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Abstract

This paper describes the use of cubic splines for interpolating monotonic data sets. Interpolating cubic splines are
popular for 1tting data because they use low-order polynomials and have C2 continuity, a property that permits them
to satisfy a desirable smoothness constraint. Unfortunately, that same constraint often violates another desirable property:
monotonicity. It is possible for a set of monotonically increasing (or decreasing) data points to yield a curve that is not
monotonic, i.e., the spline may oscillate. In such cases, it is necessary to sacri1ce some smoothness in order to preserve
monotonicity.

The goal of this work is to determine the smoothest possible curve that passes through its control points while simultane-
ously satisfying the monotonicity constraint. We 1rst describe a set of conditions that form the basis of the monotonic cubic
spline interpolation algorithm presented in this paper. The conditions are simpli1ed and consolidated to yield a fast method
for determining monotonicity. This result is applied within an energy minimization framework to yield linear and nonlinear
optimization-based methods. We consider various energy measures for the optimization objective functions. Comparisons
among the di5erent techniques are given, and superior monotonic C2 cubic spline interpolation results are presented. Ex-
tensions to shape preserving splines and data smoothing are described. c© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Cubic splines are widely used to 1t a smooth continuous function through discrete data. They play
an important role in such 1elds as computer graphics and image processing, where smooth inter-
polation is essential in modeling, animation, and image scaling. In computer graphics, for instance,
interpolating cubic splines are often used to de1ne the smooth motion of objects and cameras passing
through user-speci1ed positions in a keyframe animation system. In image processing, splines prove
useful in implementing high-quality image magni1cation.

Cubic splines interpolate (pass through) the data with piecewise cubic polynomials. The use of
low-order polynomials is especially attractive for curve 1tting because they reduce the computational
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Fig. 1. Interpolating cubic splines.

requirements and numerical instabilities that arise with higher degree curves. These instabilities
cause undesirable oscillations when several points are joined in a common curve. Cubic polynomials
are most commonly used because no lower-degree polynomial allows a curve to pass through two
speci1ed endpoints with speci1ed derivatives at each endpoint. The most compelling reason for their
use, though, is their C2 continuity, which guarantees continuous 1rst and second derivatives across
all polynomial segments.

C2 continuity imposes an intuitive smoothness constraint on the curve. Unfortunately, that same
constraint sometimes violates another desirable property: monotonicity. Simply stated, monotonic
input data should give rise to an interpolating curve that is smooth and monotonic. For instance,
consider the interpolating cubic spline passing through the seven marked points in Fig. 1(a). Although
the seven data points are monotonically increasing in f(xi) for 06 i6 6, the cubic spline is not
monotonic: it contains overshoots and undershoots, i.e., wiggles.

The goal of this work is to derive the smoothest possible cubic spline that simultaneously inter-
polates the data and satis1es the monotonicity constraint. Fig. 1(b) shows an example of such a C2

monotone spline. In cases where the input is not monotonic, the data can be partitioned into consec-
utive intervals of monotonically increasing and decreasing data. For now, though, we shall limit our
attention to one strictly monotonic interval spanning all the points. We begin with a review of the
literature in Section 2 and a review of cubic spline interpolation in Section 3. The monotonicity con-
straint is discussed in Section 4. This paper advances an energy minimizing framework to produce
monotone curves. Optimization-based solutions central to this framework are introduced in Section
5. There is a large family of monotone curves that interpolate the data. Section 6 derives bounds
on the error between any two such curves. Section 7 demonstrates the monotone curves applied to
various data sets. Extensions of the proposed techniques to handle arbitrary data sets with changing
monotonicity are presented in Section 8. In addition, extensions to shape-preserving splines, knot
insertion, and data smoothing are presented in Section 8 as well. The various methods are compared
in Section 9. Finally, a discussion and summary of the work is presented in Sections 10 and 11,
respectively. Appendix A derives the monotonicity constraints. Appendix B lists MATLAB code to
demonstrate the monotonic cubic spline interpolation algorithm.

2. Previous work

There is a large body of work in the 1eld of monotonic cubic spline interpolation. The earliest
work in this area can be traced back to that of Chebyshev [3,2]. His work was motivated by the
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need to design a stable governor for a steam engine. Currently, work in this area is motivated by
diverse applications in many industrial problems, including CAD=CAM, VLSI, and signal processing.
Recent work in this area dates back to Schweikert’s work on splines in tension, where exponential
splines were used as approximants [27]. Various other exponential and cubic spline interpolants were
considered in [29,20–22,9]. Tension parameters were used to control shape. All of these methods
were global, interpolatory, and C2. Automatic algorithms to determine free parameters to control
shape and monotonicity were complicated. In [19], an algorithm was presented to generate shape
preserving curves of arbitrary smoothness based on the properties of Bernstein polynomials. However,
C2 smoothness required the use of piecewise polynomials whose degree exceeded three. There is
also the possibility of using piecewise rational interpolants [10,16], although these are usually only
C1 or are intended for strictly monotone or strictly convex data.

In 1980, Fritsch and Carlson proposed a two-pass algorithm for computing a monotone cubic
interpolant [15]. The 1rst pass computes an interpolant using any method of choice. The authors
used the standard three-point di5erence formula, i.e., the Catmull–Rom spline [12]. The second
pass visits each interval in sequence and updates the derivative values to satisfy the monotonicity
constraint. The algorithm has been shown to yield third-order approximation to a C3 monotone
function [11].

In 1984, Fritsch and Butland proposed a modi1ed technique to simplify the Fritsch–Carlson algo-
rithm [14]. In this method, the 1rst derivatives at the knots are calculated using Brodlie’s nonlinear
averaging function to give the most visually pleasing results. A rather complete analysis of the essen-
tial properties of several nonlinear averaging functions is given in [17]. The Fritsch-Butland technique
is available in Netlib (PCHIM.FOR) and can be downloaded from www.math.iastate.edu=cmlib=
pchipd.html. The Fritsch–Carlson and the Fritsch–Butland algorithms are both local and yield C1

continuous curves, even if a global C2 solution exists. Furthermore, there is no Jexibility in de1ning
an application’s speci1c properties for the desired spline, e.g., the objective function or constraints
for a given optimization problem. Finally, Fritsch–Butland interpolants tend to exhibit high tension,
i.e., they are a little “Jat” [17].

In [8,7,4,5], several algorithms were proposed to compute shape preserving splines that are mono-
tone and convex. The algorithms are based on [15] and iteratively compute a set of 1rst derivatives
that simultaneously satisfy the monotonicity and convexity constraints.

Schumaker [26] proposed a shape preserving interpolation algorithm to produce a C1 quadratic
spline with additional knots where necessary. The algorithm is interactive, and the user has Jexibility
in adjusting the shape of the interpolating spline under some relationship rules.

Several researchers have investigated other approaches involving the use of additional knots be-
tween data points [9,22,6,2,23]. If two extra break points are allowed between each data subin-
terval, then there are enough degrees of freedom to construct a globally C2 cubic spline inter-
polant which is local and which has slopes and curvatures at the data points as free parame-
ters [23]. Additional breakpoints, however, require more storage and increased search time during
evaluation [15].

This paper presents several key enhancements beyond the work described in [31]. It presents a
more eMcient solution due to the use of the Hermite representation of cubic splines. As a result,
fewer unknowns and constraints need to be solved and applied, respectively. We also extend the
results to handle data of changing monotonicity, shape preserving splines, knot insertion, and data
smoothing.
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3. Cubic splines: a review

A cubic spline f(x) interpolating on the partition x0 ¡x1 ¡ · · ·¡xn−1 is a function for which
f(xk) =yk . It is a piecewise polynomial function that consists of n−1 cubic polynomials fk de1ned
on the ranges [xk ; xk+1]. Furthermore, each fk is joined at xk , for k = 1; : : : ; n−2, such that y′

k =f′(xk)
and y′′

k =f′′(xk) are continuous. An example of a cubic spline passing through n= 7 data points is
illustrated in Fig. 1.

The kth polynomial curve, fk , is de1ned over the 1xed interval [xk ; xk+1] and has the cubic form

fk(x) = ak(x − xk)3 + bk(x − xk)2 + ck(x − xk) + dk; (1)

where

ak =
1

Px2
k

(
−2

Pyk

Pxk
+ y′

k + y′
k+1

)
; (2a)

bk =
1

Pxk

(
3

Pyk

Pxk
− 2y′

k − y′
k+1

)
; (2b)

ck =y′
k ; (2c)

dk =yk: (2d)

In the expressions for ak and bk , Pxk = xk+1 − xk and Pyk =yk+1 − yk , for k = 0; : : : ; n− 2.
The expressions for the cubic polynomial coeMcients in Eq. (2) are given in terms of position

data and derivatives. In cases where only position data is supplied, the derivative values may be
evaluated by solving a tridiagonal system of equations that relate the unknown derivatives to the
known position data. Derivations can be found in [25,30].

The role of position data and derivatives in cubic splines can be made explicit by rewriting
Eq. (1) as

fk(x) =H0

(
x − xk
Pxk

)
yk + H1

(
x − xk
Pxk

)
yk+1 + PxH2

(
x − xk
Pxk

)
y′
k + PxH3

(
x − xk
Pxk

)
y′
k+1;

(3)

where H0; H1; H2, and H3 are the cubic Hermite basis functions [12], de1ned over 06 u6 1:

H0(u) = 2u3 − 3u2 + 1; (4)

H1(u) = − 2u3 + 3u2; (5)

H2(u) = u3 − 2u2 + u; (6)

H3(u) = u3 − u2: (7)

The Hermite basis functions are derived directly from Eq. (2) by rearranging terms to 1nd the
weights associated with yk; yk+1; y′

k , and y′
k+1. In this manner, the Hermite expression for cubic
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Fig. 2. A single cubic polynomial segment.

curves explicitly represents the function as a linear combination of position and derivative values.
In contrast, Eq. (1) represented the cubic curve as a linear combination of powers of x with the
position and derivate values embedded in the coeMcients.

Fig. 2 depicts a cubic polynomial segment that is fully speci1ed with four constraints: position
vectors (xk ; yk) and (xk+1; yk+1), and derivatives y′

k and y′
k+1. The segment passes through the two

endpoints, and the derivatives at both ends are depicted with bold tangent vectors. A dashed line
with derivative (slope) mk = Pyk=Pxk at both endpoints is shown as well.

To make the derivatives invariant to scale change, we shall 1nd it useful to relate the derivatives
in terms of slope mk :

y′
k = �kmk; (8a)

y′
k+1 = �kmk (8b)

for �k¿ 0 and �k¿ 0. The cubic curve in Fig. 2 was generated using �k = 0 and �k = 2.
Although the user-supplied data points are 1xed, the derivatives can be changed to yield a large

family of interpolating cubic splines. We are interested in determining the range of derivative values
for which the spline remains monotonic. To motivate the need for determining this range of derivative
values, Fig. 3 shows a set of 1ve cubic curves, each with derivative y′

k = 0 and increasing values
for y′

k+1. In particular, �k = 0 and 16 �k6 5 for integer values of �k . Tangent vectors are shown
for the �k = 1 and �k = 5 cases. Note that the monotonic constraint is violated when �k ¿ 3, i.e., a
local minima is present in the span.

4. Monotonicity

In this section, we consider a single cubic polynomial fk(x) in the interval [xk ; xk+1] and derive
necessary and suMcient conditions for which fk(x) is monotonic in the interval. These conditions
form the basis of the monotonic cubic spline interpolation algorithm presented in this paper. The
conditions derived below closely follow that of [15] and are reviewed here to make the presentation
self-contained. These conditions are further simpli1ed here to yield a fast method for determining
monotonicity.



150 G. Wolberg, I. Alfy / Journal of Computational and Applied Mathematics 143 (2002) 145–188

Fig. 3. A family of interpolating cubic polynomials.

A curve is monotonic in an interval [xk ; xk+1] if and only if there is no sign change in the derivative
value along any part of the curve in the interval. Therefore, a necessary condition for monotonicity
is that

sgn(y′
k) = sgn(y′

k+1) = sgn(mk): (9)

Furthermore, if mk = 0, then fk(x) is monotone (constant) in the interval if and only if y′
k =y′

k+1 = 0.
In the remainder of the presentation, we will assume that mk �= 0 and that Eq. (9) is satis1ed. As

a result, fk(x) is strictly monotonic in the interval [xk ; xk+1] if f′
k(x) �= 0 for xk6 x6 xk+1. This

implies that there are no local extrema (minima=maxima) in that span.
Since the problem of determining monotonicity is translation-invariant, the x-coordinates can be

shifted so that xk = 0. Furthermore, without loss of generality, both Pxk and Pyk can be divided by
Pxk to yield Pxk = 1 and Pyk =mk . Substituting these expressions into Eq. (1) yields the following
cubic curve between (xk ; yk) and (xk+1; yk+1):

fk(x) = akx3 + bkx2 + ckx + dk; (10)

where

ak = − 2mk + �kmk + �kmk; (11a)

bk = 3mk − 2�kmk − �kmk; (11b)

ck = �kmk; (11c)

dk =yk: (11d)

Note that the interval of interest here is [0,1] since xk = 0 and Px has been normalized to 1. The
expressions for the 1rst and second derivatives are:

f′
k(x) = 3akx2 + 2bkx + ck ; (12)

f′′
k (x) = 6akx + 2bk : (13)

We now consider several cases to determine necessary and suMcient conditions for monotonicity.
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Fig. 4. Three f′
k(x) cases: (a) linear; (b) concave down; and (c) concave up.

4.1. Case 1: ak = 0 → �k + �k − 2 = 0

If ak = 0, then fk(x) is quadratic (or linear) and f′
k(x) is linear (or constant). Since f′

k(x) con-
stitutes the line between y′

k and y′
k+1, no sign change in f′

k(x) is possible and Eq. (9) is a suMcient
condition for monotonicity. This case is depicted in Fig. 4(a).

4.2. Case 2: ak �= 0 → �k + �k − 2 �= 0

If ak �= 0, then f′
k(x) is quadratic. If endpoints y′

k and y′
k+1 of the quadratic are positive, the

quadratic function f′
k(x) is guaranteed to remain positive along the entire interval if the curve is

concave down. This condition is met if ak ¡ 0. The opposite is true if y′
k and y′

k+1 are negative.
Therefore, if �k + �k − 2¡ 0 and Eq. (9) is satis1ed, fk(x) is monotone. This case is depicted in
Fig. 4(b). Note that we can accommodate the monotonic increasing and decreasing cases in a single
condition by dividing ak by mk , where mk �= 0.

In the event that ak ¿ 0, the function f′
k(x) is concave up and fk(x) may or may not be monotone.

Fig. 4(c) illustrates two concave upward functions. The strictly positive f′
k(x) function corresponds

to a monotone fk(x). The other function corresponds to a non-monotonic fk(x).
We may distinguish between the two cases in Fig. 4(c) by 1nding the local minima of f′

k(x).
This is derived by solving for x∗ in f′′

k (x∗) = 0:

6akx∗ + 2bk = 0; (14a)

3(�k + �k − 2)x∗ = 2�k + �k − 3; (14b)

x∗ =
2�k + �k − 3

3(�k + �k − 2)
: (14c)

The concave upward f′
k(x) function is associated with a monotone fk(x) function if and only if it

satis1es any of the following conditions:
(1) x∗¡ 0,
(2) x∗¿ 1,
(3) 0¡x∗¡ 1 and sgn(f′

k(x∗)) = sgn(mk).

Conditions (1) and (2) imply that any sign change in f′
k(x) takes place outside the normalized

interval of interest, i.e, the function is monotone in the [0,1] interval. The two conditions can be



152 G. Wolberg, I. Alfy / Journal of Computational and Applied Mathematics 143 (2002) 145–188

written as 2�k + �k − 36 0 and �k + 2�k − 36 0, respectively. Condition (3) corresponds to the
monotone case depicted in the strictly positive function in Fig. 4(c). We may write this condition
as follows:

f′
k(x∗) =

(
3ak(x∗)2 + 2bkx∗ + ck

mk

)
mk; (15)

=
(
�k − (2�k + �k − 3)2

3(�k + �k − 2)

)
mk: (16)

In order for f′
k(x∗) to retain the same sign as mk ,

�k − (2�k + �k − 3)2

3(�k + �k − 2)
¿ 0: (17)

Expanding Eq. (17) yields

�2
k + �k(�k − 6) + (�k − 3)26 0: (18)

The same expression can be derived by computing f′
k(x) = 0 in [0,1]:

f′(x) = 3akx2 + 2bkx + ck = 0

=Ax2 + Bx + C = 0: (19)

The solution for x in the quadratic expression of Eq. (19) is

x =
−B±√

B2 − 4AC
2A

: (20)

No solution exists if 2A= 0 or B2 ¡ 4AC:

2A= 0→ 3(�k + �k) − 6 = 0

→ �k + �k = 2; (21)

B2 ¡ 4AC→ 16�2
k + 4�2

k − 48�k − 24�k + 16�kbk + 36¡ 12�2
k − 24�k + 12�k�k

→ �2
k + �k(�k − 6) + (�k − 3)2 ¡ 0: (22)

Notice that the expression in Eq. (21) is identical to the ak = 0 case given in Section 4.1, and the
expression in Eq. (22) is identical to that of Eq. (18). The fact that no solution exists for the above
expressions implies that no local extrema is present in the [0; 1] interval.

4.3. Monotonicity conditions

The monotonicity constraints derived above can be summarized by the following two lemmas:

(1) If �k + �k − 26 0, then fk(x) is monotone if and only if Eq. (9) is satis1ed.
(2) If �k + 2�k − 2¿ 0, then fk(x) is monotone if and only if Eq. (9) and one of the following

conditions is satis1ed:
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Fig. 5. (�; �) pairs for a monotonic curve.

(a) 2�k + �k − 36 0,
(b) �k + 2�k − 36 0,
(c) �2

k + �k(�k − 6) + (�k − 3)2 ¡ 0.

Conditions (1), (2a), (2b), and (2c) are depicted graphically as regions I, II, III, and IV in
Fig. 5(a). The union of these regions, shown in Fig. 5(b), is bounded by lines �k = 0; �k = 0,
and the ellipse. A simple expression for this region is derived below:

�2
k + �k(�k − 6) + (�k − 3)2 ¡ 0;

(�k + �k)2 − 6(�k + �k) + 9 − �k�k ¡ 0;

[(�k + �k) − 3]2 ¡�k�k ;

�k + �k − 3¡
√
�k�k ;

�k + �k ¡ 3 +
√
�k�k :

(23)

Eq. (23) de1nes the full ellipse of region IV. The monotonicity region M in Fig. 5(b) is expressed
in terms of this result as follows:

M =

{
0¡�k + �k ¡ 3 + s if 06 �k6 3;

3 − s¡�k + �k ¡ 3 + s if 3¡�k6 4;
(24)

where s=
√
�k�k . All points in region M denote valid (�k ; �k) pairs that preserve monotonicity.

4.4. Greedy algorithm

A reasonable approach for generating a smooth monotonic curve is to apply the standard cubic
spline interpolation algorithm [30] to the data and visit each interval to verify if it will produce a
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monotonic segment. The interpolation algorithm will compute the y′
k derivatives at each knot. We

evaluate �k and �k for each interval by dividing y′
k at each knot by the slope of the interval. If

Eq. (24) is satis1ed, the interval is monotone and we can leave the computed y′
k derivative alone.

Otherwise, y′
k must be altered to arrive at an (�k ; �k) pair that lies in the monotonicity region M

illustrated in Fig. 5(b). To do this, we refer to the equation of an ellipse given in Eq. (22) to 1nd
(�k ; �k) pairs that yield no solution to f′

k(x) = 0. For a given �k , we solve for �k in Eq. (22). Setting
that quadratic expression to 0 yields the following limits for �k :

�k =
−(�k − 6) ±

√
(�k − 6)2 − 4(�k − 3)2

2

=
−(�k − 6) ±√

�2
k − 12�k + 36 − 4�2

k + 24�k − 36
2

=
−(�k − 6) ±√

3�k(4 − �k)
2

: (25)

A solution exists for �k as long as 06 �k6 4:

�min6 �k6 �max (26)

where

�min =




0 if 06 �k6 3;

−(�k − 6) −√
3�k(4 − �k)

2
if 3¡�k ¡ 4;

1 �k ¿ 4:

and

�max =




−(�k − 6) +
√

3�k(4 − �k)
2

if 0¡�k ¡ 4;

1 �k ¿ 4:

Therefore, we clamp �k to the range [�min; �max] when �k ¡ 4. If �k ¿ 4, then we clamp �k as well
as �k to (�k ; �k) = (1; 4).

Updating an (�k ; �k) pair for interval k will alter neighboring intervals. Consequently, the updating
process is reserved for the interval k whose (�k ; �k) values lie furthest outside monotonicity region
M . Only that interval is “1xed” and the standard cubic spline interpolation algorithm is re-applied
to the remaining intervals of the curve. This algorithm is greedy in the sense that it sequentially
attempts to remedy the problem by patching up the most o5ending interval, one at a time. It is
possible that clamping the (�k ; �k) values in one interval can 1x problems that had existed in other
intervals. Conversely, it can also introduce problems in neighboring intervals, where none may have
existed before. With each pass, though, the standard cubic spline interpolation algorithm is applied
to ever-smaller data sets since the derivatives 1xed in previous iterations remain 1xed throughout
the remainder of the processing. The algorithm iterates until all intervals are found to be monotonic.
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Fig. 6. Relationship between the cubic spline domains.

It is important to note that by 1xing the derivative values in one interval of a C2 curve, we
have introduced a discontinuity in the second derivative. Implicit in this statement is the fact that
the boundary conditions remained 1xed. If the boundary conditions were allowed to be free, then
it is possible that the modi1ed curve could have remained C2. However, optimization to solve for
the boundary conditions would be required in this instance. In the absence of this optimization, the
greedy algorithm produces C1 curves. The greedy algorithm thereby iteratively breaks an initial C2

curve at the o5ending interval, introduces boundary conditions there, and reapplies a C2 1t on the
remaining subcurves. The 1nal C1 curve is therefore a composite of C2 subcurves.

4.5. Discussion

The presentation in this section has focused on monotonicity conditions for a single cubic poly-
nomial fk(x) in the interval [xk ; xk+1]. The suboptimal greedy algorithm used those conditions to
iteratively generate a monotone C1 curve. The most desirable solution will require that all inter-
vals be smoothly tied together satisfying C2 continuity. This is a global problem that will require
optimization to determine the unknown derivative values at the data points to yield the smoothest
monotone cubic spline.

Let �i and �i
M denote the domains of Ci cubic splines and Ci monotone cubic splines, respectively.

The relationship between these domains may be given as

�i
M ⊂ �i; i = 0; 1; 2;

�i ⊂ �i−1; i = 1; 2;

�i
M ⊂ �i−1

M ; i = 1; 2;

�i �⊂ �i−1
M ; i = 1; 2:

(27)

The last relation implies that there are C2 solutions that do not yield monotone C1 curves. These
relationships are graphically depicted in Fig. 6 for i = 2.

For some data sets, it is possible that no monotone C2 solution exists, i.e., �2
M = ∅. Note that

it is always possible to achieve a monotone C1 solution, i.e., �1
M �= ∅, because we can always
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force y′
k = 0 at all data points. Therefore, we will only consider using the best monotone C1 solution

if no C2 solution exists.

5. Optimization-based solutions

In this section, we consider several solutions to the monotonic interpolation problem based on
optimization techniques. We will investigate solutions derived by linear and quadratic programming
techniques subject to various constraints on 1rst and second derivative continuity.

The objective criterion for the optimization techniques will be based on energy measures of
the curves. We begin with a review of the classic cubic spline energy measure in Section 5.1.
Since the original cubic spline formulation is not guaranteed to be monotonic, we will impose
the monotonicity constraint in Section 5.2. This will furnish a solution that may be solved using
quadratic programming. That result will be further simpli1ed in Section 5.3 to yield a solution that
may be solved using linear programming. Since monotonic cubic splines are not guaranteed to be
C2 continuous, a new energy measure is introduced in Section 5.5 that addresses the extent of
second derivative discontinuity in the spline. That result is further simpli1ed in Section 5.6 to yield
a solution that may be solved using linear programming.

5.1. Spline energy

Cubic splines originally arose as a mathematical model for a draftman’s spline. Cubic splines
mimic the position of a Jexible thin beam that is forced to pass through the given data points
[18,9]. The strain energy of the beam is given as the integral of the curvature

E =
∫ xn−1

x0

f′′(x)2

(1 + [f′(x)]2)5=2
dx: (28)

The elastica is the ideal interpolating spline, i.e., the function f(x) that minimizes E. Although any
interpolating function that minimizes E is known as the elastica, we shall be interested in the C2

cubic spline elastica (CSE) that minimizes E. Due to the inherent diMculty in solving for f(x)
under this formulation, a simpler linearized energy measure is commonly used [28,9,14,13]:

EL =
∫ xn−1

x0

f′′(x)2 dx: (29)

This expression is valid only if one makes the simplifying assumption that f′(x)2�1 everywhere.
Despite the fact that this assumption is often violated in practice, it is widely used since it facilitates
a computationally tractable solution for minimizing Eq. (28). The EL energy measure given in Eq.
(29) is often coupled with the free-end (FE) boundary condition f′′(x0) =f′′(xn−1) = 0 to produce
the natural spline. It has been shown that the FE boundary condition minimizes Eq. (29) among all
C2 cubic polynomials [9,28].

5.2. Linearized energy (LE QP)

The expression for EL may be written in terms of the 1rst derivatives of Eq. (3) as follows:
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Fig. 7. Linear approximation of region M : (a) n= 6; (b) n= 10.

EL =
n−2∑
k=0

∫ xk+1

x=xk

f′′
k (x)2 dx

=
n−2∑
k=0

∫ xk+1

x=xk

1
Px2

k

[
H ′′

0

(
x − xk
Pxk

)
yk + H ′′

1

(
x − xk
Pxk

)
yk+1 + PxH ′′

2

(
x − xk
Pxk

)
y′
k

+ PxH ′′
3

(
x − xk
Pxk

)
y′
k+1

]2

dx; (30)

where

H ′′
0 (u) = 12u− 6; (31)

H ′′
1 (u) = − 12u + 6; (32)

H ′′
2 (u) = 6u− 4; (33)

H ′′
3 (u) = 6u− 2: (34)

The solution to the problem of minimizing EL over all possible 1rst derivatives is not guaranteed
to preserve monotonicity. We may address this problem by adding linear monotonicity constraints.
Fig. 5 shows the valid range of values for �k and �k to yield a monotonic curve segment. We may
obtain linear constraints by approximating the closed region in Fig. 5 with an n-sided polygon. In
the example below, we use n= 6 and n= 10 to demonstrate our approach.

Fig. 7 illustrates the two polygons we used to approximate region M in our work. The 6- and
10-sided polygons shown in Fig. 7 cover 90.53% and 97.53% of region M , respectively. The 6-sided
polygon depicted in Fig. 7(a) consists of the intersection of the following six half-planes:

�k¿ 0; (35a)

�k¿ 0; (35b)



158 G. Wolberg, I. Alfy / Journal of Computational and Applied Mathematics 143 (2002) 145–188

�k − �k + 3¿ 0; (35c)

�k + 2�k − 96 0; (35d)

2�k + �k − 96 0; (35e)

�k − �k − 36 0; (35f)

where �k =y′
k =mk , and �k =y′

k+1=mk . Expressing these results in terms of the unknown 1rst deriva-
tives we have the following six monotonicity constraints:

sign(mk)




−1 0
0 −1
1 −1

−1 1
2 1
1 2



[

y′
k

y′
k+1

]
6 |mk |




0
0
3
3
9
9



: (36)

Note that Eq. (36) can be applied to any increasing or decreasing data interval. In order to retain
the same inequality direction for either case, we factored out the sign of mk in Eq. (36).

A general method for computing the boundary of M is given in Appendix A. We use that method
to derive the set of inequalities that constitute the monotonicity constraints. The constraints for the
n= 10 case are given below:

sign(mk)




−1:0000 0
0:0000 −1
0:3660 −1
2:7317 −1
3:7313 1
1:3661 1
0:7320 1
0:2680 1

−0:3661 1
−2:7324 1




[
y′
k

y′
k+1

]
6 |mk |




0:0000
0:0000
1:0980
9:9269

15:9254
7:0984
5:1960
4:2680
3:6339
3:0000




: (37)

Since EL is quadratic in y′
k , and Eq. (36) and Eq. (37) are linear in y′

k , we can use quadratic
programming to minimize EL subject to the following constraints:

1. Second derivative continuity: f′′(x+
k ) =f′′(x−k ) (Eq. (38)).

2. Monotonicity constraints: Eqs. (36) or (37).

The second derivative continuity constraint can be expressed as follows:

−y′
k−1

1
Pxk−1

− y′
k

[
2

Pxk
+

2
Pxk−1

]
− y′

k+1
1

Pxk
− yk−1

3
Px2

k−1
+ yk

[
3

Px2
k−1

− 3
Px2

k

]

+yk+1
3

Px2
k

= 0: (38)
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Interpolation and 1rst derivative continuity constraints are not required since they are implicit in the
cubic Hermite form of Eq. (3).

Note that it is possible that a feasible C2 solution does not always exist. In that case, we must
solve the minimization problem without the second derivative continuity constraint. If a C2 solution
exists and the natural spline is monotone, then the solution consists of the 1rst derivatives of the
natural spline.

5.3. Modi6ed linearized energy (LE LP)

Quadratic programming can be solved by using linear programming [24,32]. However, for a 1xed
number of variables in an objective function F , quadratic expressions for F require a larger system
of equations than a linear expression for F . As a result, we simplify the linearized energy measure
to be linear in the 1rst derivatives so that a computationally simpler linear programming procedure
can be applied.

We de1ne our objective function in terms of EL, the linearized energy of the curve. In order to
minimize Eq. (29) using linear programming, we approximate it with the following expression:

ẼL =
n−2∑
k=0

∫ xk+1

xk

|f′′
k (x)| dx: (39)

The nonlinear absolute value operation, however, makes it diMcult to readily solve for the unknown
1rst derivatives of the cubic piecewise polynomial. Instead, we propose a di5erent approach: add a
constant K to f′′

k (x) such that f′′
k (x) +K¿ 0 everywhere. This yields TEL, the objective function for

our linear programming solution:

TEL =
n−2∑
k=0

∫ xk+1

xk

(f′′
k (x) + K) dx: (40)

Since the second derivative of a cubic is linear in x, its extrema are at the interval borders. There
always exists a K such that f′′

k (x) + K¿ 0. The positivity is obtained by having this condition
hold at the interval borders x = xk and x = xk+1. We therefore add the following two equations as
optimization constraints where K is one of the optimization unknowns:

f′′
k (xk) + K =

1
Px2

k
(−3yk + 3yk+1 − 2Pxky′

k − Pxky′
k+1) + K¿ 0; (41)

f′′
k (xk+1) + K =

1
Px2

k
(3yk − 3yk+1 + Pxky′

k + 2Pxky′
k+1) + K¿ 0 (42)

for 06 k6 n− 2. Eq. (40) can therefore be rewritten as

TEL =
n−2∑
k=0

∫ xk+1

x=xk

(f′′
k (x) + K) dx =

n−2∑
k=0

y′
k+1 − y′

k + KPxk =y′
n−1 − y′

0 + K(xn−1 − x0): (43)

Note that this expression is a linear equation with respect to the 1rst derivatives and K . We use
linear programming to minimize TEL subject to the following constraints:
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1. Second derivative continuity: f′′(x+
k ) =f′′(x−k ) (Eq. (38)).

2. Second derivative on left side: f′′
k (xk) + K¿ 0 (Eq. (41)).

3. Second derivative on right side: f′′
k (xk+1) + K¿ 0 (Eq. (42)).

4. Monotonicity constraints: Eqs. (36) or (37).

Note that it is possible that a feasible C2 solution does not always exist. In that case, we must
solve the minimization problem without the second derivative continuity constraint. Conversely, it
is possible that many C2 solutions exists, and we will 1nd one such solution from that set.

5.4. Linearized energy properties

When no feasible C2 solution exists, the second derivative discontinuity may be visually prominent
at the spline joints. Even if the C2 solution exists, it may not necessarily minimize EL. In fact, a
C1 solution may have a lower EL. This is due to the fact that the domain of the C1 solutions is a
superset of the C2 solution domain (see Fig. 6). Note that the solution for C0 monotone constraints
is the linear interpolation with EL = 0. This implies that the EL measure is not valid for C0 or
C1 solutions. It is not even always valid for C2 solutions since it is based on the (possibly false)
assumption that f′(x)2�1 everywhere. The following example demonstrates this argument. Consider
the data set

X= [0 1 2 3];

Y= [0 400 400 800]:

Fig. 8(a) shows the data 1tted with a spline satisfying the free-end condition, i.e., the natural
spline. Notice that although the data is monotone, the curve is not monotonic. Figs. 8(b) and (c)
show the curves that minimize EL with C1 and C2 constraints, respectively. The value of the second
derivative di5erence in Fig. 8(b) at (1,400) is high and visually prominent.

Table 1 summarizes the energy measures for Fig. 8. Note that although the C2 LE QP curve
in Fig. 8(c) has a higher EL, it is unquestionably smoother. This fact is properly reJected in the
accurate E energy measure. All of the solutions used the 6-sided polygonal approximation to region
M shown in Fig. 7(a).

5.5. Second derivative discontinuity energy (SDDE QP)

Due to the limitations of the approaches based on minimizing EL, we seek to solve for the closest
C2 spline among all C1 curves, thereby producing a more natural looking curve. This process requires
us to introduce an energy measure based on the second derivative discontinuities:

ED =
n−2∑
k=1

(f′′(x−k ) − f′′(x+
k ))2 =

n−2∑
k=1

(
1

Px2
k

[ − 3yk + 3yk+1 − 2Pxky′
k − Pxky′

k+1]

− 1
Px2

k−1
[3yk−1 − 3yk + Pxk−1y′

k−1 + 2Pxk−1y′
k]
)2

: (44)

A similar objective function was suggested by Nielson in his work on �-splines [20,13].
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Fig. 8. (a) FE; (b) C1 LE QP; (c) C2 LE QP; (d) overlay.

The energy measure ED can be minimized by using quadratic programming subject to the mono-
tonicity constraints given in Eqs. (36) or (37). In the minimization formulations for the EL and TEL

energy methods, a second derivative continuity constraint was included among the set of constraints.
This was a byproduct of the fact that EL and TEL are poor energy measures, whereby a C1 solution
may be deemed to have lower energy than a C2 solution. Note that no such constraint is necessary
in minimizing ED since a monotone C2 spline, if it exists, will be the solution to the problem.

Table 1
Energy measures for Fig. 8

Method E EL

FE 1231.66 640 000
LE QP (C1) 1599.34 960 000
LE QP (C2) 58.70 3 840 000
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Fig. 9. (a) FE; (b) SDDE QP (c) C1 LE QP (d) CSE.

The following example demonstrates the advantages of the SDDE QP approach. Consider the data
set:

X = [0.000 1.00 1.05 2.05 2.90]

Y = [0.00 350.00 354.65 428.00 650.00].

Fig. 9(a) shows the spline satisfying the free-end condition. Notice that although the data is
monotone, the curve is not monotonic. Figs 9(b) and 9(c) show the C1 curve that solves the
quadratic programming problems required in minimizing ED and EL, respectively, using the 6-sided
polygonal approximation to region M shown in Fig. 7(a). Fig. 9(d) shows the cubic spline elastica
(CSE) obtained by minimizing Eq. (28). Table 2 summarizes the energy measures for Fig. 9. Note
that although the CSE is a C2 monotone curve, the LE QP and SDDE QP curves could not yield
that solution since its (�k ; �k) set exists in the area lying outside the polygon and inside M . It is
evident that the SDDE QP curve and its energy measures are much closer to those of CSE than
LE QP.

5.6. Modi6ed discontinuity energy (SDDE LP)

We simplify the discontinuity energy measure ED to be linear with the 1rst derivatives so that
a linear programming procedure can be applied. The simpli1cation is done by adding an unknown
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Table 2
Energy measures for Fig. 9

Method E EL ED

FE 855.84 343408.02 0
SDDE QP N=A N=A 0.70
LE QP (C1) N=A N=A 666782.99
CSE 27.15 1504779.88 0

constant K to each second derivative di5erence, such that the term f′′(x−k )−f′′(x+
k ) +K is positive.

The positivity of each term is obtained by adding it as an optimization constraint where K is one
of the optimization unknowns. We thus have

ÊD =
n−2∑
k=1

f′′(x−k ) − f′′(x+
k ) + K; (45)

where f′′(x−k ) − f′′(x+
k ) was de1ned in Eq. (44). The energy measure TED can be minimized by

using linear programming subject to the following constraints:

1. Positivity constraint: f′′(x−k ) − f′′(x+
k ) + K¿ 0:

2. Monotonicity constraints: Eqs. (36) or (37).

An alternate approach can be used to linearize ED using the absolute values of the discontinuities:

TED =
n−2∑
k=1

|f′′(x−k ) − f′′(x+
k )|: (46)

For each discontinuity point we de1ne a slack variable sk whose value is forced to be the absolute
value of the discontinuity, using the following inequality constraints:

f′′(x−k ) − f′′(x+
k )6 sk ; (47)

−[f′′(x−k ) − f′′(x+
k )]6 sk : (48)

TED can be rewritten as

TED =
n−2∑
k=1

sk : (49)

The energy measure TED can be minimized by using linear programming subject to the following
constraints:

1. Absolute value constraints: Eqs. (47) and (48).
2. Monotonicity constraints: Eqs. (36) or (37).

Note that no second derivative continuity constraint is necessary since a monotone C2 spline is
the solution to the problem.
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5.7. Minmax discontinuity energy (SDDE MM)

The SDDE approach minimizes the sum of the second derivative discontinuity energy across the
knots. A reasonable alternative is to minimize ẼD, the maximum second derivative discontinuity:

ẼD = MAX{|f′′(x−k ) − f′′(x+
k )|}; (50)

where f′′(x−k ) − f′′(x+
k ) was de1ned in Eq. (44). The energy measure ẼD can be minimized by

using linear programming subject to the monotonicity constraints given in Eqs. (36) or (37). For
each discontinuity point we de1ne a slack variable sk whose value is forced to be the absolute value
of the discontinuity, using Eqs. (47) and (48). Next, we de1ne a new slack variable S whose value
is forced to be the maximum value of all absolute discontinuities using the following inequality
constraints:

sk6 S: (51)

ẼD can be rewritten as ẼD = S and it can be minimized by using linear programming subject to the
following constraints:

1. Absolute value constraints: Eqs. (47) and (48).
2. Maximum constraint: Eq. (51).
3. Monotonicity constraints: Eqs. (36) or (37).

Note that no second derivative continuity constraint is explicitly required because if a monotone
C2 spline exists it will naturally be chosen since ẼD = 0 for C2 splines.

6. Bounds on approximation error

The methods described in the previous sections interpolate monotone data with a cubic function
f(x). That same function approximates values of a monotone function g(x) anywhere in [x1; xn−1].
In the following section, we derive bounds on the approximation error ek(x) = |fk(x) − gk(x)| for
cubic polynomials. We also show the relationship between the approximation error and the size of
the polygon used to approximate the monotone region M . We shall consider the six-sided polygon
and the 3 × 3 square. The latter approximation is used in the popular Fritsch–Butland algorithm.

Lemma 1. If f(x) and g(x) are two monotone polynomials of degree three or less that satisfy
f(xk) = g(xk) =yk and f(xk+1) = g(xk+1) =yk+1 then ek(x)6 0:866|Pyk |.

Proof. Evaluating ek(x) using the Hermite basis functions (Eq. (3)) yields

ek(x) =
∣∣∣∣PxkH2

(
x − xk
Pxk

)
(f′(xk) − g′(xk))

+ PxkH3

(
x − xk
Pxk

)
(f′(xk+1) − g′(xk+1))

∣∣∣∣
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=
∣∣∣∣Pyk

(
H2

(
x − xk
Pxk

)
(�fk − �gk) + H3

(
x − xk
Pxk

)
(�f

k − �g
k)
)∣∣∣∣ ; (52)

where

f′(xk) = �fk Pmk;

f′(xk+1) = �f
k Pmk;

g′(xk) = �gkPmk;

g′(xk+1) = �g
kPmk:

To determine the upper bound of e(x) we solve the following problem:

MAX ẽk(x) = (u3 − 2u2 + u)(�fk − �gk) + (u3 − u2)(�f
k − �g

k); (53)

subject to:

06 u6 1;

(�fk ; �
f
k )∈M;

(�gk ; �
g
k)∈M;

where the unknowns are (�fk ; �
f
k ); (�gk ; �

g
k) and u: The solution to this nonlinear problem is

u= 0:5;

(�fk ; �
f
k ) = (3:7320; 0:2679);

(�gk ; �
g
k) = (0:2679; 3:7320);

]ek(x) = 0:866:

Combining this result with Eq. (52) gives ek(x)6 0:866|Pyk |:

Lemma 2. If f(x) and g(x) are two monotone polynomials of degree three or less that satisfy
f(xk) = g(xk) =yk and f(xk+1) = g(xk+1) =yk+1 and (�fk ; �

f
k )∈ M̃ ⊂ M then

If (�gk ; �
g
k)∈M − M̃ MAXMIN ek(x) =




0 M̃ =M;

0:058|Pyk | M̃ = six-sided polygon;

0:1481|Pyk | M̃ = square:

(54)

Proof. If (�gk ; �
g
k)∈ M̃ then the approximation algorithm can end with 1rst derivatives such that

(�gk ; �
g
k) = (�fk ; �

f
k ) i.e. ek(x) = 0 for x∈ [xk ; xk+1]; and therefore MAXMIN ek(x) = 0: If (�gk ; �

g
k) �∈ M̃

then the approximation algorithm can not yield the correct 1rst derivatives. The worst case in terms
of maximum of minimum error can be obtained by solving the following problem:

MAX ]ek(x) = (u3 − 2u2 + u)(�fk − �gk) + (u3 − u2)(�f
k − �g

k); (55)
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Fig. 10. MAXMIN solution for (a) six-sided polygon, and (b) square.

subject to:

06 u6 1;

(�fk ; �
f
k )∈ M̃ ;

(�gk ; �
g
k)∈M − M̃ :

There are two solutions to Eq. (55) for the case where M̃ is the 3 × 3 square used in [14].

[G1; F1; u1] = [(�gk ; �
g
k); (�fk ; �

f
k ); u1] = [(4; 1); (3; 1); 0:66]; (56a)

[G2; F2; u2] = [(�gk ; �
g
k); (�fk ; �

f
k ); u2] = [(1; 4); (1; 3); 0:33]: (56b)

The error associated with either of these point pairs is ek(x) = 0:1481|Pyk |.
There are two solutions to Eq. (56) for the case where M̃ is a six-sided polygon:

[G1; F1; u1] = [(�gk ; �
g
k); (�fk ; �

f
k ); u1] = [(3:7320; 0:2679); (3:5; 0:5); 0:5]; (57a)

[G2; F2; u2] = [(�gk ; �
g
k); (�fk ; �

f
k ); u2] = [(0:2679; 3:7320); (0:5; 3:5); 0:5]: (57b)

The error associated with either of these point pairs is ek(x) = 0:058|Pyk |. Fig. 10 shows the location
of these two solutions for both cases.

The above results show the relationship between the approximation error and the allowed region
for (�fk ; �

f
k ). It is clear that by increasing the coverage of M̃ we can improve the approximation of

g(x).

Example. Consider the cubic function g(x) = 6:5x3 − 1:9x2 + 0:2x sampled uniformly in the [0; 1]
interval with Px = 0:1: Fig. 11 shows the approximation error, e(x); for the monotone cubic spline
elastica (MCSE) and FB splines, respectively. The FB algorithm utilizes the 3 × 3 square in M .
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Fig. 11. Approximation error. (a) MCSE; (b) FB.

The MCSE splines are obtained by minimizing Eq. (28) subject to the six monotonicity constraints.
The MCSE interpolates exactly, i.e., e(x)¡ 0:0002 in the [0.2,0.7] interval, while the approximation
error of the FB curve is bounded by 0.0013.

7. Results

In this section, we compare the results of the di5erent techniques described in this paper. They
include:

1. Cubic spline elastica (CSE)—The cubic spline coeMcients are obtained by minimizing Eq. (28)
subject to the constraint that f(x) is a C2 cubic function. Since the energy given in Eq. (28) is
a nonlinear objective function, global minimization is diMcult. We used various initial estimates
for the minimization procedure, including {y′

k}= 0 and {y′
k}=mk . We selected the solution {y′

k}
associated with the minimum energy value computed.

2. Monotone cubic spline elastica (MCSE)—The 1rst derivatives are obtained by minimizing E
subject to the constraint that f(x) is monotone and a C2 cubic function. Since the energy E is
a nonlinear objective function, global minimization is diMcult. We used various initial estimates
for the minimization procedure, including {y′

k}= 0, {y′
k}=mk , as well as {y′

k} computed by the
SDDE QP method. We selected the solution {y′

k} associated with the minimum energy value
computed. Note that MCSE solution may not exist if there is no monotone C2 solution.

3. Free-end (FE) boundary condition—The 1rst derivatives {y′
k} are obtained by minimizing

Eq. (29), assuming f(x) is a C2 cubic function that satis1es the free-end condition: f′′(x0) =
f′′(xn−1) = 0.

4. Fritsch and Butland (FB): The algorithm is described in [14] and implemented in PCHIM. FOR,
NETLIB’s PCHIPD package for piecewise cubic hermite interpolation by Fritsch. The 1rst deriva-
tives are calculated using Brodlie’s formula with �= (Pxk−1 + 2Pxk)=3(Pxk−1 + Pxk):

f′(xk) =
mk−1mk

�mk + (1 − �)mk−1
: (58)

5. Second derivative discontinuity energy (SDDE QP)—Minimize ED.
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Fig. 12. Free end (FE): (a) interpolating spline; (b) {�; �} points.

Fig. 13. Second derivative discontinuity energy (SDDE−LP): (a) interpolating spline; (b) {�; �} points.

6. Modi1ed discontinuity energy (SDDE LP)—Minimize TED.
7. Minmax discontinuity energy (SDDE−MM)—Minimize ẼD.

We used the optimization toolbox of Matlab 5.3 to solve the linear and quadratic programming
problems above. Note that Matlab indicates when no feasible solution exists. We will demonstrate
the techniques on the following two data sets. The 1rst set is the following:

X = [0 1 2 3 4 4.5 6 7 7.3 9 10 11],

Y = [0 1 4.8 6 8 13 14 15.5 18 19 23 24.1].

Figs. 12–14 depict the curves produced by the various methods. Each curve is presented in
two coordinate systems: (x; f(x)) and (�; �). The purpose of this representation is to highlight
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Fig. 14. Fritsch–Butland (FB): (a) interpolating spline; (b) {�; �} points.

Table 3
Energy measures

Method E ED ẼD

CSE 53.47 0.00 0.00
FE 54.27 0.00 0.00
SDDE−QP N=A 16445.26 8306.84
SDDE−LP N=A 16472.55 8306.84
FB N=A 44460.52 15995.29

the monotone characteristics of the curves. The spline 1gures contain vertical lines ended with cir-
cles to represent the second derivative di5erence at the knots, where the di5erence is measured by
Dk = (f′′(x−k ) − f′′(x+

k ))2. Note that ED is de1ned as the sum of all the Dk’s. The scale for the
second derivative di5erences is normalized to 1t the curve scale, while its maximum value is given
in Table 3. Note also that for C2 curves, e.g., ED = 0, the di5erences are zero.

The curves produced by the CSE and FE methods above are C2 and not monotone. Note that
there is no monotone C2 solution and therefore the MCSE curve does not exist. The SDDE−QP,
SDDE−LP, and Fritsch–Butland curves are C1 and monotone. Since the SDDE−QP and SDDE−LP
curves are virtually identical, we showed only the latter curve. The distribution of the {�k ; �k} points
for the Fritsch–Butland curve are concentrated near the origin, i.e., biased towards low values. This
has a noticeable e5ect on the smoothness of the curve. In particular, the resulting curve exhibits
more tension and is biased towards linear interpolation where (�; �) = (1; 1). It is also salient that
the second derivative discontinuities are prominent at the spline joints. Table 3 summarizes these
results. Note that the N=A entries in the table apply to those curves which are only C1. Any attempt
to minimize the sum of their piecewise squared second derivatives will yield a linear interpolant
with E = 0, which is not smooth. E is therefore not a meaningful energy measure for C1 curves.
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Fig. 15. Free end (FE): (a) interpolating spline; (b) {�; �} points.

Fig. 16. SDDE−LP method: (a) interpolating spline; (b) {�; �} points.

The second example is the third set used by Akima [1].

X = [0 2 3 5 6 8 9 11 12 14 15],
Y = [10 10 10 10 10 10 10.5 15 50 60 85].

Figs. 15–17 depict the curves produced by methods described in this section. In this case, there is
no feasible monotonic C2 solution. Therefore, all the methods produced C1 curves. Again, the energy
minimization solutions are visually more pleasing. This can be explained by the {�; �} pairs that are
spread more widely across the M region. Table 4 summarizes these results. Note that energy measure
E is not applicable for C1 solutions produced by the SDDE−QP, SDDE−LP, and FB methods.
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Fig. 17. Fritsch–Butland (FB): (a) interpolating spline; (b) {�; �} points.

Table 4
Energy measures for Akima data interpolants

Method E ED ẼD

CSE 73.68 0.00 0.00
FE 81.02 0.00 0.00
SDDE−QP N=A 22841.56 15813.06
SDDE−LP N=A 22841.56 15813.06
FB N=A 52249.08 28486.43

8. Extensions

In this section we extend the techniques described earlier to solve the following problems:

1. Handling data of changing monotonicity.
2. Construction of monotone and convex (or concave) interpolating cubic splines.
3. Construction of C2 interpolating cubic splines with up to two extra knots inserted between each

pair of data points.
4. Smoothing noisy data with C2 cubic splines.

8.1. Handling data of changing monotonicity

All of the methods presented thus far have been demonstrated on monotonic increasing or de-
creasing data sets. The methods can be easily extended to handle data of changing monotonicity.
Arbitrary data sets, for instance, can be partitioned into a sequence of monotonic increasing and
decreasing sets. Enforcing monotonicity in each of these sets helps reduce undesirable ripples. This
may be useful for applications such as signal resampling, e.g., image magni1cation.
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Fig. 18. Data 1tting with natural spline (free end condition).

Fig. 19. Data 1tting with Fritsch–Butland (FB) algorithm.

We visit all intervals and determine which monotonicity constraints to apply, based on whether
the data is increasing, decreasing, or constant. For each increasing and decreasing interval, we
have six monotonicity constraints. For each constant (horizontal) interval, we have two constraints:
y′
k =y′

k+1 = 0. When two intervals meet to form a local extrema, no monotonicity constraints are
applied to either interval. Details are provided in the supplied MATLAB code in
Appendix B.

Figs. 18–20 show the free-end, Fritsch–Butland (FB), and SDDE methods applied to data having
three local extrema. The data set is given below. Note that the local nature of the FB algorithm forces
a tense 1t through the 1rst extrema. The SDDE−LP method relaxes the monotonicity constraint to
allow a smooth 1t in the vicinity of the extrema. Similarly, the extrema on the right side of the 1gure
demonstrates the smoother SDDE−LP 1t. Fig. 21 shows the {�; �} points for the FB and SDDE−LP
methods. Notice that the FB algorithm restricts the {�; �} positions to the square delimited by (0,0)
and (3,3). The SDDE−LP method, on the other hand, permits the {�; �} positions to fall freely in
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Fig. 20. Data 1tting with SDDE−LP method.

Fig. 21. {�; �} points for (a) FB; (b) SDDE−LP.

the whole monotonicity region.

X= [0.0196 0.1090 0.1297 0.2340 0.2526 0.3003 0.3246 0.3484 0.3795 0.4289

0.4603 0.4952 0.5417 0.6210 0.6313 0.6522 0.6979 0.7095 0.8318 0.8381],

Y= [ 4 4.5 14 16 24 30 28 35 36 38

39 40 30 23 20 19 18 5 4 3].

8.2. Shape preserving cubic splines

A spline is said to be shape preserving if it produces convex splines for convex data. Several al-
gorithms were proposed to compute shape preserving splines that are monotone and convex [8,7,4,5].
The algorithms are based on [15] and iteratively compute a set of 1rst derivatives that simultane-
ously satisfy the monotonicity and convexity constraints to produce a C1 spline. We seek to introduce
shape preserving constraints in our optimization framework to produce a C2 solution, if it exists.
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Fig. 22. Convexity region C is embedded in monotonicity region M .

Function f(x) is said to be increasing convex in [xk ; xk+1] if

f′(x)¿ 0 x∈ [xk ; xk+1] (59)

and

f′′(x)¿ 0 x∈ [xk ; xk+1]: (60)

The increasing condition of Eq. (59) is a monotonicity requirement discussed in Section 4.
Since the second derivative of f(x) is linear in x, its extrema are at the interval borders. For

the second derivative to be positive in the interval [xk ; xk+1] it is suMcient that f′′
k (xk)¿ 0 and

f′′
k (xk+1)¿ 0. This yields the following convexity constraints:

2y′
k + y′

k+16 3mk; (61a)

−y′
k − 2y′

k+16− 3mk: (61b)

Fig. 22 shows the convexity region C embedded in monotonicity region M . The intersection of both
regions yields the shape preserving constraints:

2y′
k + y′

k+16 3mk; (62a)

−y′
k − 2y′

k+16− 3mk; (62b)

y′
k¿ 0; (62c)

y′
k+1¿ 0: (62d)

These shape preserving constraints can be used in place of the monotonicity constraints (Eqs. (36)
or (37)) for minimizing EL, TEL, ED, and TED.
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8.3. Knot insertion

In each subinterval [xk ; xk+1], we shall introduce two additional knots at locations (xk + &) and
(xk+1 − &), where &6Pxk=3. It has been shown that this knot insertion process will guarantee the
existence of a monotone C2 cubic spline interpolant [23].

Let D= {xk ; yk}n−1
k=0 be the original set of data points and let K = {x̃i; ỹ i}2(n−1)

i=0 denote the in-
serted knots. The full set of points through which the interpolant must pass is P =D ∪ K . That is,
P = {Xm; Ym}3(n−1)

m=0 consists of the original data points and the inserted knots such that each original
data point with index i lies at position 3i in the set P, i.e., {X3i; Y3i}= {xi; yi}.

In order to solve for the interpolant, we will introduce a new set of constraints that will be used
to minimize EL, TEL, ED, and TED. We will need to solve for the unknown {Ym} values in K and
1rst derivative values {Y ′

m} in P. In order to simplify the implementation, we will consider both
{Ym} and {Y ′

m} to be unknown. The original data values {yk} is applied to {Ym} by means of the
interpolation constraint Y3i =yi. The following are the constraints for the optimization problem:

1. Interpolation: Y3i =yi,
2. 2nd derivative continuity: f′′(X+

m ) =f′′(X−
m ) (Eq. (38)),

3. Monotonicity constraints: Eqs. (36) or (37).

Note that mk in Eqs. (36) and (37) refers to (Ym+1 − Ym)=PXm in this case.
The manner in which we formulated the constraints is independent of the number of knots in K .

Therefore, one may consider the use of 0, 1, or 2 additional knots between any two data points.
Furthermore, the number of additional knots can be made to vary among intervals. This suggests
that a progressive method may be applied in which we solve the optimization problem with no
additional knots. If no feasible C2 solution exists, then may add one knot between each pair of data
points and solve the new problem. If a feasible C2 solution does not exist, then we may add two
knots between the data points, as suggested by Pruess [23]. This time we are guaranteed to have a
feasible C2 solution.

8.4. Smoothing

In case the data {yk} is not accurate due to noise or measurement error, we suggest the following
method to compute a monotone C2 approximating curve. This method can work even if the data is
not monotone.

Let {fk} be the values of the approximating curve at the knots {xk}. We use the mean squared
error as our objective function

ES =
n−1∑
k=0

|(yk − fk)|: (63)

The following are the constraints for the optimization problem:

1. Second derivative continuity: f′′(x+
k ) =f′′(x−k ) (Eq. (38)),

2. Monotonicity constraints: Eqs. (36) or (37).

Since we are performing approximation rather than interpolation, we use fk rather than yk in Eq.
(38). Also, note that mk in Eqs. (36) and (37) refers to (fk+1−fk)=Pxk in this case. Finally, the ES
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Table 5
Comparison of proposed methods

Method Energy Optimization Bene1ts Drawbacks

MCSE E Nonlinear Optimal C2 Slow; does not always exist
SDDE−QP ED QP C2 or closest C1 Suboptimal C2

SDDE−LP TED LP C2 or closest C1 Suboptimal C2

SDDE−MM ẼD LP C2 or closest C1 Suboptimal C2

LE−QP EL QP Suboptimal C2 Poor C1

LE−LP TEL LP Suboptimal C2 Poor C1

FB None None Fast C1, even if C2 exists

energy measure can be minimized by using quadratic programming subject to the constraints given
above.

9. Comparison

In this section, we compare the various techniques. We consider the MCSE, SDDE−QP, SDDE−LP,
SDDE−MM, LE−QP, LE−LP, and FB methods. Note that this order corresponds to the quality of
the splines produced, beginning with the MCSE’s optimal C2 spline. These methods are outlined in
Table 5, where LP and QP are used to refer to linear and quadratic programming, respectively.

• The MCSE method yields the optimal C2 solution, if one exists. Its primary drawback is that
it requires a costly nonlinear constrained optimization technique to minimize E. Furthermore, if
there is no C2 solution, then an alternate method must be considered.

• The SDDE−QP method requires quadratic programming to minimize ED. It produces a suboptimal
C2 solution, if it exists. Otherwise, it yields a C1 solution that is closest to C2.

• The SDDE−LP method requires linear programming to minimize TED. It produces a suboptimal
C2 solution, if it exists. Otherwise, it yields a C1 solution that is closest to C2. The SDDE−LP
technique has proven to be our method of choice. It produces curves that are virtually indentical
to SDDE−QP curves at much lower cost.

• The LE−QP and LE−LP methods require quadratic and linear programming, respectively, to
minimize energy measures EL and TEL, respectively. They produce a suboptimal C2 solution, if it
exists. Otherwise, they yield a poor C1 solution due to prominent second derivative discontinuities.

• The popular Fritsch–Butland algorithm uses a local method to compute a monotone C1 interpolant.
It is important to note that the method does not attempt to 1nd a C2 solution, even if one exists.

• All of the energy minimization methods compared here can bene1t from knot insertion to guar-
antee the existence of a C2 solution. Knot insertion can employ any energy measure and any
optimization method to derive a C2 solution. The major drawback to the use of knot insertion is
that the number of constraints grows to solve for the additional knots.

• The ED for SDDE−MM may be greater than that of SDDE−QP.
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10. Discussion

In this section, we review several key points about monotonic cubic spline interpolation and linear
programming.

1. This paper presents several key enhancements beyond the work described in [31]. In that paper,
cubic splines were represented using four coeMcients, requiring the solution of three unknowns
and the use of nine constraints per interval. This work makes use of the Hermite representation of
splines. As a result, the interpolation and C1 continuity constraints are implicit and do not need
to be considered when minimizing any objective function. Furthermore, this approach requires the
solution of only one unknown and the use of seven constraints per interval. Note that we assume
the use of six monotonicity constraints above.

2. The assumption used to de1ne EL is correct for the subset of C2 curves that comply with the
condition f′(x)2�1. This condition is often violated in practice. This makes the use of linearized
energy EL meaningless as an objective function for energy minimization methods. For instance,
in comparing the FE and the SDDE−QP curves in Fig. 9, higher E for the free-end (FE) curve
does not translate to higher EL (see Table 2).

3. By examining the physical de1nition of the strain energy, it is implicit that E and EL are applicable
for C2 curves only. This means that the energy measures are only meaningful when comparing
C2 monotone splines. For instance, we cannot use such energy measures to compare C0 curves,
such as those produced by linear interpolation. It is apparent that such curves produce low values
for E and EL, although they are not smooth at the spline joints. That is, they satisfy f′′(x) = 0
nearly everywhere. Only at the spline joints is this condition possibly violated. Therefore, C2

energy measures E and EL are not appropriate objective functions for monotone splines, since the
monotonicity constraint may sometimes force the spline to be C1 continuous.

4. The Fritsch–Butland algorithm clamps the � and � values to the [0; 3] range, thereby utilizing
only 67.9% of monotone region M . This has a tendency of biasing the solution away from
smoother alternatives. The optimization-based solutions presented in this paper more fully utilize
region M , yielding the smoother SDDE−LP curve shown in the 1gures above. For instance, the
six-sided and 1fteen-sided polygonal approximation of M cover 90.53% and 97.53% of region
M , respectively. Furthermore, the SDDE−LP algorithm can produce C2 solutions, whereas the
local Fritsch–Butland algorithm is limited to C1 solutions.

5. The approaches presented here are general in the sense that they can be easily modi1ed to solve
di5erent applications where additional constraints are imposed or linear combination of objective
functions are used. Section 8 demonstrated how to apply shape preserving, knot insertion, and
data smoothing constraints in our framework.

6. The space of linear programming (LP) problems with n unknowns is in Rn. Each constraint
represents a hyperplane. Equality constraints force the feasible region onto hyperplanes, while
inequalities divide the feasible region into allowed and disallowed halfplanes. When all the con-
straints are imposed, either we are left with some feasible region or else there is no feasible
solution. The feasible region for LP problems is a convex polygon and the optimum value occurs
at a vertex of the feasible region [24]. The two-phase simplex method is commonly used to
obtain the optimal solution. Phase I determines whether the LP problem has a feasible solution.
If a feasible solution exists, phase I provides a basic solution that complies with the constraints
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but is not necessarily optimal. Phase II, in turn, 1nds the basic solution that is optimal. Wolfe
[32] proposed a method for converting a quadratic programming problem into an LP problem
requiring only phase I computation. This allows us to make use of the simplex method to solve
quadratic programming problems.

7. The observations made in Section 9 suggest the following sequence for determining the optimal
spline. First, we apply the SDDE LP method to derive a solution. If a C2 solution exists, we
may either apply the MCSE method to derive the optimal C2 solution or be satis1ed with the
suboptimal C2 SDDE LP spline. If a C2 solution does not exist, then SDDE LP leaves us with
a C1 spline that is closest to C2.

11. Summary

The goal of this work has been to determine the smoothest possible curve that passes through
its control points while simultaneously satisfying the montonicity constraint. We presented a simple
monotonicity test that may be applied to each pair of control points in the spline. That result is used as
the basis for all the methods described in this paper, including linear and nonlinear optimization-based
methods. We cast the monotonic cubic spline interpolation problem within an energy minimizing
framework. Various energy measures were considered for the optimization objective functions.

We showed how to apply quadratic programming to minimize the objective functions used in this
paper. Modi1cations were introduced to simplify the problem and facilitate the use of linear program-
ming. The interpolation methods considered in this paper include cubic spline elastica (CSE), free
end (FE), linearized energy (LE QP), modi1ed linearized energy (LE LP), second derivative discon-
tinuity energy (SDDE QP), modi1ed discontinuity energy (SDDE LP), and the Fritsch–Butland al-
gorithm. We found that energy minimization methods yielded superior results to the popular Fritsch–
Butland algorithm [14]. We suggested that the SDDE LP energy measure be used as an optimization
objective. It minimized the second derivative discontinuity and provided visually pleasing
results.

Since there is a large family of monotone curves that interpolate the data, we derived bounds
on the error between any two such curves. We also showed that the traditional linearized energy
measure EL is based on invalid assumptions and is of limited value in determining C1 monotonic
solutions. Finally, we presented extensions to handle arbitrary data sets with changing monotonic-
ity, shape-preserving splines, knot insertion, and data smoothing. MATLAB code is furnished to
demonstrate the monotonic cubic spline interpolation algorithm.

Appendix A. Monotonicity constraints

The boundary of monotone region M is approximated using an n-sided polygon. The vertices of
the polygon are given by coordinates (�i; �i), where 06 i¡n. Let si be the slopes of the polygon
sides:

si =
�i − �i−1

�i − �i−1
: (A.1)
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Table 6
Approximating monotonicity region M with a 6-sided polygon

Inequality direction
�i−1 �i−1 �i �i si y′

k y′
k+1 mk mk ¿ 0 mk ¡ 0

0 3 0 0 ∞ 0 1 0 ¿ 0 6 0
0 0 3 0 0 1 0 0 ¿ 0 6 0
3 0 4 1 1 −1 1 3 ¿ 0 6 0
4 1 3 3 −2 2 1 −9 6 0 ¿ 0
3 3 1 4 −0:5 0.5 1 −4:5 6 0 ¿ 0
1 4 0 3 1 −1 1 −3 6 0 ¿ 0

The equation of the ith line is

� − si� + si�i−1 − �i−1 = 0: (A.2)

Note that � is a free variable, while �i is a 1xed coordinate value. The same applies to � and �i.
Since (0; 0) is a point in M , we may represent the interior half-plane (containing M) as follows:

IF si�i−1 − �i−1 ¿ 0 THEN � − si� + si�i−1 − �i−1¿ 0;

ELSE � − si� + si�i−1 − �i−16 0:

We may write the line equation in terms of 1rst derivatives y′
k by letting �= �k =y′

k =mk and
�= �k =y′

k+1=mk . This yields the following inequality when mk ¿ 0:

IF si�i−1 − �i−1 ¿ 0 THEN y′
k+1 − siy′

k + mk(si�i−1 − �i−1)¿ 0;

ELSE y′
k+1 − siy′

k + mk(si�i−1 − �i−1)6 0:

When mk ¡ 0, we have:

IF si�i−1 − �i−1 ¿ 0 THEN y′
k+1 − siy′

k + mk(si�i−1 − �i−1)6 0;

ELSE y′
k+1 − siy′

k + mk(si�i−1 − �i−1)¿ 0:

Note that linear programming requires all inequalities to be less than the free variable (on the
right-hand side). This may require multiplying both sides by −1 to switch the inequality direction.
Tables 6 and 7 show the polygon vertices and their respective coeMcients for y′

k , y′
k+1, and mk .

These results are used to form the monotonicity conditions in Eqs. (36) and (37).

Appendix B. MATLAB code

The following MATLAB code computes an interpolating monotonic cubic spline. First, we apply
the SDDE LP method to derive a solution. If a C2 solution exists, we apply the MCSE method to
derive the optimal monotone C2 solution. If a C2 solution does not exist, then SDDE leaves us with
a C1 spline that is closest to C2.



180 G. Wolberg, I. Alfy / Journal of Computational and Applied Mathematics 143 (2002) 145–188

Table 7
Approximating monotonicity region M with a 10-sided polygon

Inequality direction
�i−1 �i−1 �i �i si y′

k y′
k+1 mk mk ¿ 0 mk ¡ 0

0 3 0 0 ∞ 0 1 0 ¿ 0 6 0
0 0 3 0 0 1 0 0 ¿ 0 6 0
3 0 3.7320 0.2679 0.3660 −0:3660 1 1.0980 ¿ 0 6 0
3.7320 0.2679 4 1 2.7317 −2:7317 1 9.9269 ¿ 0 6 0
4 1 3.7320 2 −3:7313 3.7313 1 −15:9254 6 0 ¿ 0
3.7320 2 3 3 −1:3661 1.3661 1 −7:0984 6 0 ¿ 0
3 3 2 3.7320 −0:7320 0.7320 1 −5:1960 6 0 ¿ 0
2 3.7320 1 4 −0:2680 0.2680 1 −4:2680 6 0 ¿ 0
1 4 0.2679 3.7320 0.3661 −0:3661 1 −3:6339 6 0 ¿ 0
0.2679 3.7320 0 3 2.7324 −2:7324 1 −3 6 0 ¿ 0

B.1. File monotone.m

% -----------------------------------------------------------------------
%
% montone.m - Compute interpolating monotonic cubic spline.
% Based on work described in our paper:
% An Energy-Minimization Framework for
% Monotonic Cubic Spline Interpolation
%
% Written by: Itzik Alfy and George Wolberg, 2000
% Copyright (C) 2000 by Itzik Alfy and George Wolberg
% -----------------------------------------------------------------------

% -----------------------------------------------------------------------
% FUNCTION:
% D = monotone(X,Y)
% INPUT:
% X ¡- monotonic input data vector (size: n x 1)
% Y ¡- monotonic input data vector (size: n x 1)
% OUTPUT:
% D ¡- 1st derivatives of interpolating monotonic cubic spline (n x 1)
% DESCRIPTION:
% Compute an interpolating monotonic cubic spline passing through
% n input data points. The spline is fully specified in terms of
% the nx1 output vector of first derivatives.
%
% monotone() first attempts to fit a C2 spline minimizing E D, the
% SDDELP energy measure. If a C2 solution exists, then we seek the
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% optimal C2 spline by minimizing the strain energy E to compute the
% MCSE. If a C2 solution does not exist, we are left with the best
% C1 spline.
%
% monotone() calls MATLAB function linprog() to perform linear
% programming with the SDDELP energy objective function.
% There are a total of 2n-2 unknowns that we wish to solve for:
% n first derivatives and n-2 slack variables.
% The slack variables are defined to be equal to the absolute value
% of the second derivative discontinuity at each data point.
% linprog() will minimize E D, the sum of the n-2 slack variables.
% E D = FK
% = [0 0 ... 0 1 1 .. 1][f’(1) f’(2) ... f′(n) s(2) s(3) ... s(n-1)]ˆT
% n zeros n-2 ones first derivatives slack variables
%
% The full syntax for linprog() is:
% linprog(coefficients of objective function (F),
% linear inequality constraints: coefficient matrix (A Aabs),
% linear inequality constraints: free variable vector (B Babs),
% linear equality constraints: coefficient matrix, (Aeq)
% linear equality constraints: free variable vector(Beq)
% )
%
% If linprog() indicates that a C2 solution exists, then we call
% MATLAB function fmincon() to perform constrained minimization to the
% objective function in energy(), in file energy.m.
% The energy function will be called with input X and Y.
% The MCSE energy measure is used.
% The full syntax for fmincon() is:
%
% fmincon(objective function (‘energy’),
% initial guess (previous derivative values and 0 for slack vars),
% linear inequality constraints: coefficient matrix (A),
% linear inequality constraints: free variable vector (B),
% linear equality constraints: coefficient matrix, (Aeq)
% linear equality constraints: free variable vector(Beq)
% lower bound of first derivatives (null),
% upper bound of first derivatives (null),
% nonlinear constraints function (null),
% options (default=null),
% input parameters passed to objective function (X),
% input parameters passed to objective function (Y),
% )
% ---------------------------------------------------------------------------
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function D = monotone(X,Y)

[A,B,Aeq,Beq] = mono constr(X,Y);
[Aabs,Babs] = abs constr(X,Y);

n = length(Y);
F = [zeros(1,n) ones(1,n-2)];

[D,E D] = linprog(F,[A′ Aabs′]’,[B′ Babs′]’,Aeq,Beq);

% if E D is small, then a C2 solution exists and we compute the MCSE (optimal)
if E D ¡= 1e-10*max(D)

[C2Aeq, C2Beq] = C2 constr(X,Y);
Aeq = [Aeq’ C2Aeq’]’; % append C2 constraints to Aeq
Beq = [Beq’ C2Beq’]’; % append C2 constraints to Beq
D = fmincon(’energy’,[D zeros(1,n-2)],A,B,Aeq,Beq,[],[],[],[],X,Y);

end
% -----------------------------------------------------------------------------
% FUNCTION:
% [A,B,Aeq,Beq] = mono constr(X,Y);
% INPUT:
% X ¡- monotonic input data vector (size: n x 1)
% Y ¡- monotonic input data vector (size: n x 1)
% OUTPUT:
% A ¡- monotonicity constraint coefficient matrix (size: 6k1 x 2n-2)
% B ¡- free-variable vector (size: 6k1 x 1)
% Aeq ¡-linear equality constraint coefficient matrix (size: 2k2 x 2n-2)
% Beq ¡-linear equality constraint free variable vector (size: 2k2 x 2n-2)
% (See below for details about k1 and k2)
% DESCRIPTION:
% AD ¡= B are the inequality monotonicity constraints, where D is
% the 2n-2 vector of unknowns that we wish to solve for:
% n first derivatives and n-2 slack variables.
% The function visits all intervals and determines which monotonicity
% constraints to apply, based on whether the data is increasing,
% decreasing, or constant.
% CASE #1: increasing and decreasing intervals
% A and B are updated with 6 monotonicity constraints.
% CASE #2: constant (horizontal) interval
% Aeq and Beq are updated to force y’ to 0 at both ends.
% CASE #3: interval is part of local extrema
% No monotonicity constraints are imposed.
%
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% A,B: 6k1 x 2n-2 arrays, where k1 = #stricly inc=dec monotone intervals
% Aeq,Beq: 2k2 x 2n-2 arrays, where k2 = #constant (horizontal) intervals
% ---------------------------------------------------------------------------
function [A,B,Aeq,Beq] = mono constr(X,Y)

n = length(Y);
S = sign(diff(Y)); % 1=increasing; −1 =decreasing; 0=constant
for i=1:n-2

if S(i) == -S(i+1) & abs(S(i)) == 1; % local extrema
S(i )=2; % flag condition at both
S(i+1)=2; % intervals of local extrema

end;
end;
A=[]; B=[]; Aeq=[]; Beq=[];
for i=1:n-1

switch S(i)
case 0

Atmp=zeros(2,2*n-2);
Atmp(1,i )=1; % coefficient of y′(i)
Atmp(2,i+1)=1; % coefficient of y′(i+1)
Aeq=[Aeq′ Atmp′]′; % append unity coeffs to Aeq
Beq=[Beq′ 0 0]′; % append zeros to Beq for y′=0

case {1,-1}
As=zeros(6; 2*n-2);
Bs=zeros(6,1);
m = (Y(i+1)-Y(i)) / (X(i+1)-X(i));
As(1,i) = −1; As(1,i+1) = 0; Bs(1) = 0;
As(2,i) = 0; As(2,i+1) = −1; Bs(2) = 0;
As(3,i) = 1; As(3,i+1) = −1; Bs(3) = 3*m;
As(4,i) = −1; As(4,i+1) = 1; Bs(4) = 3*m;
As(5,i) = 2; As(5,i+1) = 1; Bs(5) = 9*m;
As(6,i) = 1; As(6,i+1) = 2; Bs(6) = 9*m;
A=[A′ S(i)*As′]′;
B=[B′ S(i)*Bs′]′;

end;
end;
% ---------------------------------------------------------------
% FUNCTION:
% [A,B] = C2 constr(X,Y)
% INPUT:
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% X ¡- monotonic input data vector (size: n x 1)
% Y ¡- monotonic input data vector (size: n x 1)
% OUTPUT:
% A ¡- C2 constraint coefficient matrix (size: (n−2) x n)
% B ¡- free-variable vector (size: (n−2) x 1)
% DESCRIPTION:
% AD = B are the equality C2 constraints, where D is
% the vector of unknown first derivatives (size: n x 1).
% There are n−2 rows in A and B because there are n-2 interior
% knots where we can enforce C2 continuity.
% ----------------------------------------------------------------
function [A,B] = C2 constr(X,Y)

n = length(Y);
A = zeros(n−2; 2*n−2);
B = zeros(n−2,1);
for i=2:n−1

dx1 = X(i) − X(i−1);
dx2 = X(i+1) − X(i);
A(i−1,i−1) = −1/dx1;
A(i−1,i) = −2*(1/dx2+1/dx1);
A(i−1,i+1) = −1/dx2;
B(i−1) = 3*( Y(i−1)/dx1^ 2 − Y(i)*(1/dx1^ 2−1/dx2^ 2) −

Y(i+1)/dx2^ 2);
end;
% -----------------------------------------------------------------------------
% FUNCTION:
% [A,B] = abs constr(X,Y)
% INPUT:
% X ¡- monotonic input data vector (size: n x 1)
% Y ¡- monotonic input data vector (size: n x 1)
% OUTPUT:
% A ¡- absolute 2nd deriv discontinuity coefficient matrix

(size: 2*(n−2) x 2*n−2)
% B ¡- free-variable vector (size: 2*(n−2) x 1)
% DESCRIPTION:
% AD ¡ B are the inequality absolute value constraints, where D is the
% vector of unknown first derivatives and slack vars (size: 2n−2 x 1).
% We wish to compute A and B to construct the absolute value
% constraints that will be passed on to linprog().
% There are 2*(n−2) rows in A and B because there are two absolute
% value equations for each n−2 interior knot.
% ------------------------------------------------------------------------------
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function [A,B] = abs constr(X,Y)

n = length(Y);
A = zeros(2*(n−2),n+n−2);
B = zeros(2*(n−2),1);
for i=2:n−1

dx1 = X(i) − X(i−1);
dx2 = X(i+1) − X(i);

% first absolute value constraint for knot i
A(2*(i−2)+1,i−1) = −1/dx1;
A(2*(i−2)+1,i) = −2*(1/dx2+1/dx1);
A(2*(i−2)+1,i+1) = −1/dx2;
A(2*(i−2)+1,n+i−1) = −1;
B(2*(i−2)+1) = 3*(Y(i−1)/dx1^ 2 − Y(i)*(1/dx1^ 2−1/dx2^ 2) −

Y(i+1)/dx2^ 2);

% second absolute value constraint for knot i
A(2*(i−2)+2,i−1) = 1/dx1;
A(2*(i−2)+2,i) = 2*(1/dx2+1/dx1);
A(2*(i−2)+2,i+1) = 1/dx2;
A(2*(i−2)+2,n+i−1) = −1;
B(2*(i−2)+2)= −3*(Y(i−1)/dx1^ 2 − Y(i)*(1/dx1^ 2−1/dx2^ 2)−

Y(i+1)/dx2^ 2);
end;

B.2. File energy.m

% ---------------------------------------------------------------------------
%
% energy.m - Compute energy measure E for a given spline.
% Based on work described in our paper:
% An Energy-Minimization Framework for
% Monotonic Cubic Spline Interpolation
%
% Written by: Itzik Alfy and George Wolberg, 2000
% Copyright (C) 2000 by Itzik Alfy and George Wolberg
% ---------------------------------------------------------------------------
% ---------------------------------------------------------------------------
% FUNCTION:
% e = energy(D,X,Y);
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% INPUT:
% D ¡- first derivative values (size: n x 1)
% X ¡- monotonic input data vector(size: n x 1)
% Y ¡- monotonic input data vector (size: n x 1)
% OUTPUT:
% e ¡- energy measure (E)
% DESCRIPTION:
% energy() computes the energy of the spline passing through
% X,Y having first derivative D.
% energy() is repeatedly called by fmincon() to update D to

minimize e.
%
% energy() calls MATLAB function quad8() to integrate over the
% squared curvature.
% We are using the Hermite representation of a spline:
% f(x)=H 0(x)Y(i)+H 1(x)Y(i+1)+dx H 2(x)D(i)+dx H 3(x) D(i+1)
% Therefore, the squared curvature requires parameters Y, D, and dx.
% These parameters will be passed to quad8().
% The full syntax for quad8() is:
%
% quad8( function (‘curvature2’),
% lower limit (0),
% upper limit (dx),
% relative error tolerance (default=.001),
% trace (default=none),
% input parameters passed to function (Y(i)),
% input parameters passed to function (Y(i+1)),
% input parameters passed to function (D(i)),
% input parameters passed to function (D(i+1)),
% input parameters passed to function (dx),
% )
% -------------------------------------------------------------------------
function e = energy(D,X,Y)

e = 0;
for i=1:length(Y)−1

dx= X(i+1) − X(i);
e = e + quad8(‘curvature2’,0,dx,[],[],Y(i),Y(i+1),D(i),D(i+1),dx);

end;
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B.3. File curvature2.m

% -----------------------------------------------------------------------------
%
% curvature2.m -Compute the squared curvature of the spline
% Based on work described in our paper:
% An Energy-Minimization Framework for
% Monotonic Cubic Spline Interpolation
%
% Written by: Itzik Alfy and George Wolberg, 2000
% Copyright (C) 2000 by Itzik Alfy and George Wolberg
% -----------------------------------------------------------------------------
% -----------------------------------------------------------------------------
% FUNCTION:
% P = curvature2(x,Y1,Y2,D1,D2,dx)
% INPUT:
% x ¡- position vector over an interval
% Y1 ¡- data value at left end of interval
% Y2 ¡- data value at right end of interval
% D1 ¡- first derivative at left end of interval
% D2 ¡- first derivative at right end of interval
% dx ¡- interval length
% OUTPUT:
% P ¡- vector of squared curvature values coinciding with x
% DESCRIPTION:
% curvature2() computes the squared curvature of a spline interval
% at positions given by x. The spline interval is fully specified
% by data values Y1 and Y2, derivative values D1 and D2, and interval
% length dx.
% MATLAB function quad8() calls curvature2() and selects an
% appropriate choice for x at which to compute the squared curvature.
% -----------------------------------------------------------------------------
function P = curvature2(x,Y1,Y2,D1,D2,dx)

u = x / dx;
u2= u .^ 2;
d1= (6*(u2−u)*Y1+6*(−u2+u)*Y2+dx*(3*u2−4*u+1)*D1+dx*(3*u2−2*u)*D2) ./ dx;
d2= ((12*u−6)*Y1 + (−12*u+6)*Y2 + dx*(6*u−4)*D1 + dx*(6*u−2)*D2) ./ dx^ 2;
P = (d2.^ 2) ./ ((1 + d1.^ 2).^ 2.5);
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