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Abstract The photorealistic modeling of large-scale scenes,
such as urban structures, requires a fusion of range sensing
technology and traditional digital photography. This paper
presents a system that integrates automated 3D-to-3D and
2D-to-3D registration techniques, with multiview geome-
try for the photorealistic modeling of urban scenes. The 3D
range scans are registered using our automated 3D-to-3D
registration method that matches 3D features (linear or cir-
cular) in the range images. A subset of the 2D photographs
are then aligned with the 3D model using our automated
2D-to-3D registration algorithm that matches linear features
between the range scans and the photographs. Finally, the
2D photographs are used to generate a second 3D model of
the scene that consists of a sparse 3D point cloud, produced
by applying a multiview geometry (structure-from-motion)
algorithm directly on a sequence of 2D photographs. The
last part of this paper introduces a novel algorithm for auto-
matically recovering the rotation, scale, and translation that
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best aligns the dense and sparse models. This alignment is
necessary to enable the photographs to be optimally texture
mapped onto the dense model. The contribution of this work
is that it merges the benefits of multiview geometry with au-
tomated registration of 3D range scans to produce photore-
alistic models with minimal human interaction. We present
results from experiments in large-scale urban scenes.

Keywords Range segmentation - Range-to-range
registration - Range-to-image registration - Multiview
geometry - Structure from motion - Photorealistic modeling

1 Introduction

The photorealistic modeling of large-scale scenes, such as
urban structures, requires a combination of range sensing
technology with traditional digital photography. A system-
atic way for registering 3D range scans and 2D images
is thus essential. This paper presents a system that inte-
grates multiview geometry and automated 3D registration
techniques for texture mapping 2D images onto 3D range
data. The novelty of our approach is that it exploits all
possible relationships between 3D range scans and 2D im-
ages by performing 3D-to-3D range registration, 2D-to-3D
image-to-range registration, and structure from motion from
a sequence of 2D images. Several papers, including this
one, provide frameworks for automated texture mapping
onto 3D range scans (Ikeuchi 2003; Liu and Stamos 2005;
Stamos and Allen 2001; Troccoli and Allen 2004; Zhao
et al. 2005). These methods are based on extracting features
(e.g., points, lines, edges, rectangles or rectangular paral-
lelepipeds) and matching them between the 2D images and
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the 3D range scans. Our approach provides a solution of in-
creased robustness, efficiency and generality with respect to
previous methods. Our contribution is discussed in Sect. 2.

Despite the advantages of feature-based texture mapping
solutions, most systems that attempt to recreate photore-
alistic models do so by requiring the manual selection of
features among the 2D images and the 3D range scans, or
by rigidly attaching a camera onto the range scanner and
thereby fixing the relative position and orientation of the two
sensors with respect to each other (Frith and Zakhor 2003;
Pulli et al. 1998; Sequeira and Concalves 2002; Visual Infor-
mation Technology Group 2005; Zhao and Shibasaki 2003).
The fixed-relative position approach provides a solution that
has the following major limitations:

1. The acquisition of the images and range scans occur at
the same point in time and from the same location in
space. This leads to a lack of 2D sensing flexibility since
the limitations of 3D range sensor positioning, such as
standoff distance and maximum distance, will cause con-
straints on the placement of the camera. Also, the images
may need to be captured at different times, particularly
if there were poor lighting conditions at the time that the
range scans were acquired.

2. The static arrangement of 3D and 2D sensors prevents
the camera from being dynamically adjusted to the re-
quirements of each particular scene. As a result, the focal
length and relative position must remain fixed.

3. The fixed-relative position approach cannot handle the
case of mapping historical photographs on the models
or of mapping images captured at different instances in
time. These are capabilities that our method achieves.

In summary, fixing the relative position between the 3D
range and 2D image sensors sacrifices the flexibility of 2D
image capture. Alternatively, methods that require manual
interaction for the selection of matching features among the
3D scans and the 2D images are error-prone, slow, and not
scalable to large datasets. Laser range scanning is a labori-
ous, tedious, time consuming, and costly operation that pre-
cludes easy and cost-effective recapturing of data. There-
fore, it is best to separate the geometry capture mode from
the image acquisition mode so that the latter can be done
quickly with fairly constant lighting conditions. These limi-
tations motivate the work described in this paper, making it
essential for producing photorealistic models of large-scale
urban scenes.

The texture mapping solution described in this paper
merges the benefits of multiview geometry with automated
3D-to-3D range registration and 2D-to-3D image-to-range
registration to produce photorealistic models with minimal
human interaction. The 3D range scans and the 2D pho-
tographs are respectively used to generate a pair of 3D mod-
els of the scene. The first model consists of a dense 3D point
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cloud, produced by using a 3D-to-3D registration method
that matches 3D lines in the range images to bring them
into a common reference frame. The second model con-
sists of a sparse 3D point cloud, produced by applying a
multiview geometry (structure-from-motion) algorithm di-
rectly on a sequence of 2D photographs to simultaneously
recover the camera motion and the 3D positions of image
features. This paper introduces a novel algorithm for au-
tomatically recovering the similarity transformation (rota-
tion/scale/translation) that best aligns the sparse and dense
models. This alignment is necessary to enable the pho-
tographs to be optimally texture mapped onto the dense
model. No a priori knowledge about the camera poses rel-
ative to the 3D sensor’s coordinate system is needed, other
than the fact that one image frame should overlap the 3D
structure (see Sect. 4). Given one sparse point cloud derived
from the photographs and one dense point cloud produced
by the range scanner, a similarity transformation between
the two point clouds is computed in an automatic and effi-
cient way. The framework of our system is shown in Fig. 1.
Each of the framework elements listed below, is a distinct
system module in Fig. 1.

e A set of 3D range scans of the scene is acquired and co-
registered to produce a dense 3D point cloud in a common
reference frame (Sect. 3).

e An independent sequence of 2D images is gathered, taken
from various viewpoints that do not necessarily coincide
with those of the range scanner. A sparse 3D point cloud
is reconstructed from these images by using a structure-
from-motion (SFM) algorithm (Sect. 5).

e A subset of the 2D images are automatically registered
with the dense 3D point cloud acquired from the range
scanner (Sect. 4).

o Finally, the complete set of 2D images is automatically
aligned with the dense 3D point cloud (Sect. 6). This last
step provides an integration of all the 2D and 3D data in
the same frame of reference. It also provides the transfor-
mation that aligns the models gathered via range sensing
and computed via structure from motion.

2 Related Work

A robust method that extracts distinguishable features from
range images is very important for our method. Previous
range image segmentation techniques include edge detec-
tion (Bellon and Silva 2002; Wami and Batchelor 1994),
region growing (Besl and Jain 1988; Pulli and Pietikdinen
1993), and polynomial surface fitting (Besl and Jain 1988;
Marshall and Martin 2001). Most of these methods provide
edge maps and/or regions expressed as polynomial func-
tions. This is useful for object modeling and reconstruction,
but may not be suitable for feature matching. Our method
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Dense Point Cloud + Sparse Pose

2D-image to 3D-range Registration

Point Cloud

| 3D-range to 3D-range Registration |

3D RANGE DA

Fig. 1 System framework. Several registered range scans of Shepard
Hall (CCNY) constitute a dense 3D point cloud model Myzpge shown
in the leftmost column. The five white dots correspond to the locations
of five of the 26 color images (shown as thumbnails on top row) that
are independently registered with the model Myyge via a 2D-to-3D
image-to-range registration algorithm. The rightmost image of the sec-
ond row depicts the 3D model Mgy, produced by SFM. The points of
Mg as well as all the recovered camera positions for the sequence
of 2D images that produced Mg, are shown as red dots in the figure.

detects precise edges and extracts geometric features with
concise descriptors that make them appropriate for feature
matching.

Iterative Closest Point (ICP) is one of the most popu-
lar range registration algorithms (Besl and McKay 1992;
Rusinkiewicz and Levoy 2001). ICP provides very accurate
results but requires a good initial guess of the registration
transformation. We, on the other hand, utilize ICP as a post-
processing step after our automated method brings scans
into alignment. A method that does not require knowledge of
an initial registration transformation is presented in (Huber
and Hebert 2003; Johnson and Hebert 1999) (spin images).
The spin images approach does not rely on features of spe-
cific geometric type, but is sensitive to varying scan resolu-
tions. Furthermore, the extracted point signatures have local
support, the extent of which is specified by the user.

Unregistered Point Clouds

Two Registered Point Clouds

Sparse Point Cloud + Dense Pose

| 3D-range to 3D-SFM Registration |

Texture

|+ -~ Mapping

Final Output

Since SFM does not recover scale, Myange and M, are not registered
when brought to the same coordinate system, as shown in the second
row. The 3D range model Myynge overlaid with the 3D model My, is
shown in the third row of the figure after a 3D-range to 3D-SFM reg-
istration module aligns them together. The recovered camera positions
from SFM can now be used to project the 26 color images onto Mrange,
which now properly sits in the Mgy, coordinate system, to produce the
richly textured 3D model (Final Output) shown in the right column

There are many approaches for the solution of the
pose estimation problem from both point correspondences
(Oberkampf et al. 1996; Quan and Lan 1999) and line corre-
spondences (Christy and Horaud 1999; Horaud et al. 1997),
when a set of matched 3D and 2D points or lines are known,
respectively. In the early work of (Fischler and Bolles 1981),
the probabilistic RANSAC method was introduced for auto-
matically computing matching 3D and 2D points. RANSAC
is a robust method and can handle a large number of outliers.
It is possible that the method may fail if presented with de-
generate data configurations. In such cases, RANSAC may
fit the model to outliers instead of inliers. Solutions in au-
tomated matching of 3D with 2D features in the context
of object recognition and localization include (Cass 1997,
Hausler and Ritter 1999; Huttenlocher and Ullman 1990;
Jacobs 1997; Jurie 1999; Wells 1997). Very few meth-
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ods, though, attack the problem of automated alignment
of images with dense point clouds derived from range
scanners. This problem is of major importance for auto-
mated photorealistic reconstruction of large-scale scenes
from range and image data. In (Liu and Stamos 2005;
Stamos and Allen 2001) two methods that exploit orthogo-
nality constraints (rectangular features and vanishing points)
in man-made scenes are presented. The methods can pro-
vide excellent results, but will fail in the absence of a suffi-
cient number of linear features. Ikeuchi (2003), on the other
hand, presents an automated 2D-to-3D registration method
that relies on the reflectance range image. However, the al-
gorithm requires an initial estimate of the image-to-range
alignment in order to converge. Finally, Troccoli and Allen
(2004) presents a method that works under specific outdoor
lighting situations.

A system whose goals are very similar to ours is de-
scribed in (Zhao et al. 2005). In that work, continuous video
is aligned onto a 3D point cloud obtained from a 3D sensor.
First, an SFM/stereo algorithm produces a 3D point cloud
from the video sequence. This point cloud is then registered
to the 3D point cloud acquired from the range scanner by
applying the ICP algorithm (Besl and McKay 1992). One
limitation of this approach has to do with the shortcomings
of the ICP algorithm. In particular, the 3D point clouds must
be brought close to each other manually to yield a good ini-
tial estimate that is required for the ICP algorithm to work.
The ICP may fail in scenes with few discontinuities, such
as those replete with planar or cylindrical structures. Also,
in order for the ICP algorithm to work, a very dense model
from the video sequence must be generated. This means that
the method of Zhao et al. (2005) is restricted to video se-
quences, which limits the resolution of the 2D imagery. Fi-
nally, that method does not automatically compute the dif-
ference in scale between the range model and the recovered
SFM/stereo model.

Our contributions can be summarized as follows:

e We automatically register the 3D range scans by matching
linear and circular features.

e Like Zhao et al. (2005), we compute a model from a col-
lection of images via SFM. Our method for aligning the
range and SFM models, described in Sect. 6, does not rely
on ICP and thus does not suffer from its limitations.

e We are able to automatically compute the scale difference
between the range and SFM models.

e We perform 2D-to-3D image-to-range registration (Liu
2007; Liu and Stamos 2005, 2007) for a few (at least one)
images of our collection. This feature-based method pro-
vides excellent results in the presence of a sufficient num-
ber of linear features. Therefore, the images that contain
enough linear features are registered using that method.
The utilization of the SFM model allows us to align the re-
maining images with a method that involves robust point
(and not line) correspondences.
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e We generate an optimal texture mapping result by using
contributions of all 2D images.

3 3D-to-3D Range Registration

The first step is to acquire a set of range scans S; (i =
1,..., K) that adequately covers the 3D scene. The laser
range scanner used in our work is a Leica HDS 2500 (Le-
ica Geosystems 2007), an active sensor that sweeps an eye-
safe laser beam across the scene. It is capable of gathering
one million 3D points at a maximum distance of 100 meters
with an accuracy of 6 mm at 50 m. Each 3D point is asso-
ciated with four values (x, y, z, l)T, where (x, y, z)T 18 its
Cartesian coordinates in the scanner’s local coordinate sys-
tem, and [ is the laser intensity of the returned laser beam.

Each range scan then passes through an automated seg-
mentation algorithm (Stamos and Allen 2002) to extract a
set of major 3D planes and a set of geometric 3D lines G;
from each scan i =1, ..., K. The geometric 3D lines are
computed as the intersections of segmented planar regions
and as the borders of the segmented planar regions. In ad-
dition to the geometric lines G;, a set of reflectance 3D
lines L; are extracted from each 3D range scan. The range
scans are registered in the same coordinate system via the
automated 3D-to-3D feature-based range-scan registration
method of (Chen and Stamos 2005; Stamos and Leordeanu
2003). The method is based on an automated matching pro-
cedure of linear features of overlapping scans. As a result,
all range scans are registered with respect to one selected
pivot scan. The set of registered 3D points from the K scans
is called Myange (Fig. 1).

Despite the many linear features prevalent in large-scale
urban scenes, there are some cases in which the extracted
linear features are inadequate to register the range scans to-
gether. Nonlinear features such as circular arcs may be more
appropriate in those cases. This is particularly true of range
scans taken of curved ceilings with arches and round win-
dows, as shown in Fig. 2. We have therefore developed a
circle-based registration method (Chen and Stamos 2006;
Chen 2007) that we describe in the following sections.

3.1 3D Edge Detection

Each range scan S; can be represented as a 2D array of
3D points {P(k, ), k=1,..., W,l=1,..., H}.1 Two such
range images are shown in Fig. 2. Within each range image
we consider 3D edges of the following two types: (a) edges
caused by surface normal discontinuities (roof edges), and
(b) edges caused by depth discontinuities (step edges). Step

The indices k, [ define the position and orientation of the laser-beam
which produces the 3D point P(k, /).



Int J Comput Vis (2008) 78: 237-260

241

Fig. 2 Two range images of the
interior of the Grand Central
Terminal, NYC

(2)

edges are further divided into edges caused by one surface
occluding another (occlusion edges), and edges caused by
3D surface boundaries (boundary edges).

We briefly summarize the algorithm for detecting edges
of various types. First the surface orientation change at each
point is decomposed into variations along four grid direc-
tions. This grid is the 2D structured grid on which each range
image is defined. We thus obtain four values at every 3D
point, that we call directional variation values. In the struc-
tured 2D grid we form four 2D images. The intensity value
at each pixel is the surface variation (we define it properly in
the next paragraphs) of the corresponding 3D point. We call
the four 2D images directional variation images. 2D Canny-
based edge detection is performed on each image. Finally
the 2D edges are combined and projected” back to the 3D
range image space, providing the final 3D edges due to sur-
face normal discontinuities or depth discontinuities.

The directional variation images are obtained as follows:
At each point P, let By and B, be its two neighbors along
one of the four grid directions (see Fig. 3(e)). The vector
from P to Bj is Vi, and from P to B is V3. The variation
at each direction for point P is defined as Angle(V1, V2)/m.
This provides a value in (0, 1] as the intensity value for this
2D directional variation image.

2D edge detection is performed on each of the four direc-
tional variation images. First, Gaussian smoothing is applied
to suppress noise. Then, gradients along x and y direction,
gx and g, are computed at each pixel using Sobel operators.
With g, and g, we compute the gradient magnitude g, and
determine the edge direction at each point as one of the fol-
lowing: horizontal, vertical, positive diagonal and negative
diagonal. Our algorithm then carries out hysteresis thresh-
olding followed by non-maximum suppression to obtain thin
continuous edges.

2Each pixel p(k,[) in the grid-point image corresponds to a 3D point
P(k,1).

(b)

To this point, we have detected all roof and step edges.
However, occlusion edges need to be identified and only the
foreground edges should be kept in order to reflect the true
geometry of the scene (similar to the shadows in 2D im-
ages). The earlier step of non-maximum suppression votes
off edge points based on magnitude, regardless of whether it
is on a foreground surface or a background surface. To find
occlusion edges, we map the 2D edge points back to the 3D
range scan and label a 3D point P if its corresponding pixel
p is an edge point. For each edge point P, we check its two
neighbors perpendicular to its edge direction. If one of these
neighbors is much closer to the scanner and is not an edge
point, we mark that neighbor to be a foreground edge point
and mark P as non-edge.

Next we remove corner points in order to break the con-
nections between edges of different directions, thereby sim-
plifying edge linking and fitting. Corner points are detected
by applying the Harris corner detector to every edge point,
and testing whether there are more than one principle di-
rections formed by all edge points in its local neighbor-
hood.

The last step is the combination of four edge maps by
taking the union of all edge points. From the combined edge
map, isolated edge points are deleted, and short gaps (1 or
2 pixels) are filled along the local edge direction. Then con-
tinuous edge points are linked by tracing along edge direc-
tions. The edge linking utilizes the structured grid on which
the range image is represented for resolving neighbors. Only
long edges (30 points or more) are kept for later processing.
Figure 3(f) shows the final combined edge map, in which
different colors indicate different edge directions, each de-
tected by one directional variation image.

3.2 3D Circular Feature Extraction

Our linear feature extraction is described in (Chen and Sta-
mos 2005; Stamos and Leordeanu 2003). In this section we
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Fig. 3 Edge points of range
images of Fig. 2(a). Note that
the color at each point
(red/green/blue/magenta)
indicates its edge direction (see
text), hence the same point
usually has the same color in the
four edge images. (a—d) Edge
points detected from Fig. 2(a).
(e) Four grid directions:
1-Horizontal, 2-Vertical,
3-Positive Diagonal, 4-Negative
Diagonal. By and B are P’s
neighbors along direction 1.

(f) Combined edge image from
(a)-(d)

(e)

present our algorithms for detecting circular features in 3D
space. This is necessary in those cases where linear fea-
tures are inadequate to register the circular arcs that may be
present in the scene. Although the ellipse also exists in our
scenes, it is less robust to extract due to its feature of having
two focai. Any error or noise in edge point extraction might
greatly affect the parameters of the fitted ellipse, and further
lead to incorrect computation on transformation.

@ Springer

Each linked set of edges describes a curve in 3D space.
For each linked edge from Fig. 3(e), its best-fit line direction
Vimax and best-fit plane normal Vi, are computed. A curve
is considered linear if the line fitting error (average dis-
tance of all points to the fitted line) is less than a threshold
0.03 m (approximate distance between two neighboring 3D
range points). For nonlinear curves, the average perpendicu-
lar distance of all points to the fitted plane is used to discard
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Fig. 4 Circles extracted from
the range images of Figs. 2(a)
and (b), respectively. All edge
points are in black, and all fitted
circular arcs are represented
with colored full circles, with
green lines indicating their
normals. Note that the three
circular windows are detected in
both images. The images are
rotated to the best angle to
observe all circles. Therefore
some of them appear as ellipses
due to the viewing direction

3D curves that are nonplanar (a generous threshold of 0.5 m
is used). For each of the remaining planar curves, all points
are projected onto their fitted plane. After this process, the
3D curve becomes a set of 2D points in the 2D space IT of
the fitted plane. Circle fitting is done in this space.

Taking the common approach of least square fitting, we
compute the center (a, b) and radius r of the circle by find-
ing an approximate null-vector of a n x 4 design matrix,
where 7 is the number of points on the curve. Consider the
circle function (x —a)? + (y —b)? —r? = 0. It can be written
as x24y2 —2ax —2by+a®+b*—r? =0.Let (x;, ;) be the
2D coordinates of all points p;(i = 1,...,n) on the curve.
Then the circle equation for all points can be expressed as a
multiplication of the n x 4 matrix M = [M; M, ... M,]"
where M; = [x2 + y? —2x; —2y; 1] (for i = 1,...,n),
with unknown vector [1 a b a® + b* — r2]7. The null-
vector of the design matrix, computed by SVD, provides
the solution. Finally, the circle fitting error is computed as
Conr = \/E"(dlstdnce(p, —center)—r)?2

. The ratio (<) must fall
below a threshold (0.02) to verify that the planar 3D curve
is a circular arc. Finally, the center of the fitted circle is con-
verted back from IT to the 3D space. We now have three
parameters to represent each oriented 3D circle: 3D cen-
ter point, radius, and plane normal. Figure 4 shows all the
circles with radii between 3.0 m and 5.0 m. These are the
ones most useful for matching in the next step. In the ex-
ecution, we detect all circles with radii between 2.0 m and
20.0 m.

3.3 Feature Matching

Our linear feature matching is described in (Chen and Sta-
mos 2005; Stamos and Leordeanu 2003). In this section we
present our algorithms for matching circular features in 3D
space.

After the oriented 3D circles are extracted from range
images, possible matchings between them are hypothesized.

&

The computed transformations are graded using surface con-
sistency (Huber and Hebert 2003) and average point dis-
tance in the overlapping area between the scans.

Similarity of radii, orientation and relative position be-
tween pairs of circles is utilized in the matching phase. In
particular, consider a pair of circles (C1, C3) from scan S;
and another pair of circles (C{, C}) from scan Sy. The pairs
would be considered as matching if

1. Circles Cy,C i have equal radii within a threshold (max-
imum difference of 0.1 m);

2. Circles Cs, Cé have equal radii within a threshold (max-
imum difference of 0.1 m);

3. The distance between the centers of C;, C i equals the
distance between the centers of C,, Cé within a threshold
(maximum difference of 0.2 m);

4. The angle between the normals of Cy, Ci equals the an-
gle between the normals of C, Cé within a threshold
(maximum difference of 10°).

Furthermore, consider a pair of circles (Cy, C2) from
scan §1 and another pair of circles (C}, C5) from scan S,
that could be considered a valid match according to the pre-
vious definitions. A transformation (rotation R followed by
a translation 7') can be computed by converting the corre-
spondence of a pair of oriented circles to a pair of 3D ori-
ented lines. This approach leads to a robust transformation
computation, since it is based on relative position and orien-
tation of the features rather than exact position and orienta-
tion of each feature. In particular, two cases are considered:

Case 1: Circles (C1, C2) have parallel normals Vi and
V; (the same is true for the normals V) and V), of circles
(C{,C%)) (Fig. 5(a)). Let us consider the oriented line D
that connects the centers of (Cy, C2) and the oriented line
D’ that connects the centers of (Cj, C}). If D is not par-
allel to V| (that means that D’ is not parallel to V/l), the
match of the oriented line D with D’ and V| with V| can
provide a reliable transformation (closed form formula, Sta-
mos and Leordeanu 2003). Otherwise D is parallel to V;
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(a)

Fig. 5 Two cases of matching circle pairs. The dash line separates
scan S1 from S;. The radii and relative position of the two circles from
S1 must be similar to those from S;. (a) Case 1: two circles have par-

Fig. 6 Registered images of
Fig. 2(a) and (b). They are
colored to highlight overlapping
area. (a) All image points.

(b) Edge points at overlapping
area

(2)

and a reliable transformation cannot be computed. Note that
if the length of D (or D) is below an empirically determined
threshold (it is 5Sm for the Grand Central Terminal dataset)
the above computation is not performed (that means that the
candidate match is discarded). This effectively improves the
performance by not considering pairs of spatially close fea-
tures.’

Case 2: Circles (Cy, C3) do not have parallel normals V
and V3 (the same is true for the normals V) and V/, of cir-
cles (C, C})) (Fig. 5(b)). Then, the two pairs of oriented
lines (V1, V2) and (V, V}) are used for the computation of
a reliable transformation (closed form formula (Stamos and
Leordeanu 2003)).

From each valid matching circle pairs, a candidate trans-
formation is computed as described above. Each transfor-
mation is verified for correctness as follows. Based on the
fact that overlapping images are captured from nearby po-
sitions, we discard all rotation matrices with diagonal el-
ements smaller than 0.7 (allowing 45° tilting of the range

30ur segmentation, as seen in Fig. 4, produces many similar spatially
close circles. We decided not to average them in order to not degrade
accuracy.
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(b)

allel normals. V|, D and V{ , D’are used to compute transformation.
(b) Case 2: two circle normals are not parallel. Vi, V, and V/, VZ/ are
used to compute transformation

scanner about each of its x/y/z axes). Note that this step
reduces the number of possible transformations and thus
speeds up the algorithm, but is not otherwise necessary.
Then we test whether the transformation causes surface in-
consistency (Huber and Hebert 2003). Finally, from all veri-
fied transformations, the one achieving the smallest average
distance between overlapping range points is chosen as the
best.*

3.4 Experimental Results

Our automated method is used for registration of the interior
scans of Grand Central Terminal in NYC (a large-scale land-
mark urban structure). The best transformation of the two
corner scans of Fig. 2 provides a registration error (average
point distance in the 55.7% overlapping area) of 0.95 cm.
Within a few iterations of ICP an optimal transformation
with a registration error of 0.90 cm is obtained (Fig. 6).
Also, we registered other scans of this hall with the same
technique. The entire hall is roughly rectangular in shape

4Note that an approach similar to association graphs (Ambler et al.
1973) would generate a very large search space.
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Table 1 Experimental results of circle-based 3D-to-3D registration.
Grand Central Terminal dataset. Columns: Number of circles in images
({left, right}); Number of candidate transformations; Average point
distance assuming best transformation after circle-matching; Average
point distance after ICP optimization; Percentage of overlap; Execu-
tion time, including circle extraction and matching (on a Linux-based
2 GHz Xeon-Processor with 2 GB of RAM)

Circles RT Dist_match Dist_icp Overlap Time
{26, 24} 544 0.95cm 0.90 cm 55.7% 6 min
{24, 39} 980 1.11cm 1.00 cm 29.1% 9 min
{21, 39} 15 342 cm 1.28 cm 16.1% 1 min
{24, 20} 748 2.13 cm 0.77 cm 38.4% 7 min
{13, 30} 126 2.01 cm 0.84 cm 28.9% 2 min
{21, 26} 534 1.68 cm 0.90 cm 35.5% 6 min
{23, 11} 29  426cm 0.87 cm 28.7% 1 min
{14, 31} 18 2.65 cm 0.93 cm 27.8% 2 min
{31, 13} 58 2.34 cm 0.98 cm 23.0% 2 min
{37, 26} 67 3.83 cm 0.87 cm 37.2% 2 min
{23, 35} 310 1.20 cm 0.84 cm 26.7% 7 min
{49, 41} 3054 2.81 cm 1.02 cm 38.7% 58 min
{50, 38} 931 1.83 cm 0.92 cm 44.6% 10 min

with an arched ceiling. Figure 7 shows a few typical scans on
the front wall ((a), (c)) and the side wall ((e), (g)), together
with circles extracted from them. Note that the lower parts
of the walls (e.g. (¢), (g)) contain lines and planes, and are
therefore registered with our linear-feature based technique
(Chen and Stamos 2005; Stamos and Leordeanu 2003). The
upper regions with very few linear features, e.g. (a), (e), are
registered with their lower neighboring scans (c), (g) respec-
tively, by matching overlapping circular windows.

In Fig. 9, registered edge points from 23 scans are vi-
sualized. There are another 14 scans not shown for clarity
of presentation. Among all 37 scans, 20 of them are lower
parts registered with lines, 13 of them are the upper parts
registered with their lower neighbor scans based on overlap-
ping circular windows. Three scans are manually registered,
because they are cylindrical ceiling patches without any dis-
tinguishing geometric shape information. In Table 1 we re-
port the performance of 13 registrations based on circles.
When registering the last two pairs, a long execution time is
experienced due to a large number of valid transforms from
the precisely extracted circles around the window frame (as
in Fig. 7(b), (d)). To avoid unnecessary computations, we
set the program to terminate when the average distance falls
below 0.03 cm (approximate distance between two neigh-
boring points). The values in columns RT, Dist_match, Time
are therefore recorded up to the point when an accurate
enough result is reached. In Table 2 we report the perfor-
mance of line-based registration (Chen and Stamos 2005;
Stamos and Leordeanu 2003) in the lower part of the build-
ing. In Fig. 8, more results are shown, including registered

Table 2 Experimental results of line-based 3D-to-3D registration
(Chen and Stamos 2005; Stamos and Leordeanu 2003). Grand Central
Terminal dataset. Columns: Number of lines in images ({left, right});
Number of matching line-pairs before ICP; Average point distance
assuming best transformation from line-based matches; Number of
matching line-pairs after ICP; Average point distance after ICP opti-
mization; Execution time, for line matching (on a Linux-based 2 GHz
Xeon-Processor with 2 GB of RAM)

Line Pairs N Dist_match N Dist_icp Time
{318,214} 5 231 cm 8 0.934 cm 1 sec
{318, 261} 19 2.16 cm 21 1.02 cm 10 sec
{261, 239} 13 1.51 cm 13 1.14 cm 10 sec
{239, 236} 22 1.05 cm 22 0.988 cm 10 sec
{241, 230} 3 2.26 cm 2 1.30 cm 9 sec
{241, 230} 3 1.53 cm 1.33 cm 10 sec
{230, 175} 1 2.66 cm 2 1.49 cm 11 sec
{175, 175} 16 1.05 cm 17 0.932 cm 10 sec
{175, 247} 3.32cm 4 0.981 cm 9 sec
{262, 175} 3.37 cm 4 1.39 cm 10 sec
{247, 262} 5 2.97 cm 10 1.04 cm 9 sec
{262, 275} 16 2.00 cm 18 1.04 cm 10 sec
{275, 254} 11 1.15 cm 11 1.08 cm 10 sec
{194, 262} 2 3.79 cm 8 1.10 cm 11 sec
{198, 239} 10 3.13cm 19 1.39 cm 12 sec
{253, 230} 2 2.26 cm 2 1.19 cm 12 sec

scenes, edge points, and part of a 3D model constructed us-
ing the registered range points.

4 2D-to-3D image-to-range registration

We present our automated 2D-to-3D image-to-range regis-
tration method used for the automated calibration and reg-
istration of a single 2D image I, with the 3D range model
M ange. The computation of the rotational transformation be-
tween I, and Mpage is achieved by matching at least two
vanishing points computed from 7,, with major scene direc-
tions computed from clustering the linear features extracted
from Mrange.

The internal camera parameters consist of focal length,
principal point, and other parameters in the camera calibra-
tion matrix K (Hartley and Zisserman 2003). They are de-
rived from the scene’s vanishing points, whereby the 2D im-
ages are assumed to be free of distortion after we remove
lens deformations, as described in (Liu et al. 2006). Finally,
the translation between I, and Myange is computed after 2D
and 3D lines from the 2D image and 3D model and are ex-
tracted and automatically matched.

With this method, a few 2D images can be independently
registered with the model Myange. The algorithm will fail
to produce satisfactory results in parts of the scene where

@ Springer



246 Int J Comput Vis (2008) 78: 237-260

Fig. 7 Four side wall scans (left
column), extracted edges and
fitted circles (right column)
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Fig. 8 Registration results.

(a) Four out of the 37
automatically registered scans
shown for clarity. (b) Edge
points of (a). Four colors
represent edge points from four
scans. (c¢) Eight out of the 37
automatically registered scans
shown for clarity. (d) 3D mesh
model generated by the Ball
Pivoting Algorithm (Bernardini
and Rushmeier 2002). The
smooth ceiling implies the
registration is tight and seamless

Fig. 9 Registered edges of 23
scans, with color indicating
scans from upper parts (blue)
and lower parts (red). The other
14 scans are not displayed for
clarity of presentation; these
scans compose a side wall
closer to our point of view and
symmetric to the wall being
displayed. Tables 1 & 2 report
the registration performance for
the upper (circle-based
registration) and lower
(line-based registration) parts

there is a lack of 2D and 3D features for matching. Also,
since each 2D image is independently registered with the 3D
model, valuable information that can be extracted from re-
lationships between the 2D images (SFM) is not utilized. In
order to solve the aforementioned problems, an SFM mod-
ule (Sect. 5) and final alignment module (Sect. 6) has been
added into the system. These two modules increase the ro-
bustness of the reconstructed model, and improve the accu-
racy of the final texture mapping results. Therefore, the 2D-

e
MmO |
TR o

(@

to-3D image-to-range registration algorithm is used in order
to register a few 2D images (five shown in Fig. 1) that pro-
duce results of high quality. The final registration of the 2D
image sequence with the range model Myange is performed
after SFM is utilized (Sect. 5).

In this section, we present a system that can automatically
register 2D images with 3D range data at interactive rates.
Our contributions with respect to 2D-to-3D registration can
be summarized as follows:
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e We have developed a working system that is able to inde-
pendently register 2D images to 3D models at interactive
rates. This system requires minimal user interaction. Note
that after a few 2D images are registered to the 3D model
the multiview geometry approach (Sect. 5) is utilized for
registering all images with the 3D range model.

e The whole space of possible matches between 3D and 2D
linear features is explored efficiently (unlike probabilistic
methods like (Stamos and Allen 2001)). That improves
the possibility of convergence of our algorithm.

e Earlier systems (Liu and Stamos 2005; Stamos and Allen
2001) require the extraction of major facades, rectan-
gles, or other higher-order structures from the 2D and 3D
datasets. Our new method, on the other hand, utilizes 3D
and 2D linear features for matching without significant
grouping. This increases the generality of our algorithm
since we make fewer assumptions about the 3D scene.
Scenes with various layers of planar facades, or without
clear major facades can thus be handled.

e This paper’s method utilizes vanishing points and major
3D directions, but it does not require them to be orthogo-
nal as most earlier methods assume.

4.1 3D Feature Extraction for 2D-to-3D Registration

The range-image acquisition process and segmentation is
described in Sect. 3. As we described in that section, all
range scans are registered with respect to one selected pivot
scan, in the scene’s coordinate system.

The 3D line extraction step is based on the segmenta-
tion method of Stamos and Allen (2002), whereas the major
directions clustering is based on (Liu and Stamos 2005).
(Note that if 3D information is provided in terms of a CAD
model, then the 3D line extraction step is trivial.) The re-
sult of this process is a set of line clusters £3P. Each line
in a cluster has similar orientation as every other line in the
same cluster. The set of line clusters are then sorted based
on the number of lines in each cluster. We do not assume
knowledge of vertical or horizontal directions for the line
clusters as in our previous method (Liu and Stamos 2005).
Each 3D line is thus associated with a cluster id, e.g. for
the 3D lines in cluster £l.3D , their cluster id is i. In the next
step, 3D features are extracted. First, an initial user-defined
radius (e.g. 0.1 m) is assigned to each 3D line. Then, a line
merging step generates the final 3D features. This reduces
the number of features, and thus increases the efficiency of
the matching stage (Sect. 4.3). In this step, each pair of 3D
lines (I,, [,) with the same cluster id is merged into a new
line /. (Fig. 10) if (a) the distance between them is smaller
than the sum of their radii, and (b) their projections on /.
overlap. The merging procedure is continued until there are
no two remaining 3D lines that can be merged. The final re-
sult is a set of 3D lines, each of which is associated with a
cluster id and radius.
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2D feature merging ( /, and /, merged into /)

Fig. 10 Example of new type of 3D and 2D features and their merging
steps

4.2 2D Feature Extraction, Internal Camera Calibration, &
Rotation Computation

The internal camera parameters (focal length and principal
point) of the camera sensor can be calculated from one 2D
image if the image contains at least two vanishing points
(i.e. the 3D scene that the image is viewing has at least two
major scene directions). We use our previously developed
robust methods to generate and cluster 2D lines from a 2D
image (Stamos and Allen 2001). The result is a set of ma-
jor vanishing points VP = {VP, VP, ..., VP, }. Using the
methods described in (Stamos and Allen 2001) we can com-
pute the center of projection COP = [Cy, C,, C.1" (effec-
tive focal length and principal point expressed in pixels) by
utilizing three orthogonal vanishing points. In (Liu and Sta-
mos 2005) we described an iterative method for estimating
the internal calibration parameters from two orthogonal van-
ishing points.

In this section we present an additional method (Liu
2007; Liu and Stamos 2007) for the calculation of focal
length f and rotation R. We use two vanishing points and
two major 3D directions, but we do not assume that these
directions are orthogonal to each other. Orthogonality is
prominent in urban scenes, but is not always present. Our
method starts with an initial estimate fiy; of the effective
focal length, and of the principal point Pjyj(. fini¢ is included
in the Exif meta-data, information that is now provided by
most digital cameras. Pj;; is estimated by the center of the
image. Based on these estimates an initial center of projec-
tion Cjyj; is determined. This is the origin of the camera co-
ordinate system (Fig. 11).

Let us consider a vanishing point V; extracted from a 2D
image. The 3D coordinates of V; in the camera coordinate
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system are [(Vi)y — (Pinit)x, (Vi)y — (Pinit)y, finitl” . Thus,
the normalized vector Dl.zD = u(CinitVi)S represents the 3D
direction that generates the vanishing point V;. This direc-
tion is expressed in the camera coordinate system. Our goal
is to match each vanishing point with its corresponding 3D
direction extracted by the 3D range model (see Sect. 4.1).
This correspondence leads to the calculation of the focal
length and the rotation R. Let us represent each 3D line clus-
ter in £3P (Sect. 4.1) by its 3D direction DjD, j=1,...,n
(where n is the number of extracted 3D clusters).

The next step is to find the matching pairs of direc-
tions (DiZD, D;D). Consider for the moment that we know
the correspondence between vanishing points (expressed in
the camera coordinate system) and 3D directions (expressed
in the world coordinate system). It is known that with the
principal point fixed at the center of the image, two pairs
((D2P,D3P), (D2P, D;P)) of matching vanishing point/3D
directions are enough for the computation of the focal length
f. The focal length f (which is |CP| in Fig. 11) can be com-
puted via the following equations (triangles CV,P, CV,P
and CV,V,):

ICVal* = [PV, |* + 2,

ICV, > = [PV, * + 12,

IVaVbI* = [CVal? + |CVp[* = 2-|CV,| - |CVp| - cosx
where « is the angle between DP and DiD. (Note that the
vanishing points V, and V; have been computed by using
the initial estimates finir and Pipi. The above computation
leads to the calculation of a focal length that conforms to

the 3D directions DgD and DiD.) From the above equations,
we can get a quartic equation:

a-f*4b-f24c=0

where a = sin®«, b = sin a(|PV,4|? + |PVp|?) — [V, V, |2,
2 2 2

¢ = (Ne¥el=IPTamPVAE)2 052 [PV, [2|PV, 2. Solving

this equation, one obtains the refined focal length: f =

2_ _ . . .
%. Since DgD + D3P, sina will never be equal

to 0. Finally, the rotation R is computed based on these two
pairs of matching directions (Faugeras 1996).

Based on the above analysis, the task of our system is
to find two matching pairs of vanishing point/3D directions.
Intuitively, pairs ((DgD, DgD) , <D}2}D , DiD)) for which the an-
gle between D2P and D2P is not similar to the angle between
DgD and DiD can be rejected. As a result, we have a list of
matching candidates, each of which contains two pairs of
matching vanishing points and 3D directions, a refined fo-
cal length and a rotation. For each one of these candidates
we can apply the algorithm described in the next section for

SWe use the notation u(v) for describing the unit vector derived from v.

calculating the camera position, and finally keep the result
that provides the maximal alignment between the 2D image
and 3D model.

In the worst case scenario though all pairs of directions
have similar angles (this scenario is easily realizable in ur-
ban scenes where most angles between major directions is
90 degrees). In this case there are (5)() candidate match-
ing pairs of directions (where n is the number of 3D and m
the number of vanishing points). Even though this is not a
large search space (n and m are small in most urban scenes),
testing all hypotheses involves the computation of the trans-
lation (see Sect. 4.3). This is computationally inefficient for
the purposes of an interactive system, where a response time
of up to 10 seconds per image is appropriate. For these rea-
sons we let the user provide the correct pair of matching di-
rections, by rotating the 3D model to an orientation that pro-
duces a rendering that is similar (but not exactly the same)
to the real 2D image. As shown in Figs. 15(b) and 16(c),
the rotated 3D view (left) is similar (but not exactly the
same) to the 2D image (right). This user-assisted rotation
can approximately align the corresponding 2D and 3D di-
rections.

The aforementioned user interaction not only increases
the computational efficiency of the whole system, but also
makes the registration problem tractable. In general, with-
out constraining the possible locations of 2D cameras wrt
the 3D model, the 2D-to-3D registration problem becomes
intractable. This is due to the existence of a possible large
set of solutions. For example, a photograph of one of the
columns of the 3D structure of Fig. 16 can be matched with
any of the symmetric 3D columns of the real scene. By se-
lecting a synthetic view that is similar, but not exactly the
same as the 2D image, the user can provide an approximate
field of view to help the matching algorithm. In particular,
only 3D features that are viewable in the synthetic 3D view
are used for matching 2D image features. Note here that all
earlier approaches still require implicit user interaction in or-
der to assist in that direction. For example in our earlier work
(Liu and Stamos 2005) the user needs to explicitly provide
the match between vanishing points and 3D directions. In
that earlier system, the user also needs to match facades be-
tween the 2D image and 3D model. The approach presented
in this section is more natural and leads to faster interaction
time.

4.3 Translation Computation

In this section we present the algorithm that automatically
computes the translation between one 3D range scan and
one 2D image (Fig. 13).

As described in Sect. 4.2, a list of matching candidates,
named M, is obtained. Each element in M contains a
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Image Plane

Fig.11 Rotation and focal length computation based on two vanishing
points and their corresponding 3D directions (not shown in this image)

Image Plane

oL

Fig. 12 Camera position computation based on a match between 3D
feature AB with image feature ST

matching pair of two vanishing points and two 3D direc-
tions, a refined focal length and a rotation. In this sec-
tion, a 2D camera position will be computed for each can-
didate in M. Our method of finding the camera position
follows a hypothesis-and-test scheme by matching the ex-
tracted 3D and 2D features based on our original frame-
work (Liu and Stamos 2005). A number of major dif-
ferences with the aforementioned method make our algo-
rithm more general and more robust. In particular, our cur-
rent algorithm does not require the extraction of planar fa-
cades, and does not require the grouping of low-level fea-
tures in higher-order structures. Scenes that do not con-
tain clear major facades (such as the example of Figs. 16,
where various layers of planar facades exist) can now be
successfully handled. Also since all low-level features are
used without significant grouping, more robust results are
achieved.

@ Springer

We now present a detailed description of our algorithm.
First, a candidate from M; is selected, i.e. the matching
pair of vanishing points and 3D directions are (V,, V) and
(DSD, D?)D); the refined focal length is f; and the rotation
is R;. The camera position (translation) is then computed in
the following six steps (Fig. 13):

Step 1 A hypothetical match between two pairs of 3D and
2D lines is selected (the algorithm will go over all possi-
ble such selections). Let us call these pairs (lgD , lgD) and
(l;D, lgD ) (ZSD and l;D are 3D lines extracted from the 3D
model, and la2D and l,%D 2D lines extracted from the 2D im-

age).

Step 2 (Computation of camera position in world coordi-
nate system (translation) based on the match of 13 with /2P)
As shown in Fig. 12, A and B are the endpoints of 3P and S
and T are the endpoints of lgD. C is the center of projection.
If 3P matches exactly with /2P, then in the camera coor-
dinate system, C, S and A should be collinear. The same
applies for C, T and B. We thus consider C as the inter-
section point of the following two lines: (a) one that passes
through A having the orientation of line CS and (b) one that
passes through B having the orientation of line CT. To com-
pute the world coordinates of C, we need to know the ori-
entations of CS and CT in the world coordinate system. We
know, however, the orientations of CS and CT in the cam-
era coordinate system, say n, and ny. Furthermore, we have
also computed the rotation R that brings the camera and
world coordinate systems into alignment (see previous sec-
tion). We can thus compute the orientations of CS and CT
in the world coordinate system as: R - n, and R - np. Then,
the camera position is obtained by finding the intersection
of two 3D lines: (a) one of which passes through A with the
orientation of R - n, and (b) one which passes through B
with the orientation of R - ny.° Finally, this computed cen-
ter of projection is used to project l;D onto the image plane.
If the projection of ISD overlaps with l,%D (within a thresh-
old of 80%), then the camera position computed using (ISD,
lgD) is verified by the pair (Z3D, liD). We therefore move to
the next step. Otherwise, we return to step 1 (i.e. the match
is discarded) to pick another set of hypothetical matching
lines.

Step 3 Step 2 is repeated assuming as hypothesis the match
between IZD and l,fD. The newly computed center of pro-
jection is used to compute the overlap between léD and the
projection of / SD. If this overlap is less than a threshold (i.e.
the computed C is not verified by (ZSD, lgD), we return to
step 1 (i.e. the match is discarded). Otherwise, we proceed
to the next step.

A and B are both expressed in the world coordinate system.
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Fig. 13 Camera position (translation) computation flowchart [COP
stands for camera position (or center of projection) in this flow-
chart]. Through step 1 all possible pairs of matched 3D and 2D lines
((13P,12P) and (3P, 12P)) are selected (/3° and /3P are 3D lines ex-
tracted from the 3D model, and 13D and lgD 2D lines extracted from the
2D image). Step 2 computes a camera position based on (lgD, lﬁD). The
pair (l;D, l%D) is used for the verification of this position. If the overlap

between llfD and the projection of ISD on the image is smaller than Oy,

Step 4 Step 2 has thus computed a camera position C; by
the hypothesis (/ SD , laZD ) [verified by (I3P, l,%D)], while step 3
has computed a camera position C; by the hypothesis (lgD ,
liD) [verified by (l;D, lgD)]. In this step, the weighted aver-
age (based on the amount of overlap) of these two camera
positions is computed and saved in a list 7.

Step 5 Steps 1 to 4 are repeated for all possible pairs of
pairs of 3D and 2D lines ((13°, 12P), (130, 12P)). All verified
camera positions (see Step 4) are stored in a list 7. Then, for
each position in 7, all 3D lines are projected onto the image
plane. For each of the projected 3D lines, a possible match-
ing 2D line is found by searching around its projection. This
region is bounded by the radius of the 3D and 2D lines. The
number of found matches grades this camera position. If the
grade of a camera position is less than a threshold, it is re-
moved from the list 7.

Step 6 The remaining camera positions in 7 are optimized
by two steps. First, for each camera position C; a refined
position is found. This is achieved by searching around a
small neighborhood of C; in order to maximize the overlap

A\

| Final COPs |

(20%) (i.e. the position is not verified) a new pair is selected (step 1).
Otherwise a similar computation is carried out for the pair (lgD, lgD)
(step 3). If steps 2 and 3 produce two verifiable camera positions, a
weighted average is computed (step 4). This average represents the po-
sition that is generated by the hypothesis ((£3P,/2P) and (lgD, lgD)).
All verified camera positions are stored in a list 7. After all pairs have
been explored, each position in 7 is graded by projecting all 3D lines
on the 2D image space (step 5). Positions with high grade (greater than
G, number of matches) survive to the final optimization step 6

between the matching 3D and 2D lines. Then this refined po-
sition is further optimized by an iterative algorithm. In each
iteration, the current camera position is used to generate a
list of matching 2D and 3D lines from the whole 2D and 3D
feature space. A new camera position is found by minimiz-
ing the error distance between the 2D lines and the projec-
tions of their matching 3D lines. The algorithm converges
at the point when the error distance remains constant. The
camera position computed after the two optimization steps
is the final result.

The camera position in 7 with the maximum grade is
picked as the best one for the matching candidate M;. This
is normally correct, but the list is still kept as well in case the
one with the maximum grade is not the best. Then, the user
can select other positions in the list. This maximum grade is
also used as the grade for M;. For each matching candidate
in M, a list of camera positions is computed by these 6 steps
and a grade is assigned. Then, the list M is sorted based on
the grade and the one with the maximum grade is selected as
the best one, but the user also can select other results in M.

@ Springer



252

Int J Comput Vis (2008) 78: 237-260

Fig. 14 Registration result of
Building 2. Top row: Initial state
(before registration). The 3D
range model (left column) and
2D image (right column) are
loaded and displayed in the
interface. Note that two
overlapping range scans are
shown. Middle row: The state of
the system after the feature
extraction. The 3D viewer (left
column) shows the clustered 3D

File View Control

lines while the 2D viewer (right
column) shows the clustered 2D
lines that are drawn on the
original 2D image. Different
clusters are represented by
different colors for clarity.
Bottom row: The final
registration. The 2D image is
automatically registered with
the 3D range data. The 3D
viewer (left) shows the texture
mapped 3D range data. The 2D

File View Control

! I
~ h
i po it Iy

el

Control View

viewer (right) shows the Ele Yiew Commol

matching 2D and 3D line
features (2D lines are displayed
as red, while projected 3D lines
are highlighted in green). Note
that objects that are not part of
the 3D model cannot be
texture-mapped (corner of other
building shown in the 2D image)

4.4 Results & Conclusions

We are presenting results from real experiments in three
urban settings that we name 1 (Fig. 15), 2 (Fig. 14), and
3 (Fig. 16). Buildings 1 and 2 are the exteriors of regular
urban structures. Building 3 is the interior of Grand Cen-
tral Station, a scene of architectural complexity and beauty.
The 3D range model for all buildings was generated by our
group. First a number of 3D range scans of each structure
was acquired using a Leica HDS 2500 time-of-flight laser
range scanner (Leica Geosystems 2007). This scanner pro-
vides absolute 3D range measurements up to a distance of
100 meters, and at an accuracy of 6 mm. Each 3D point is
associated with reflectance information, that corresponds to
the amount of laser-intensity getting back to the range sen-
sor.” We then segment each range scan, extract linear 3D
features, and register the scans in a common coordinate sys-
tem.

"Note that the reflectance depends on various parameters (distance, ori-
entation and surface material) and is not the actual color of the object
as captured by a 2D digital camera.
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Figures 14, 15, and 16 provide individual registration re-
sults, as described in our technical sections. Note than in the
case of Figs. 15(b) and 16(c) the user needs to orient the
3D range model in a position that simulates the 2D color
image. As you can see from these figures this simulation
need not be exact. It is necessary for assistance in matching
vanishing points with 3D directions (Sect. 4.2) in order for
our system to perform at near-interactive rates (5-10 sec-
onds for matching per image). Table 3 presents quantitative
results for successful automated registrations (see caption
for more details). A 3-5 pixel distance between the matched
2D and projected 3D lines is due to noise in the line ex-
traction process. Nevertheless, our texture mapping results
are of extremely high quality though. Out of 18 total im-
ages tried for building 1, 13 were registered successfully,
whereas 5 have slight errors. Out of 8 total images tried
for building 2, 7 were registered successfully, whereas 1
has slight errors. Finally, out of 10 total images tried for
building 3, 6 were registered successfully, whereas 4 have
slight errors. In all cases the first step (Sect. 4.2) never fails
since these scenes contain at least two vanishing points. The
second step (Sect. 4.3), however, depends on the quality of
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Fig. 15 Registration results
from building 1. (a) For
description see caption of

Fig. 14. (b) (Top row): The user
rotates the 3D model so that it is
orientated similarly (note that it
does not have to be exactly
matched) to the 2D image.

Ei_iion Gund

(Bottom row): The right image
shows the 2D image along with
the matched 2D and projected
3D features (see caption of
Fig. 14). The left image shows
the texture-mapped 3D range
model after successful
registration

Ee yine Comut

o S

the extracted low-level 2D and 3D linear features. In cases
for which we cannot extract features of high quality (due to
low contrast in 2D images), this method will not be able to
perform correctly. On the other hand few correct 2D-to-3D
registrations can be enhanced with multiview-geometry so-
lutions to bring sequences in alignment with a model (see
Sect. 5).

We have presented a systematic way for registering in-
dividual 2D images with a 3D range model. Our methods
assume the existence of at least two vanishing points in the
scene (not necessarily orthogonal). No higher-order group-
ing of features is necessary. Our system allow us to regis-
ter 2D images with a 3D model at interactive rates. In our
future work we would like to be able to handle scenes of
general configuration not containing any major vanishing
points. This would allow the exploration of registration al-
gorithms in non-urban scenes.

®

5 Multiview Pose Estimation and 3D Structure
Reconstruction

In this section, we describe our algorithms for the gener-
ation of a sparse 3D model (Msfm) from a sequence of
images. The input to our system is a sequence I = {I,, |
n=1,..., N} of high resolution still images that capture
the 3D scene. This is necessary to produce photorealis-
tic scene representations. Therefore we have to attack the
problem of finding correspondences in a sequence of wide-
baseline high resolution images, a problem that is much
harder than feature tracking from a video sequence. For-
tunately, there are several recent approaches that attack the
wide-baseline matching problem (Schaffalitzky and Zisser-
man 2001; Tuytelaars and Gool 2004; Lowe 2004). For the
purposes of our system, we have adopted the scale-invariant
feature transform (SIFT) method (Lowe 2004) for pairwise
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Fig. 16 Registration results
from the interior of building 3
(Grand Central Terminal, NYC).
(a) Registered point cloud of
building 3. (b) For description
see caption of Fig. 14. (¢) (Top
row): The user rotates the 3D
model so that it is orientated
similarly (note that it does not
have to be exactly matched) to

the 2D image. (Bottom row) The
right image shows the 2D image
along with the matched 2D and
projected 3D features (see
caption of Fig. 14). The left
image shows the
texture-mapped 3D range model
after successful registration.

Note that surfaces that are not
part of the 3D model cannot be
texture-mapped and appear as
black holes. For example the
floor is missing from our range
model

feature extraction and matching. In general, structure from
motion (SFM) from a set images has been rigorously studied
(Faugeras et al. 2001; Hartley and Zisserman 2003; Ma et al.
2003). Our method for pose estimation and partial struc-
ture recovery is based on sequential updating. The method
is similar to work explained in (Beardsley et al. 1997;
Pollefeys et al. 2004). In order to get very accurate pose es-
timation, we assume that the camera(s) are pre-calibrated. It

@ Springer

is, of course, possible to recover unknown and varying fo-
cal length by first recovering pose and structure up to an un-
known projective transform and then upgrading to Euclidean
space as shown in (Heyden and Astrom 1996; Pollefeys and
Gool 1997; Triggs 1996). However, some of the assumptions
that these methods make (e.g., no skew, approximate knowl-
edge of the aspect ratio and principal point) may produce
visible mismatches in a high resolution texture map. Thus,
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for the sake of accuracy we are utilizing the camera calibra-
tion method of Zhang (2000). More details of our structure-
from-motion method can be found in (Liu et al. 2006).

6 Alignment of 2D Image Sequences onto 3D-Range
Point Clouds

The 2D-to-3D registration module described in Sect. 4 facil-
itates the texturing of the 3D range model M ange With pho-
tographs taken of the scene. A drawback to this approach
is that only a subset of the images are successfully regis-
tered with Mpange and so the texturing is restricted to these
images for which the camera pose information is recovered.
In order to more fully exploit the use of all images, we opt
to use multiview geometry to derive a dense set of camera
pose information and a sparse 3D model directly from the
images. Merging the results of Sect. 4 with a structure-from-
motion algorithm will produce a superior phototextured re-
sult that captures the full detail of a complete collection of
photographs. We therefore create a sparse 3D model, Mg,
(see Sect. 5), and register it to Myange. The rotation, scale,
and translation necessary to align these two models also ap-
plies to the dense set of camera poses derived from the im-
ages. After applying this transformation to the camera poses
derived from structure-from-motion, the cameras will sit in
the coordinate frame of Myange Where images can then be
projected onto the dense model. The method is described
more fully below.

The set of dense range scans {S; | i =1, ..., K} are regis-
tered in the same reference frame (Sect. 3), producing a 3D
range model called Miange. On the other hand, the sequence
of 2D images I={I, |[n =1, ..., N} produces a sparser 3D
model of the scene (Sect. 5) called Msy,. Both of these mod-
els are represented as clouds of 3D points. The distance be-
tween any two points in Myange corresponds to the actual
distance of the points in 3D space, whereas the distance of
any two points in Mgy is the actual distance multiplied by
an unknown scale factor s. In order to align the two mod-
els a similarity transformation that includes the scale factor
s, a rotation R and a translation T needs to be computed.
In this section, a novel algorithm (Liu et al. 2006) that au-
tomatically computes this transformation is presented. The
transformation allows for the optimal texture mapping of all
images onto the dense Mange model, and thus provides pho-
torealistic results of high quality.

Every point X from Mg, can be projected onto a 2D
image I, € I by the following transformation:

x=Kn[Ru | T,1X ey

where X = (x, y, 1) is a pixel on image I,,, X = (X, Y, Z, 1)
is a point of Mg, ICpy is the projection matrix, R, is the ro-
tation transformation and 7,, is the translation vector. These

matrices and points X are computed by the SFM method
(Sect. 5).

Some of the 2D images I’ C I are also automatically reg-
istered with the 3D range model Miange (Sect. 4). Thus, each
point of Mynge can be projected onto each 2D image I, € r
by the following transformation:

y= K:n[R/n | T”/]Y (2)

where y = (x, y, 1) is a pixel in image I,,, Y= (X, Y, Z, 1)
is a point of model Myapge, Ky is the projection matrix of /,,
R’,, is the rotation and 7", is the translation. These transfor-
mations are computed by the 2D-to-3D registration method
(Sect. 4).

The key idea is to use the images in I,, € I as references
in order to find the corresponding points between Miange
and Msfm. The similarity transformation between Myange and
M is then computed based on these correspondences. In
summary, the algorithm works as follows:

1. Each point of Mg, is projected onto I, € I’ using (1).
Each pixel p(;, j) of 1, is associated with the closest pro-
jected point X € M4, in an L x L neighborhood on the
image. Each point of Myange is also projected onto I, us-
ing (2). Similarly, each pixel p(;, j) is associated with the
projected point Y € M,gg. in an L x L neighborhood
(Fig. 17). Z-buffering is used to handle occlusions.

2. Ifapixel p( j) of image I, is associated with a pair of 3D
points (X, Y), one from Mgy, and the other from Miapge,
then these two 3D points are considered as candidate
matches. Thus, for each 2D-image in I’ a set of matches
is computed, producing a collection of candidate matches
named L. These 3D-3D correspondences between points
of Myange and points of Mg, could be potentially used
for the computation of the similarity transformation be-
tween the two models. The set L contains many outliers,
due to the very simple closest-point algorithm utilized.
However, L can be further refined (Sect. 6.1) into a set of
robust 3D point correspondences C C L.

3. Finally, the transformation between Mange and My is
computed by minimizing a weighted error function E
(Sect. 6.1) based on the final robust set of correspon-
dences C.

Even though the two models (Mfm and Myange) have dif-
ferent noise characteristics, they have similar errors in the
operating range of our experiments. We ultimately exploit
principles from close-range photogrammetry and therefore
we do not use photos that are too far from the object. In
that case, points that are recovered that are deemed to be
too far away (which also may be due to small baseline) will
be dismissed. The remaining projected points from the SFM
model can therefore be matched against the projections of
the 3D points from the range data.
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Table 3 Building 1 (13 images) - Building 2 (7 images) - Building 3
(6 images). Each row presents results from successful registration of a
different 2D image with the 3D range model. The upper part of the table
presents results of the registration of 13 images with a 3D range model
of building 1. The middle part shows results from registering 7 images
with a 3D range model of building 2. Finally, the lower part describes
results from the registration of 6 images with the 3D range model of
building 3. The registration (matching phase) of each image requires on
average 5 to 10 seconds (2 GHz Xeon Intel processor, 2 GB of RAM).
The first two columns show the numbers of 3D and 2D features used for
matching. “Fi” is the initial focal length extracted from the Exif meta-
data of the image, while “Fr” is the refined focal length. “M” is the num-
ber of matched features of the best transformation. Finally, “E” is the
average line-to-line distance (in pixels) after the optimization (Step 6)

F3D F2D Fi Fr M E

672 412 3065.83 3072.42 119 4.4492
583 345 3065.83 3075.34 103 4.9394
409 390 3065.83 3071.90 112 4.8973
392 230 3065.83 3069.45 93 4.2109
321 312 3065.83 3073.23 187 4.9021
456 387 3065.83 3072.12 134 4.3902
402 390 3065.83 3071.29 94 3.9827
390 219 3065.83 3069.22 87 4.2023
592 539 3065.83 3071.90 212 4.3003
390 416 3065.83 3061.39 145 3.9203
271 392 3065.83 3073.38 123 3.2900
430 456 3065.83 3076.19 209 4.1293
390 549 3065.83 3063.56 115 4.5902
438 789 1185.03 1165.65 114 4.3215
421 654 1185.03 1175.89 83 4.2142
389 520 1185.03 1172.90 88 3.8992
402 432 1185.03 1179.34 101 4.2390
389 598 1185.03 1172.90 91 4.5009
435 621 1185.03 1169.39 156 4.1290
419 535 1185.03 1178.17 182 4.4923
543 245 2805.81 2833.45 63 4.4439
569 312 2805.81 2831.32 45 3.9082
389 245 2805.81 2829.39 42 4.2312
390 190 2805.81 2839.93 50 4.9821
493 231 2805.81 2812.24 63 3.9023
301 189 2805.81 2829.39 58 3.8910

6.1 Correspondence Refinement and Optimization

The set of candidate matches L. computed in the second step
of the previous algorithm contains outliers due to errors in-
troduced from the various modules of the system (SFM, 2D-
to-3D registration, range sensing). It is thus important to fil-
ter out as many outliers as possible through verification pro-
cedures. A natural verification procedure involves the differ-
ence in scale between the two models. Consider two pairs of
plausible matched 3D-points (X1, Y1) and (X3, Y2) (X; de-
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Fig. 17 Left column: The points of model My, projected onto one
2D image I, (Sect. 5). The projected points are shown in green. Right
column: The points of model My,pge projected onto the same 2D im-
age I, (projected points shown in green) after the automatic 2D-to-3D
registration (Sect. 4). Note that the density of 3D range points is much
higher than the density of the SFM points, due to the different nature
of the two reconstruction processes. Finding corresponding points be-
tween Mrange and Mgy is possible on the 2D image space of ;. This
yields the transformation between the two models (Sect. 6)

notes points from the My, model, while Y; points from
the Miange model). If these were indeed correct correspon-
dences, then the scale factor between the two models would
be s = || X7 — Xo||/I'Y1 — Y2||. Since the computed scale
factor should be the same no matter which correct matching
pair is used, then a robust set of correspondences from L
should contain only these pairs that produce the same scale
factor s. The constant scale factor among correctly picked
pairs is thus an invariant feature that we exploit. We now
explain how we achieve this robust set of correspondences.

For each image I, € I, let us call the camera’s center of
projection as Cflfm in the local coordinate system of M
and Cnrng in the coordinate system of Mange. These two cen-
ters have been computed from two independent processes:
SEM (Sect. 5) and 2D-to-3D registration (Sect. 4). Then for
any candidate match, (X,Y) € L, a candidate scale factor
s1(X,Y) can be computed as:

X — Csfm|
sIX,Y) = ——2_—.
1Y — C¥|

If we keep the match (X,Y) fixed and we consider every
other match (X/,Y’) € L, L — 1 candidate scale factors
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s2(X’,Y’) and L — 1 candidate scale factors s3(X’,Y’) (L
is the number of matches in L) are computed as:

X" — Csim| s o X=X
X, Y)="—T0— 5X,Y)=_ .
1Y — C.%| 1Y =Y

That means that if we keep the match (X, Y) fixed, and con-
sider all other matches (X', Y’) we can compute a triple of
candidate scale factors: s1(X,Y), s2(X’, Y’), and s3(X’, Y').
We then consider the two pairs of matches (X,Y) and
(X', Y') as compatible if the scale factors in the above triple
are close with respect to each other. By fixing (X,Y), all
matches that are compatible with it are found. The con-
fidence in the match (X,Y) is the number of compatible
matches it has. By going through all matches in L, their con-
fidence is computed via the above procedure. Out of these
matches the one with the highest confidence is selected as
the most prominent: (X,,Y ). Let us call L, the set that
contains (X, Y,) and all other matches that are compatible
with it. Note that this set is based on the centers of projec-
tion of image I, as computed by SFM and 2D-to-3D regis-
tration. Let us also call s, the scale factor that corresponds
to the set L,,. This scale factor can be computed by averag-
ing the triples of scale factors of the elements in L,,. Finally
a different set L,, and scale factor s, is computed for every
image I, €I'.

From the previous discussion it is clear that each L, is
a set of matches that is based on the center of projection of
each image I, independently. A set of matches that will pro-
vide a globally optimal solution should consider all images
of I simultaneously. Out of the scale factors computed from
each set L,,, the one that corresponds to the largest number
of matches is the one more robustly extracted by the above
procedure. That computed scale factor, sqpt, is used as the fi-
nal filtration for the production of the robust set of matches C
out of L. In particular, for each candidate match (X,Y) € L,
a set of scale factors are computed as

o X
Y -G
where n =1,2,...,J, and J is the number of images in I'.

The standard deviation of those scale factors with respect
to sopt is computed and if it is smaller than a user-defined
threshold, (X,Y) is considered as a robust match and is
added to the final list of correspondences C. The robustness
of the match stems from the fact that it verifies the robustly
extracted scale factor sope With respect to most (or all) im-
ages I, € I'. The pairs of center of projections (szm, %)
of images in I’ are also added to C.

The list C contains robust 3D point correspondences that
are used for the accurate computation of the similarity trans-

formation (scale factor s, rotation R, and translation 7") be-

tween the models Manee and Mg, The following weighted
error function is minimized with respect to sR and 7'

E= Y wlsR-Y+T —X]|?
X, Y)eC

where the weight w = 1 for all (X,Y) € C that are not
the centers of projection of the cameras, and w > 1 (user-
defined) when (X,Y) = (C,Sfm, C,'%). By associating higher
weights to the centers we exploit the fact that we are con-
fident in the original pose produced by SFM and 2D-to-
3D registration. The unknown sR and T are estimated by
computing the least square solution from this error function.
Note that s can be easily extracted from sR since the deter-
minant of R is 1.

In summary, by utilizing the invariance of the scale factor
between corresponding points in Myange and Mg, a set of
robust 3D point correspondences C is computed. These 3D
point correspondences are then used for an optimal calcula-
tion of the similarity transformation between the two point
clouds. This provides a very accurate texture mapping result
of the high resolution images onto the dense range model
Mrange-

7 Results & Conclusions

We tested our algorithms using range scans and 2D im-
ages acquired from a large-scale urban structure (Shepard
Hall/CCNY) and from an interior scene (Great Hall/CCNY).
22 range scans of the exterior of Shepard Hall were automat-
ically registered (Fig. 1) to produce a dense model Myange. In
one experiment, ten images where gathered under the same
lighting conditions. All ten of them were independently
registered (2D-to-3D registration Sect. 4) with the model
Mange. The registration was optimized with the incorpo-
ration of the SFM model (Sect. 5) and the final optimiza-
tion method (Sect. 6). In a second experiment, 22 images
of Shepard Hall that covered a wider area were acquired.
Although the automated 2D-to-3D registration method was
applied to all the images, only five of them were manually
selected for the final transformation (Sect. 6) on the basis of
visual accuracy. For some of the 22 images the automated
2D-to-3D method could not be applied due to lack of linear
features. However, all 22 images where optimally registered
using our novel registration method (Sect. 6) after the SFM
computation (Sect. 5). Figure 1 shows the alignment of the
range and SFM models achieved through the use of the 2D
images. In Fig. 18(a) the accuracy of the texture mapping
method is visible. Figure 18(b) displays a similar result of
an interior 3D scene.® Table 4 provides some quantitative

8http://www.cs.hunter.cuny.edu/~ioannis/IjcvSI contains images and
videos of our results.

@ Springer



258

Int J Comput Vis (2008) 78: 237-260

Fig. 18 (a) Range model of
Shepard Hall (CCNY) with 22
automatically texture mapped
high resolution images.

(b) Range model of interior
scene (Great Hall) with seven
automatically texture mapped
images. The set of camera poses
solved via multiview geometry
are shown. Notice the accuracy
of the photorealistic result

results of our experiments. Notice the density of the range
models versus the sparsity of the SFM models. Also notice
the number of robust matches in C (Sect. 6) with respect to
the possible number of matches (i.e., number of points in
SEM). The final row in Table 4 displays the elapsed time
for the final optimization on a Dell PC running Linux on an
Intel Xeon-2 GHz, 2 GB-RAM machine.

We have presented a system that integrates multiview
geometry and automated 3D registration techniques for tex-
ture mapping high resolution 2D images onto dense 3D
range data. The benefits of multiview geometry (SFM) and
automated 2D-to-3D/3D-to-3D registration are merged for
the production of photorealistic models with minimal human
interaction. Our approach provides a solution of increased

@ Springer
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Table 4 Quantitative results

Shepard Hall Great Hall
Number of points (Myange) 12,483,568 13,234,532
Number of points (M) 2,034 45,392 1,655
2D-images used 10 22 7
2D-to-3D registrations (Sect. 4) 10 5 3
No. of matches in C (Sect. 6) 258 1632 156
Final optimization (Sect. 6) 8.65 s 19.20 s 3.18s

robustness, efficiency and generality with respect to previ-
ous methods.
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