.1. Forward Mapping

Forward mappings deposit input pixels into an output accumulator array. A
distinction is made here based on the order in which pixels are fetched and
stored. In forward mappings, the input arrives in scanline order (row by row)
but the results are free to leave in any order, projecting into arbitrary areas in
the output. In the general case, this means that no output pixel is guaranteed
to be totally computed until the entire input has been scanned. Therefore, a
full two-dimensional accumulator array must be retained throughout the dura-
tion of the mapping. Since the square input pixels project onto quadrilaterals
at the output, costly intersection tests are needed to properly compute their
overlap with the discrete output cells. Furthermore, an adaptive algorithm
must be used to determine when supersampling is necessary in order to avoid
blocky appearances on one-to-many mappings.

2.2. Inverse Mapping

Inverse mappings are more commonly used to perform spatial transforma-
tions. By operating in scanline order at the output, square output pixels are
projected onto arbitrary quadrilaterals. In this case, the projected areas lie
in the input and are not generated in scanline order. Each preimage must be
sampled and convolved with a low-pass filter to compute an intensity at the
output. This expensive antialiasing component is often approximated through
the use of a mipmap, a pyramid of filtered and downsampled versions of the
image [Williams 83]. Filtering over a quadrilateral preimage is approximated
by sampling the pyramid at an appropriate level. Trilinear interpolation is
necessary to sample between pyramid levels.

2.3. Separable Mapping

While either forward or inverse mappings can be used to realize arbitrary
mapping functions, there are many transformations that are adequately ap-
proximated when using separable mappings.

There are several advantages to decomposing a mapping into a series of
one-dimensional transforms. First, the resampling problem is made simpler
since reconstruction, area sampling, and filtering can now be done entirely
in one dimension. Second, this lends itself naturally to digital hardware im-

14 journal of graphics tools

plementation. Note that no sophisticated digital filters are necessary to deal
explicitly with the two-dimensional case. Third, the mapping can be done
in scanline order both when scanning the input image and in producing the
projected image. In this manner, an image may be processed in the same for-
mat in which it is stored in the framebuffer: rows and columns. This leads to
efficient data access and large savings in I/O time. The approach is amenable
to stream-processing techniques such as pipelining and facilitates the design
of hardware that works at real-time video rates.

The first most general presentation of a separable two-pass algorithm for im-
age warping is described in the seminal work of Catmull and Smith [Catmull,
Smith 80]. Their technique decomposes a two-dimensional parallel warp, con-
sisting of x = X (u,v) and y = Y (u,v), into a sequence of two one-dimensional
serial warps consisting of the horizontal pass x = F,(u) = X (u,v), followed by
the vertical pass y = G, (v) = Y(H,(v),v), where u = H,(v) is the inverse of
X (u,v)—z = 0 [Smith 87]. Here u and v constitute the input image (texture)
space, and z and y constitute the output image (screen) space.

The advantage of a two-pass spatial transformation algorithm over its one-
pass counterpart is that it offers a more effective and efficient match with cur-
rent implementation technology, despite the assumptions and errors that fall
into this model of computation. The central benefit of separable algorithms is
the reduction in complexity of one-dimensional resampling algorithms. When
the input is restricted to be one-dimensional, efficient solutions are made pos-
sible for the image reconstruction and antialiasing components of resampling.

Separable resampling algorithms cannot accommodate all transformations.
Although they have been shown useful for affine and perspective transfor-
mations, they are susceptible to bottleneck and foldover problems. After
completing the first pass, it is sometimes possible for the intermediate image
to collapse into a narrow area. If this area is much less than that of the final
image, then there is insufficient data left to accurately generate the final image
in the second pass. This phenomenon, referred to as the bottleneck problem
in [Catmull, Smith 80], is the result of a many-to-one mapping in the first
pass followed by a one-to-many mapping in the second pass. One example
of this problem is a 90° rotation. Since the top row will map to the right-
most column, all of the points in the scanline will collapse onto the rightmost
point. Similar operations on all the other rows will yield a diagonal line as the
intermediate image. No possible separable solution exists for this case when
implemented in this order. The solution to this problem lies in considering
all the possible orders in which a separable algorithm can be implemented.
If we first rotate the image by the closest multiple of 90°, then we can ap-
ply the two-pass technique on the difference between that multiple and the
desired rotation angle. Despite the bottleneck problem, separable algorithms
are widely used in affine, perspective, and rubbersheet transformations. The
foldover problem is addressed in [Wolberg, Boult 89].

Wolberg et al.: One-Dimensional Resampling 15

3. Fant’s Algorithm

This section describes all aspects of one-dimensional resampling with Fant’s
algorithm (FALG). The original algorithm was formulated for use with inverse
mapping functions [Fant 86]. We extend it to work with forward mapping as
well.

3.1. FALG: Inverse Mapping

The input to Fant’s algorithm consists of the following four variables:
e inlen: the length of the input scanline (in pixels);
e outlen: the length of the output scanline (in pixels);
e in: an array of input scanline pixels (intensity/color);

e f an array of real-valued coordinates denoting the inverse mapping of
each output pixel.

The algorithm fills an array out with the intensity values associated with the
output scanline pixels. This process is driven by the inverse mapping f. Note
that in the original paper, Fant used an array of inverse size factors instead
of the inverse mapping as an input to the algorithm. In our presentation, we
assume that the inverse mapping f is provided as an input, and we derive
the inverse size factor required by the algorithm through simple subtraction
operations.

The basic algorithm is very simple. It maintains two fractional-valued point-
ers, or position markers, in the stream of contiguous input pixels: inseg and
outseg. The input pixel inseg indicates how much of the current input pixel
remains to contribute to the next output pixel; this ranges from 0 (totally
consumed) to 1 (entirely available). Analogously, outseg indicates how much
of the current input pixel is required to complete the next output pixel.

The process begins by comparing the values of inseg and outseg to determine
which is smaller. If outseg is smaller, then an output cycle occurs: an output
pixel will be completed. The current input pixel intensity value is multiplied
by outseg and added to the accumulator, inseg is decremented by the value
of outseg to indicate that the outseg portion of the input pixel has been used.
Then, outseg is reinitialized to isf [z + 1], which is the difference between two
successive f values, flz + 2] — flx + 1], where z is the index of the current
output pixel. Indices x + 1 and x + 2 refer to the next and subsequent output
pixels, respectively. The value of the current output pixel is determined by
dividing the contents of the accumulator by isf [z]. Then, the accumulator is
cleared and the process returns to compare inseg and outseg.

16 journal of graphics tools

If inseg is smaller, then an input cycle occurs: an input pixel will be con-
sumed. The current input pixel value is multiplied by inseg and added to the
accumulator, outseg is decremented by the value of inseg to indicate that the
inseg portion of the output pixel has been satisfied. Then, inseg is reinitial-
ized to 1.0, and the next input pixel is fetched. The process then returns to
compare the new values of inseg and outseg.

If inseg and outseg are equal, the input pixel will be consumed and an
output pixel will be completed. In this case, either event can be chosen to
occur first. For instance, we may consider an output cycle followed by a zero
input cycle, in which case inseg is equal to zero, which causes a 0 to be added
to the accumulator and uses up the current input pixel.

To complete the description of the algorithm, we need to address the follow-
ing four issues: initialization, reconstruction, antialiasing, and termination.

3.1.1. Initialization

The variable, inseg, is always initialized to 1.0 at the end of every input
cycle, indicating that the next input pixel is fully available to contribute
to the output. However, before starting the process, inseg is initialized to
1.0 — Fraction(f[0]) when f[0] > 0, indicating that only a partial output
pixel remains to be filled; otherwise inseg is set to 1.0.

At the end of every output cycle, the variable outseqg is always initialized to
the inverse size factor associated with the output pixel that will be processed
in the next cycle. However, before starting the process, outseg is initialized
to 4sf [0] when f[0] > 0; otherwise outseg is set to isf [z] + f[z], where x is
the rightmost pixel with the property f[z] < 0. Finally, the accumulator is
cleared when we start.

3.1.2. Reconstruction

Image reconstruction refers to the interpolation of sampled image data. It
permits us to evaluate the discrete signal at any desired position, not just
the integer lattice upon which the sampled signal is given. This is necessary
to avoid a blocky appearance upon magnification, i.e., preventing a sequence
of output pixels from having the same intensity value when an input pixel
contributes to more than one output pixel.

Reconstruction is performed by convolving the discrete input signal with
a continuous interpolating function. In Fant’s algorithm, reconstruction is
achieved by using pixel values from a two-pixel-wide averaging window tra-
versing the raw input pixels. A triangle filter is used as the filter kernel. This
produces results identical to linear interpolation. The placement of the kernel
upon the input is based on the value of inseg. Thus, using the triangle filter,
we have the following 2-point convolution:

Wolberg et al.: One-Dimensional Resampling 17

intensity = inseg*in[u] + (1.0-inseg)*in[u+1];

where in[u] and in[u+ 1] are the intensity values of two successive input pixels.
For the last input pixel, we let u + 1 revert to u to realize border replication.
Note, that when inseg is equal to 1.0, such as at the left boundary of an input
pixel, no interpolation takes place. More sophisticated reconstruction filters
can be used instead of the 2-point triangle filter. For example, a 4-point cubic
convolution[Wolberg 90] filter can be used. Its interpolation kernel can be
coded in a function h(z) as follows:

float h(float x) {

if (x<0) x = -x; /* the kernel is symmetric; use positive x */
if (x<1) return (1+x*x*(-2+x)); /* cubic polynomial for 0 <= x < 1 */
if (x<2) return (4+x*(-8+x*(5-x))); /* cubic polynomial for 1 <= x < 2 */
return 0; /* h is a 4-point kernel: h(x)=0 for |x|>=2 */

}

The 2-point convolution given earlier may be replaced by the following 4-point
convolution:

intensity = h(2.0-inseg)#*in[u-1] + h(1.0-inseg)*in[u] +
h(inseg)*in[u+1] + h(1.0+inseg)*in[u+2];

Of course, in[—1], in[inlen], and in[inlen 4 1] have to be reserved and set to
the value of the nearest border pixel, i.e., border replication. This could be
accomplished by reserving an array inl of dimension inlen + 3, and defining
a pointer in which is initialized to inl1 + 1.

3.1.3. Antialiasing

Antialiasing refers to the filtering used to counter the aliasing artifacts symp-
tomatic of undersampling. Artifacts such as moire patterns may become
readily apparent when important image detail is lost through downsampling.
Thus, antialiasing filtering is particularly necessary when decimating an
image.

Antialiasing, as originally implemented by Fant, uses box filtering: intensi-
ties of all input pixels contributing to the current output pixel are weighted by
their area coverage (the smaller of inseg and outseg) and summed together.
Implicit in this operation is an underlying piecewise constant model of the
input intensity function. A piecewise linear model would be superior. An-
tialiasing may now be computed by evaluating the area under the (linear)
curve that contributes to the output. The integral is readily computed by the
average of the curve endpoints. Therefore, in an input cycle, instead of simply
computing

out[x] = intensity * inseg;

we may compute

18 journal of graphics tools

intensity2 = in[u+1];
out [x] (intensity+intensity2)*inseg / 2.0;

Similarly, in an output cycle, instead of simply computing
out[x] = intensity * outseg;
we may compute

intensity2 = (inseg-outseg)*in[u] + (1.0-(inseg-outseg))*in[u+1];
out [x] = (intensity+intensity2)*outseg / 2.0;

3.1.4. Termination

The algorithm terminates when all input pixels are consumed or when all
output pixels are completed, whichever occurs first.

3.1.5. Software Implementation

A software implementation of the algorithm in C follows. In all subsequent
algorithms, we use the triangle filter for reconstruction and the box filter for
antialiasing.

fantinv(double f[], int in[], int out[], int inlen, int outlen)

{

int u, /* index into input image */
X, /* index into output image */
x1, /* index of the leftmost output pixel */
Xr; /* index of the rightmost output pixel */
double isf, /* inverse scale factor */
inseg, /* fraction of input pixel available */
outseg, /* fraction needed to complete output */
intensity; /* interpolated input intensity value */

/* clear output/accumulator array */
for (x=0; x<outlen; x++) out[x] = 0;

/* check if no output scanline pixel projects into [0,inlen] range */
if (f [outlen] < O || £[0] > inlen) return; /* 100% clipping */

/* init x1, the left-extent of the output scanline */
for(x=0; f[x]<0; x++); /* advance x */
x1 = (x>0) ? x-1 : x; /* init x1 */

/* init xr, the right-extent of the output scanline */
for(x=outlen; f[x]>inlen; x--); /* advance x */
xr = (x == outlen) 7 outlen-1 : x; /* init xr */

/* initialization */
isf = f[x1+1] - f[x1];

Wolberg et al.: One-Dimensional Resampling

if (£[x1] < 0) {

inseg = 1.;
outseg = isf + f[x1];
} else { /* x1 == 0 */

inseg = 1. - (£[0] - (int) £[0D)

outseg = isf;

/* main loop */
u= (f[x1] < 0) 72 0 : f[x1];
for(x=x1; x<=xr;) {

/* linearly interpolated intensity */
intensity = (insegxin[ul) + ((1.-inseg)*in[u+1]);

/* inseg<outseg: input pixel is entirely consumed before output pixelx/

input cycle *
accumulate (partial) input pixel */
input needed to complete output */

advance input index */
are all input pixels consumed? */
normalize accumulated value */
completed scanline: exit loop */
restore inseg for next cycle */

/* inseg>=outseg: input pixel is not fully consumed before output pxlx/

if (inseg < outseg) { /*
out[x] += (intensity*inseg); /*
outseg -= inseg; /*
u++; /*
if (u == inlen) { /*
out[x] /= isf; /*
break; /*
}
inseg = 1.; /*
}
else { /*
out[x] += (intensity*outseg); /*
out [x] /= isf; /*
inseg -= outseg; /*
x++; /%

output cycle */
accumulate (partial) input pixel */
normalize accumulated value */
input available for next output */
advance output index */

/* not needed; kept for compatibility with the forward mapping alg*/

if (x == outlen) break; /*

are all output pixels completed? */

/* restore isf and outseg for next cycle */

isf = f[x+1] - £[x];
outseg = isf;

19

Our observation is that the algorithm is inherently serial. It proceeds in cy-
cles in which the values of inseg and outseg are incrementally updated. There-
fore, we cannot process several output pixels in parallel; the starting values
for inseg and outseg for a particular output pixel is determined only after all
preceding output pixels have been processed. This also has the potential prob-
lem of accruing roundoff errors in the spatial domain, due to the continued
mutual subtraction of the two nearly equal values of inseg and outseg.

20 journal of graphics tools

3.2. FALG: Forward Mapping

The formulation of the forward mapping instance of FALG follows a similar
process to that of the original inverse mapping formulation. We maintain two
fractional-valued pointers in the stream of contiguous output pixels: inseg and
outseg; inseg indicates how much of an output pixel is required to be completed
by the current input pixel; outseg indicates how much of the current output
pixel is available to be completed by the current input pixel.

Reconstruction is achieved by using pixel values from a two-pixel-wide av-
eraging window traversing the raw input pixels based on the ratio of inseg/sf.
Thus, using the triangle filter, we have

intensity = (inseg/sf)*in[u] + ((sf-inseg)/sf))*in[u+1]

The rationale behind this interpolation is that the remaining fraction of the
current input pixel available to complete output pixels is given by inseg/sf,
which is the remaining fraction of inseg in the stream of output pixels. This,
of course, makes the reasonable assumption that pixels have the same fixed
size in the input and output. A software implementation in C follows.

fantfwd(double f[], int in[], int out[], int inlen, int outlen)
{

int u, /* index into input image x/
X, /* index into output image */
ul, /* index of the leftmost input pixel */
ur; /* index of the rightmost input pixel */

double sf, /* input-to-output scale factor x/
inseg, /* fraction of input pixel available */
outseg, /* fraction needed to complete output */
intensity; /* interpolated input intensity value */

/* clear output/accumulator array */
for (x=0; x<outlen; x++) out[x] = 0;

/* check if no input scanline pixel projects to [0,outlen] range */

if(f[inlen] < O || £[0] > outlen) return; /* 100% clipping */
/* init ul, the left-extent of the input scanline *x/
for(u=0; f[ul<0; u++); /* advance u */
ul = (u>0) ? u-1 : u; /* init ul */

/* init, ur the right-extent of the input scanline */
for(u=inlen; f[u]l>outlen; u--); /* advance u */
ur = (u == inlen) ? inlen-1 : u; /* init ur */

/* initialization */
sf = flul+1] - f[ull;
if(f[ul] < 0) {

Wolberg et al.: One-Dimensional Resampling

inseg = sf + f[ull;
outseg = 1.;

} else { /% ul == 0 */
inseg = sf;
outseg = 1.

}

/* main loop */

x = (f[ull < 0) 7 0 :

for(u=ul; u<=ur;) {

f[ull;

- (£[0] - (int) £[01);

/* linearly interpolated intensity */
intensity = (inseg/sf * in[u]) + ((sf-inseg)/sf * in[u+1]);

21

/* inseg<outseg: input pixel is entirely consumed before output pixelx/

if (inseg < outseg) { /*

out[x] += (intensity*inseg); /*
outseg -= inseg; /*
ut+; /*

/%
/*
/*

if (u == inlen) {
out[x] /= 1.0;
break;

/* restore sf and inseg for next
sf = flu+1] - flul;
inseg = sf;

input cycle

accumulate (partial) input pixel
input needed to complete output
advance input index

are all input pixels consumed?
compatibility with inverse alg
completed scanline: exit loop

cycle */

*/
*/
*/
*/
*/
*/
*/

/* inseg>=outseg: input pixel is not fully consumed before output pxl*/

else { /%
out[x] += (intensity*outseg); /*
out[x] /= 1.0; /*

inseg -= outseg; /*
xt++; /*
if (x == outlen) break; /*
outseg = 1.0; /*
}
}
}
4. Resampling with WALG

output cycle

accumulate (partial) input pixel
compatibility with inverse alg
input available for next output
advance output index

are all output pixels completed?
restore outseg for next cycle

*/
*/
*/
*/
*/
*/
*/

This section describes all aspects of one-dimensional resampling with Wol-
berg’s algorithm (WALG). The original algorithm was formulated for use with
forward mapping functions [Wolberg 90]. We extend it to work with inverse

mapping as well.

22 journal of graphics tools

4.1. WALG: Forward Mapping

In the forward mapping formulation of WALG, an input pixel is treated as a
unit-length area sample that can be transformed into an output interval that
may lie fully embedded in an output pixel or may straddle several output
pixels. In the first case, the input intensity is weighted by its partial con-
tribution to the output pixel, and then deposited into an accumulator. The
accumulator will ultimately be stored in the output array only when the input
interval passes across the rightmost boundary of an output pixel, assuming
that the algorithm proceeds from left to right. In the second case, the input
pixel actually crosses, or straddles, at least one output pixel boundary. A
single input pixel may give rise to a “left straddle” if it occupies only a partial
output pixel before it crosses its first output boundary from the left side. As
long as the input pixel continues to fully cover output pixels, it is said to be
in the “central interval.” Finally, the last partial contribution to an output
pixel on the right side is called a “right straddle.” A software implementation
in C is given below.

4.1.1. Software Implementation

wolbergfwd(double f[1, int in[], int out[], int inlen, int outlen)
{

int u, /* index into input image */
X, /* index into output image */
ul, /* index of the leftmost input pixel */
ur, /* index of the rightmost input pixel */
ix0, /* index of the left side of interval */
ixl; /* index of the rightside of interval */
double xO0, /* index of the left side of interval */
x1, /* index of the rightside of interval */
dI; /* intensity increment over interval */

/* clear output/accumulator array */
for (x=0; x<outlen; x++) out[x] = 0;

/* check if no input scanline pixel projects to [0,outlen] range */

if (f[inlen] < O || £[0] > outlen) return; /* 100% clipping */
/* init ul, the left-extent of the input scanline */
for(u=0; f[ul<0; u++); /* advance u */
ul = u; /* init ul */

/* process first interval: clip left straddle */

if(u > 0) {
u =ul - 1;
x0 = f[ul;
x1 = flu+ll;

Wolberg et al.: One-Dimensional Resampling

ix0 = x0 - 1;
ixl = x1;

/* central interval; will be clipped for x<0 */
dI = (in[u+1] - in[ul]) / (x1 - x0);
for(x=0; x<ixl && x<outlen; x++)

out[x] = inf[ul] + dI*(x-x0);

/* right straddle */
if (ix1!'=x1 && ix1<outlen)
out[ix] = (in[u] + dI*(ix1-x0)) * (x1-ix1);

}

/* init, ur the right-extent of the input scanline */
for(u=inlen; f[u]l>outlen; u--); /* advance u */
ur = (u == inlen) ? inlen-1 : u; /* init ur */

/* check if only one input pixel covers scanline */
if(u == ul) return;

/* process last interval: clip right straddle */

if (u < inlen) {
ix0 = x0 = f[ul; /* int- and real-valued left index */
ixl = x1 = flu+l]; /* int- and real-valued right index */
/* left straddle */
out [ix0] += in[u] * (ix0-x0+1);

/* central interval: will be clipped for x>=outlen */
dI = (in[u+1] - in[u]) / (x1 - x0);
for(x=ix0+1; x<ixl && x<outlen; x++)
out[x] = inf[ul + dI*(x-x0);
}
/* main loop */
for(u=ul; u<=ur; u++) {

ix0 = x0 = f[ul; /* int- and real-valued left index */
ixl = x1 = flu+l]; /* int- and real-valued right index */
/* check if interval is embedded in one output pixel */
if (ix0 == ix1) {
out [ix1] += in[u] * (x1-x0); /* accumulate pixel */
continue; /* next input pixel */
}

/* left straddle */
out[ix0] += in[u] * (ix0-x0+1); /* add input fragment */

/* central interval */

dI = (in[u+1] - in[u]) / (x1 - x0); /* for linear intrp */
for(x=ix0+1; x<ixl; x++) /* visit all pixels */
out[x] = in[u] + dI*(x-x0); /* init output pixel */

/* right straddle */

24 journal of graphics tools

if(x1 !'= ix1) /* output pxl fragment*/
out[ix1] = (in[u] + dI*(ix1-x0)) * (x1-ix1);

It is clear from the above description that the processing of a specific interval
is independent of the processing of other intervals. The processing of an
individual interval only requires the position of its left and right boundaries.
Thus, the algorithm has potential for parallelism.

Note that unlike FALG, interpolation of the input intensity is not performed
unless it is necessary, i.e., while processing the central interval and the right
straddle. We can do the same in FALG by adding the test inseg == sf to the
interpolation statement, and setting the intensity to infu| if the condition is
true, or setting it to the interpolated value otherwise. Also note that the zero
cycles are eliminated in this approach. Thus, WALG is faster than FALG
when implemented in software. The serial software implementation of the
algorithm can be further accelerated by adopting incremental computation for
the central interval. Thus in the main loop, as well as in the preprocessing,
the two lines for computing the central interval

for (x=ix0+1; x<ixl; x++)
out[x] = in[u] + dI*(x-x0);

can be rewritten as

if (ix1>ix0+1) {
out[ix0+1] = in[u] + dI*(ix0+1-x0);
for (x=ix0+2; x<ixl; x++)
out[x] = out[x-1] + dI;
}

This replaces the multiplication operations with addition. However, for a
parallel implementation, we keep the cells decoupled as much as possible,
and, therefore, the replacement does not take place.

An alternate approach to preprocessing intervals that are mapped outside
the allowable range [0, outlen] is to associate output assignments inside the
main loop with guard conditions. This is slower when implemented in soft-
ware, but it is more suitable for a hardware implementation. A software
implementation in C follows:

wolbergfwd_guards(double f[], int in[], int out[], int inlen, int outlen)
{

int u, /* index into input image x/
X, /* index into output image */
ix0, /* index of the left side of interval */
ix1; /* index of the rightside of interval */

double xO0, /* index of the left side of interval */

x1, /* index of the rightside of interval */

Wolberg et al.: One-Dimensional Resampling 25

dI; /* intensity increment over interval */

/* clear output/accumulator array */
for (x=0; x<outlen; x++) out[x] = 0;

/* main loop */
for(u=0; u<inlen; u++) {

ix0 = x0 = f[ul; /* int- and real-valued left index */
ixl = x1 = flu+l]; /* int- and real-valued right index */
/* check if interval is embedded in one output pixel */
if (ix0O==ix1 && ix0>=0 && ixO<outlen) {
out[ix1] += in[u] * (x1-x0); /* accumulate pixel */
continue; /* next input pixel */
}

/* left straddle */
if (ix0>=0 && ixO<outlen)
out [ix0] += in[u] * (ix0-x0+1); /* add input fragment */

/* central interval */

dI = (in[u+1] - in[ul]) / (x1 - x0); /* for linear intrp */
for(x=ix0+1; x>=0 && x<ixl && x<outlen; x++) /* visit pixels */
out[x] = in[u] + dI*(x-x0); /* init output pixel */

/* right straddle */
if (ix1>=0 && ixl<outlen && x1 != ixl) /* output pxl fragment*/
out[ix1] = (in[u] + dI*(ix1-x0)) * (x1-ix1);

4.2. WALG: Inverse Mapping

In the inverse mapping formulation of WALG, an output pixel is treated as a
unit-length area sample that can be transformed into an input interval that
may lie fully embedded in an input pixel, or may straddle several input pixels.
In the first case, the input intensity is computed at the left boundary of the
embedded interval. Since this position may not necessarily coincide with an
input pixel boundary, interpolation may be necessary to yield the value of the
current output pixel. In the second case, a single output pixel may map to
an input interval that consists of a left straddle, a central interval, and/or a
right straddle.

For the left straddle, the input intensity is interpolated at the left boundary
of the left straddle and then scaled by the length of the left straddle. This
intensity contribution is deposited in the accumulator associated with that
output pixel. For the central interval, no interpolation or scaling is necessary,

26 journal of graphics tools

since the central interval starts on input pixel boundaries and covers whole
input pixels. Thus, the intensity of the input pixels in the central interval
are simply added to the accumulator. For the right straddle, no interpolation
is needed, but scaling by the length of the right straddle is required before
adding the final intensity contribution to the accumulator.

Note that the accumulated sum needs to be divided by the isf entry of the
current output pixel to yield the correct output intensity value. This division
is not necessary when the output pixel is embedded in the input pixel, unless
we scale the interpolated intensity by the length of the embedded interval, as
is done in the hardware implementation.

A software implementation in C follows. We chose the implementation with
preprocessing of values of mapping outside the allowable range [0, inlen]. An
implementation with guard conditions could be coded as in the preceding
section.

wolberginv(double f£[], int in[], int out[], int inlen, int outlen)

{

int u, /* index into input image */
X, /* index into output image */
x1, /* index of the leftmost output pixelx/
xr, /* index of the rightmost output pixelx*/
iu0, /* index of the left side of interval */
iul; /* index of the rightside of interval */
double uo0, /* index of the left side of interval */
ul, /* index of the rightside of interval */

/* clear output/accumulator array */
for (x=0; x<outlen; x++) out[x] = 0;

/* check if no output scanline pixel projects to [0,inlen] range */

if (f [outlen] < O || £[0] > inlen) return; /* 100% clipping */
/* init ul, the left-extent of the input scanline */
for(x=0; f[x]<0; x++); /* advance x */
x1 = x; /* init x1 */

/* process first interval: clip left straddle */

if(x > 0) {
b d =x1 - 1;
iu0 = u0 = f[x]; /* int- and real-valued left index */
iul = ul = f[x+1]; /* int- and real-valued right index */

/* central interval; will be clipped for x<0 */
for(u=0; u<iul && u<inlen; u++)
out[x] += in[u];

/* right straddle */
if (iul!'=ul && iul<inlen)
out[x] += (in[iul] * (ul-iul);

Wolberg et al.: One-Dimensional Resampling

/* normalize accumulator */
out[x] /= (f[x+1] - f[x]);

}

/* init, ur the right-extent of the input scanline */
for(x=outlen; f[x]>inlen; x--); /* advance x */
Xr = X; /* init xr */

/* check if only one output pixel covers scanline */
if(x == x1) return;

/* process last interval: clip right straddle */
if (x < outlen) {

}

£[x]; /* int- and real-valued left index */
flx+1]; /* int- and real-valued right index */

iu0 = u0

iul = ul

/* left straddle x*/
out[x] = (in[iu0] + (u0-iu0)*(in[iu0+1]-in[iu0])) * (iu0-u0+1);

/* central interval: will be clipped for x>=outlen */
for (u=iu0+1; u<iul && u<inlen; u++)
out [x] += in[ul;

/* normalize accumulator */
out[x] /= (f[x+1]1-f[x]1);

/* main loop */
for(x=x1; x<xr; x++) {

iu0 = u0 = f[x]; /* int- and real-valued left index */
iul = ul = f[x+1]; /* int- and real-valued right index */
/* check if interval is embedded in one output pixel */

if (iu0 == iul) {
out[x] += in[iu0] + (u0-iu0)*(in[iu0+1]-in[iu0]);
continue; /* next input pixel %/

/* left straddle */
out[x] = (in[iu0] + (u0-iu0)*(in[iu0+1]-in[iu0])) * (iu0-ul+1);

/* central interval */
for (u=iu0+1; u<iul; u++) /* visit all pixels */
out[x] += in[u];

/* right straddle */
if(ul !'= iul) /* output pxl fragment*/

out[x] += in[iul] * (ul-iul);

out[x] /= (f[x+1]-f[x]);

27

28 journal of graphics tools
5. Hardware Implementations

This section presents hardware implementations for FALG and WALG in
order to clarify the similarities and differences between the forward and inverse
implementations of each algorithm. The integrated hardware implementations
permit FALG and WALG to perform resampling under either forward or
inverse mappings.

5.1. FALG: Hardware for Inverse and Forward Mappings

The inverse and forward mapping formulations of FALG are shown integrated
in Figure 1. The figure helps to show that only minor modifications are
necessary to switch between the forward and inverse mappings. Note that
there are two control signals, input cycle and output cycle, that govern the
execution of the circuit. A control signal Get new input pizel is generated when
an input cycle is terminated. The control signal Mapping is used to control
the initialization of inseg, outseg, and the final value of the accumulator.

Once a new input pixel is fetched, it is passed onto the interpolate block,
shown in Figure 2. The interpolated value is then normalized and added to
the accumulator, where it contributes to the output pixel. The new output
pixel value is available when an output cycle is terminated.

In the software implementation, the values of the mapping were clipped
against the allowable ranges: [0, inlen] for inverse mapping and [0, outlen] for

10 sf isf 1.0

®
Input Output

cycle cycle

A,
arises |

Current

input
pixel

—
Mapping

A A
Interpolate |— Foctor x Pixel]

Next
input
pixel

Divide

l

Get new Ngw output
input pixel pixel value

Figure 1. Integrated FALG resampling algorithm.

Wolberg et al.: One-Dimensional Resampling 29

)
[}

C—»
Interpolate I
n—»

1= b¥c + (a—b>*n
a

Figure 2. The interpolate block.

forward mapping, This clipping, as well as the initialization of inseg and outseg
at the start of the process, are not shown in Figure 1 to keep the diagram
simple.

5.2. WALG: Hardware for Inverse Mappings

This section presents a parallel hardware implementation for WALG when the
inverse mapping is given. The motivation for this section is two-fold. First,
resampling given the inverse mapping is very common. Second, integrating
both the forward and inverse mapping in WALG will require some changes
to the straightforward implementation presented in this section and is not as
simple as in FALG. These changes are due to the fact that when given the
forward mapping, a single output pixel accumulator can have values coming
from more than one interval (cell). The hardware is illustrated in Figure 3.

Note that there are four control signals (modes) for the circuit: E (embed-
ded interval), L (left straddle), C (central interval), R (right straddle). Each
mode occurs depending on the values of u0, iu0, and iul as follows:

e E: iu0 == iul && u0 > iu0;
o L: iu0 < iul && w0 > iu0;
e C: iul < tul && ul < iul;
e R:iul == iul && u0 < iu0.

In the E mode, interpolation is performed with the values 1.0 and (iu0+1)—
10, and factor is set to ul —u0. Note, that unlike the software implementation,

30 journal of graphics tools

E
L
iu0+1 iu0+1 ut udiul
2

l DiFFErEncE] lIn[remEntl
(=] [or]

Current
input
pixel

Next
input
pixel

l

Done

Figure 3. Inverse mapping WALG for a single cell (output pixel).

we multiply by ul — u0, and then divide by isf = ul — u0. Finally, a Done
signal is generated.

In the L mode, interpolation is performed with the values 1.0 and (iu0 +
1) — u0, and factor is set to (iu0 + 1) — u0. Finally, iu0 is incremented.

In the C mode, interpolation is performed with the values 1.0 and 1.0, i.e.,
no actual interpolation takes place. Factor is set to (iu0+ 1) — w0 and iu0 is
incremented.

In the R mode, interpolation is performed with the values 1.0 and 1.0, and
factor is set to ul —4u0. Finally, a Done signal is generated. Note, that in all
cases, the current input pixel is indexed by u0.

The upper half of the diagram illustrates the extra overhead used to replace
inseg and outseg by the interval boundaries ©0 and w1, and thereby parallelize
FALG. Note that the lower half of the diagram is identical to that originally
presented by Fant. Maximum parallelism is achieved when there are as many
cells as there are output pixels. For simplicity, the preprocessing and guard
conditions are omitted from the diagram.

In the hardware implementation of WALG, a single circuit is used to process
all types of intervals (E, L, C, and R) to reduce cost and size. As a result,
some redundant calculations are performed while processing certain types of
intervals. In the case of the software implementation, we treat each type of
interval separately, and we avoid redundant computations.

Wolberg et al.: One-Dimensional Resampling 31

5.3. WALG: Hardware for Inverse and Forward Mappings

The block diagram for the integrated forward-inverse formulation of WALG
is similar to that of inverse mapping. The integrated hardware, however,
has the accumulator value written through a data bus, and has an address
bus contain either the address of the current cell (inverse mapping) or ileft
(forward mapping). In the latter case, ileft corresponds to 4u0 in 3. This
method properly handles the forward mapping case where the the accumulator
value may come from multiple cells (intervals).

Interpolation is done according to Table 1. In the table a and b are as
defined in Figure 2. The values left, right and iright correspond to u0, ul and
iul, respectively, in Figure 3.

The factors multiplied by pixel are the same under both the inverse mapping
and the forward mapping. Also, incrementing ileft and generating the Done
signal are the same in both mappings.

The current input pixel index is given by either the address of the current
cell (forward mapping) or by ileft (inverse mapping). The accumulator is
divided by isf = right-left for inverse mapping or by 1.0 (i.e., no division)
for forward mapping. This division takes place when the Done signal of the
corresponding cell is generated. However, in the case of forward mapping, the
out value of a particular cell is available only after the Done signals of all cells
are generated. This must be the case, since the Done signal refers to an input
pixel, and not to an output pixel as in the case of inverse mapping.

Forward mapping Inverse mapping
a=1.0,b=1.0 a=1.0,b= (ileft+1)-left
a=1.0,b=1.0 a=1.0,b= (ileft+1)-left

a = right-left, b = right-ileft a=1.0,b=1.0
a = right-left, b = right-iright | a = 1.0,b = 1.0

m Qe =

Table 1. Interpolation table.

6. Equivalence of the Two Algorithms

In this section, we demonstrate the equivalence of the two algorithms. We
consider the case when the inverse mapping is given. The forward mapping
case can be handled similarly.

First, we consider the case when an output pixel maps to an interval
that is fully embedded in an input pixel. In this case, outseg = isf, and
inseg > outseg. This condition generates an output cycle whereby the accu-
mulator is set to the interpolated input intensity value multiplied by outseg,
and out is set to the accumulator divided by isf. However, since isf = out-
seg, out is simply set to the interpolated intensity as is done in WALG. Note,

32 journal of graphics tools

that in the software implementation of WALG, we avoid the multiplication
and the division operations which cancel each other, thereby accelerating the
computation. The interpolated value is the same in both algorithms, since
inseg starts at 1, and gets reduced by outseg to keep track of the remaining
portion of the input pixel, i.e., the left boundary of the embedded interval.

When an output pixel straddles several input pixels, we consider each in-
terval separately. For the left straddle, outseg = isf and outseg > inseg.
This condition generates an input cycle whereby the accumulator is set to
the interpolated input intensity value multiplied by inseg. The interpolation
applied here is identical to the embedded case, thus the result is the same for
both algorithms. Furthermore, the value of inseg is equal to the length of the
left straddle, i.e., the portion of the input pixel that is available to contribute
to the current output pixel. Hence, this input cycle of FALG yields the same
value in the accumulator as the one produced by processing the left straddle
in WALG.

For the central interval, inseg = 1, and it remains less than outseg. Hence,
for each input pixel in the central interval an input cycle occurs, and the
interpolated input intensity value is multiplied by inseg and added to the
accumulator. The same computation is performed by WALG, except that it
avoids the multiplication by inseg (1.0) and the unnecessary interpolation.

Finally, for the right straddle, outseg < 1 while inseg = 1. This condi-
tion generates an output cycle whereby the interpolated input intensity value
multiplied by outseg is added to the accumulator. Once more, WALG avoids
the unnecessary interpolation that will be performed in FALG. Since outseg
represents the portion of the input pixel that is required to complete the next
output pixel, it is equal to the length of the right straddle. Thus, the value
added to the accumulator is identical in both algorithms.

The above argument is valid for an arbitrary output pixel. Therefore, the
two algorithms produce identical output scanlines. The above analysis also
shows that a software implementation of WALG is faster than FALG. This
superior performance is enhanced further by the elimination of the zero cycles.

7. Conclusions

This paper has reviewed FALG and WALG, two algorithms for one-dimensional
resampling, and has demonstrated that they are equivalent under both for-
ward and inverse mappings. Software and hardware solutions were presented.
In addition to being faster for a serial implementation, WALG has been shown
to have potential for parallelism. Parallelism of one-dimensional resampling
can be achieved by treating each interval spanned by the output (input) pix-
els separately. This method has the additional advantage of decoupling errors
made among intervals, thereby avoiding the potential problem of accruing
roundoff errors due to the continued subtraction of inseg and outseg in FALG.

Wolberg et al.: One-Dimensional Resampling 33

Integrated hardware implementations that perform one-dimensional resam-
pling under either forward or inverse mappings were presented for both algo-
rithms based on their software descriptions. For the hardware implementa-
tions given, the parallel Wolberg formulation has a Fant-like basic block per
cell. The cell in the parallel algorithm, however, has extra hardware compared
to Fant’s basic block. This extra hardware is needed to achieve parallelism.

References

[Catmull, Smith 80] Edwin Catmull and Alvy Ray Smith. “3-D Transformations of
Images in Scanline Order.” Computer Graphics (Proc. SIGGRAPH ’80) 14(3):
279-285 (1980).

[Fant 86] Karl M. Fant. “A Nonaliasing, Real-Time Spatial Transform Technique.”
IEEE Computer Graphics and Applications 6(1): 71-80 (January 1986). See
also “Letters to the Editor” in 6(3): 66-67 (March 1986) and 6(7): 3, 8 (July
1086).

mit vy Ray Smith. “Planar 2-Pass Texture Mapping and Warping.” Com-
Smith 87] Alvy Ray Smith. “Pl 2-Pass Tt Mappi d Warping.” C
puter Graphics (Proc. SIGGRAPH ’87) 21(4): 263-272 (1987).

[Williams 83] Lance Williams. “Pyramidal Parametrics.” Computer Graphics
(Proc. SIGGRAPH ’88) 17(3): 1-11 (1983).

[Wolberg 90] George Wolberg. Digital Image Warping. Los Alamitos, CA: IEEE
Computer Society Press, 1990.

[Wolberg, Boult 89] George Wolberg and Terrance E. Boult. “Image Warping with
Spatial Lookup Tables.” Computer Graphics (Proc. SIGGRAPH ’89) 23(3):
369-378 (1989).

‘Web Information:

http://www.acm.org/jgt/papers/WolbergEt A100

George Wolberg, Department of Computer Science, City College of New York, New
York, NY 10031 (wolberg@cs.ccny.cuny.edu)

H. M. Sueyllam, Department of Computer Science, Alexandria University,
Alexandria 21544, Egypt (sueyllam@yahoo.com)

M. A. Ismail, Department of Computer Science, Alexandria University,
Alexandria 21544, Egypt (engdean@netscape.net)

K. M. Ahmed, Department of Computer Science,
Alexandria University, Alexandria 21544, Egypt (drkhalil@usa.net)

Received April 28, 1998; accepted in revised form November 28, 2000.

