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We present a new multiscale surface representation for 3D shape matching that is based on
scale-space theory. The representation, Curvature Scale-Space 3D (CS3), is well-suited for
measuring dissimilarity between (partial) surfaces having unknown position, orientation,
and scale. The CS3 representation is obtained by evolving the surface curvatures according
to the heat equation. This evolution process yields a stack of increasingly smoothed surface
curvatures that is useful for keypoint extraction and descriptor computations. We augment
this information with an associated scale parameter at each stack level to define our mul-
tiscale CS3 surface representation. The scale parameter is necessary for automatic scale
selection, which has proven to be successful in 2D scale-invariant shape matching applica-
tions. We show that our keypoint and descriptor computation approach outperforms many
of the leading methods. The main advantages of our representation are its computational
efficiency, lower memory requirements, and ease of implementation.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction � Geometric transformations: the input surfaces may have
3D shape matching refers to the process of measuring the
amount of dissimilarity between 3D shapes [1]. Partial shape
matching is considered to be a more difficult subproblem,
where the dissimilarity is measured between partial regions
on input surfaces, and the relative position, orientation,
scale, or extent of the overlap is unknown [2]. The main dif-
ficulties faced by 3D surface matching systems are

� Representation issues: the arbitrary organization of
points in 3D makes the processing of input surfaces
more difficult than processing signals in Rn, where the
data are generally organized in the form a grid. This
and the non-Euclidean geometry of the surface hinder
design of efficient matching algorithms.
arbitrary translation, rotation, and scale. They may also
have undergone non-rigid transformations.
� Non-geometric transformations: the surfaces may have

been perturbed with varying levels of noise, contain
topological noise, or have different sampling variations.

A large number of 3D shape matching techniques
already exist in the literature [1,3]; each approach
generally addresses a subset of the above-mentioned
difficulties.

We present a new 3D surface matching approach moti-
vated by the scale-space theory of signals, which was spe-
cifically developed to deal with noise and differences in
resolution and scale. We propose a surface representation,
which is stable against surface noise, and can be used to
form discriminative feature vectors useful for establishing
correspondences between regions on 3D surfaces. More-
over, as shown in Section 2.4, our representation can be
used to extract stable keypoints on 3D surfaces, with the
additional capability of associating a neighborhood size
with each point. We follow the same naming convention
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as in [4,5], and refer to the process of associating a neigh-
borhood size to an extracted differential feature as auto-
matic scale selection. Fig. 1 shows an example of
automatic scale selection at a few locations on a 3D model.
Note that the detected scale is intrinsic to the surface and
does not depend on the spatial scale or sampling resolution
of the surface. This notion of scale selection, which arises
from the scale-space theory, has been central to the suc-
cess of many scale-invariant 2D matching approaches.

The scale-space representation of a signal in Rn is de-
fined in terms of the evolution of that signal according to
the heat (diffusion) equation. The scale-space theory is con-
cerned with the study and analysis of the properties of this
representation of signals. The principal motivation for the
development of the scale-space theory has been the prob-
lem of estimating differential properties of signals, which
are required in various vision applications [6]. The sensitiv-
ity of differentiation to noise and the question of the size
(scale) of the differential operators that are applied to the
signals are the two main issues investigated by scale-space
theory. The theory has been extensively studied for the
case of images (signals) in Rn [6,7] and has become quite
mature and widely used over the past few decades. It has
been shown that besides having nice theoretical proper-
ties, the scale-space representation of images can be real-
ized efficiently, with impressive practical results [8,9].
Currently, scale-space based matching techniques, such
as Scale Invariant Feature Transform (SIFT) [8] and
Speeded Up Robust Features (SURF) [10] have become
the de facto standards in many 2D matching applications.
Despite finding widespread use in 2D signal processing,
scale-space techniques have not been widely applied to
3D surfaces.

There are two major difficulties with extending scale-
space representations to 3D surfaces. These difficulties
are representation issues, and lack of a consistent mecha-
nism for estimating the scale parameter necessary for
automatic scale selection. The lack of grid-like structures
that are present in 2D images and the non-Euclidean
Fig. 1. Automatic scale selection on the Bimba model; (a) original model,
(b) estimated scales at a few locations on the model. The red spheres in
(b) indicate the locations of the extracted keypoints on the model. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
geometry of surfaces make development of precise and
efficient representations difficult. The scale parameter,
which in the case of signals in Rn is defined in terms of
the variance of the smoothing kernel, may not be readily
available for 3D surfaces.

The goal of this work is to extend the use of scale-space
theory to 3D surfaces for the purpose of partial shape
matching. The main contribution is a new scale-space rep-
resentation for surfaces that addresses the two major diffi-
culties outlined above. The new representation, which we
refer to as Curvature Scale-Space 3D (CS3), is shown to be
stable against noise, computationally efficient, and capable
of automatic scale selection. We show how our CS3 repre-
sentation can be used for multiscale 3D keypoint extrac-
tion and compare the performance of our proposed
keypoint extractor against competing methods. We also
show an application of our representation in 3D face recog-
nition, where CS3 is used to form feature vectors (descrip-
tors) for measuring the dissimilarity between 3D faces. The
discriminative power of our features is compared against
competing methods.

1.1. Related work

Witkin introduced ‘‘scale-space filtering’’ in [6], where
it was argued that the extrema of signals and their first
few derivatives contain the most relevant information use-
ful in vision applications. It was also argued that the main
problem with using these features is estimating the sig-
nals’ derivatives — more specifically the neighborhood
size, known as the scale, needed to estimate the deriva-
tives. It was suggested that signals and their derivatives
must be investigated/analyzed at all possible scales, simul-
taneously. Witkin identified the Gaussian (and its deriva-
tives) as the unique smoothing kernels most suitable for
regularizing the required differentiation operations.

More research was devoted to the scale-space represen-
tation for images, which eventually led to the development
of the ‘‘scale-space theory.’’ The scale-space representation
of a signal in RN has been formally defined as the solution
to the heat (diffusion) equation involving the original sig-
nal (see Section 2.1). Other representations such as the
Curvature Scale Space of Mokhtarian and Mackworth
[11], which is used for representing and matching planar
curves, have also been proposed and employed in match-
ing applications.

The most well-known example of the power of the
scale-space representation for applications in computer vi-
sion is the Scale Invariant Feature Transform (SIFT) of Lowe
[8]. SIFT is used for extracting keypoints in images and also
computing local descriptor vectors, which are then used
for establishing correspondences between images. One of
the main attributes of SIFT features is the scale associated
with each extracted keypoint, which in turn, gives rise to
the invariance of the approach to scale changes between
images. The first interesting application of SIFT that con-
tributed to SIFT’s fame and success, is the automatic stitch-
ing of panoramic images of Brown and Lowe [9]. Despite
the success of scale-space theory in 2D computer vision
applications, the extensions of the theory to 3D surfaces
have not been equally effective. The main difficulties
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associated with such an extension are due to surface repre-
sentation issues, which prevent an efficient and precise
extension to surfaces. As mentioned previously, by repre-
sentation issues, we refer to the lack of grid-like organiza-
tion of free-form surface vertices that is present in images,
and also the non-Euclidean geometry of 3D surfaces.

The few current scale-space based surface representa-
tions can be categorized into two classes based on how a
signal is derived from the surface and is consequently
evolved. First, surface positions may be treated as the sig-
nal and therefore the surface geometry is modified during
the evolution process that defines the scale-space repre-
sentation. Second, a signal may be defined and evolved
over the surface while the geometry of the surface remains
unchanged. It is well-known that the evolution of surface
positions generally leads to geometric problems such as
shrinkage and development of cusps and foldovers
[12,13]. Therefore, when we define our proposed scale-
space representation for surfaces (Section 2.2), we opt for
the second approach whereby we define our scale-space
representation in terms of the evolution of surface
curvatures.

The most straightforward of approaches for extending
the scale-space representation of signals to 3D surfaces
are perhaps parameterization [14] and voxelization [15].
These two approaches, however, result in new surface rep-
resentations that suffer from distortions or loss of preci-
sion, respectively.

Mean curvature flow, which is closely related to surface
diffusion, may also be used to smooth the surface. Under
mean curvature flow, each surface point is moved along
its normal proportional to its mean curvature. Schlattmann
et al. [13] use a modification of this approach to obtain a
scale-space representation for surfaces and show how it
can be used to perform feature extraction and automatic
scale selection on closed 3D models. A major problem with
this approach, however, is the geometric degeneracies that
generally arise from smoothing. In addition, computation
times of more than two hours were reported for meshes
with more than 2K vertices. A similar approach, which also
suffers from the same problems with geometric degenera-
cies and computation times, is reported in [16].

As mentioned earlier, instead of smoothing the surface
geometry, signals defined over the surface may be
smoothed. For example, in [17], surface mean curvatures
on a triangulated surface are repeatedly smoothed with a
Gaussian filter. The proposed representation is then used
to define a measure of mesh saliency over the surface and
its applications in mesh simplification and viewpoint
selection are shown in that paper. Similar methods are em-
ployed in [18,19].

More recently, the Heat Kernel Signature (HKS) [20]
has been used in global shape matching tasks involving
3D models that may have undergone isometric deforma-
tions. In this approach, the properties of the heat kernel
of a surface are used to infer information about the geom-
etry of the surface. A scale-invariant version of HKS was
also introduced in [21] and used for non-rigid 3D shape
retrieval. The main drawbacks of HKS-based techniques
are computation times and their inability to perform
automatic scale selection, which is required in most
partial shape matching tasks involving shapes of arbitrary
resolution and scale. Even though in [21], much faster
computations times are reported for HKS, the models
used in their tests are generally low resolution (mostly,
in the order of a few hundred vertices). Additionally, they
only use the first hundred eigenvalues of the Laplace–
Beltrami operator to construct their HKS descriptors.
The descriptors constructed in this manner are coarse
and more suitable for global shape matching tasks involv-
ing objects from different classes (e.g., planes, humans,
animals, etc.). On the other hand, the discriminative
power of the descriptors used in this approach were
tested in datasets of objects from the same class, namely
human faces. A fast multiresolution implementation of
HKS has also been proposed in [22]. However, their ap-
proach is still computationally more expensive than ours.
In [22], for example, the reported computation times for
meshes with 100K+ vertices varies from 110 s to 288 s.
In addition, the stability of their HKS descriptors with
small t’s were not tested in a matching application. Our
scale-space approach presented in this paper is shown
to be more efficient to compute. For instance, we obtain
the scale-space representation (with 32 levels) of a sur-
face with 267K vertices in 14 s on a single core of a
2.3 GHz CPU (Intel Core i7-2820QM).

In Section 2, we present our proposed scale-space rep-
resentation for 3D surfaces, and show how it can be used
for feature extraction and matching. In Section 2.5, we
compare the performance of our keypoint extraction ap-
proach against competing methods. In Section 3, we show
how our proposed scale-invariant Laplacian of surface
(mean) Curvatures can be used to construct stable and
yet discriminative feature vectors, which are then used in
a 3D face recognition system. We test the performance of
our simple PCA-based face recognition system on two
well-known 3D face datasets, and compare its performance
against current state-of-the-art face recognition systems.
Finally, in Section 4, we provide a summary of the work
and directions for future work.

2. Scale-space representation for signals in Rn and on 3D
surfaces

In Section 2.1, we first present the definition of the
scale-space representation for signals in Rn. In Section 2.2,
we present our proposed extension of the representation
to 3D surfaces for the purpose of shape matching.

2.1. Scale-space representation of signals in Rn

The scale-space representation of a continuous signal
f : Rn ! R is defined as the solution to the heat (diffusion)
equation [7]:

@tF ¼ DF; ð1Þ

with the initial condition F(x;0) = f(x); D denotes the
Laplacian. It can be shown that the Gaussian is the funda-
mental solution to Eq. (1) [7]. The scale-space representa-
tion of f can therefore be expressed as

Fðx; tÞ ¼ gðx; tÞ � f ðxÞ; ð2Þ
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where � denotes convolution, g : Rn ! R is the n-dimen-
sional normalized Gaussian: gðx; tÞ ¼ 1

ðptÞn=2 e�kxk
2=t , and t is

known as the scale parameter.
The non-enhancement property [7] of the scale-space

representation of signals, in general, guarantees that the
values of the local maxima (minima) decrease (increase)
as the signal is smoothed. As shown in [7], the scale-nor-
malized amplitudes of the spatial derivatives of F shall be
useful in inferring the size of structures in f. Normalization
is achieved by using the change of variable v ¼ x

tc=2, for
c > 0. This results in the following scale-normalized spatial
derivatives of the scale-space representation of the signal:

@vm F�ðv; tÞ ¼ tjmjc=2@xm Fðx; tÞ; ð3Þ

where m = (m1, . . . ,mn) and @xm constitute the multi-index
notation for partial derivatives; jmj = m1 + � � � + mn denotes
the order of the multi-index. The normalized derivatives
are no longer strictly decreasing or increasing. Instead,
they may assume local extrema over scales. The scale
selection principle [7] states that the scale at which these
normalized derivatives assume a local maximum reflects
a characteristic size of a corresponding structure in the
data. The process of finding this scale, known as automatic
scale selection, has been successfully employed by ap-
proaches such as SIFT [8] to achieve scale invariance in
matching applications. We seek the same type of scale-
normalization in a scale-space representation of a surface
signal, and employ it to infer information about the size
of structures on the surface.

2.2. Scale-space representation for 3D surfaces

In this section, we formulate a similar representation
for surfaces that is as close as possible to the scale-space
representation of signals in Rn. Our proposed approach is
similar to the HKS-based techniques, in the sense that we
derive the scale-space formulation of the surface in terms
of the evolution (diffusion) of signals on the surface with
the help of the Laplace–Beltrami operator. However, we
analyze the surface structures by directly studying the
behavior of the signal as it evolves on the surface. More
specifically, we take the signal to be the surface curvatures,
Fig. 2. The CS3 representation of the Bimba mode
which are derived from the surface geometry. Operating in
the curvature domain is a natural choice since all the rele-
vant geometric information about a surface is encoded in
its principal directions and curvatures. The main advanta-
ges of our approach over HKS are gains in computational
efficiency and the ability to estimate the size of the surface
structures. Additionally, our representation enables us to
robustly and efficiently estimate the Laplacian of surface
curvatures that results in a rich set of features, which is
useful in subsequent matching tasks. It has also been
shown [17] that features extracted in this manner are sali-
ent and meaningful to the human eye.

Therefore, the scale-space representation,
F :M� R! R, of 3D surfaceM, is defined as the solution
to the diffusion equation:

@tF ¼ DMF; ð4Þ

with the initial condition F(p;0) = f(p), where f(p) denotes
the mean or Gaussian curvature at point p 2 M, and DM
is the Laplace–Beltrami operator.

From the above formulation, a stack of Gaussian-
smoothed surface curvatures is obtained that can be used
directly in multiscale feature extraction and descriptor
computations. However, to make the best use of the repre-
sentation for automatic scale selection, the value of the
scale parameter at each level must also be estimated. The
smoothed curvatures together with the associated scales
at each level define our multiscale surface representation,
which we refer to as the Curvature Scale-Space 3D (CS3),
as depicted in Fig. 2.

In Section 2.3, we describe how a discrete surface signal
may be efficiently smoothed in a manner consistent with
the scale-space representation of signals. In Section 2.4,
we show how the representation may be used for feature
point (keypoint) extraction with an automatic scale selec-
tion mechanism.

2.3. Gaussian smoothing a discrete surface signal

Let our discrete surface be represented by the polygonal
mesh M¼ ðV; EÞ, where V ¼ fv1; . . . ;vNg, and
E ¼ feijjv iisconnectedtov jg are the vertex and edge sets,
l at scales (a) t = 3.0, (b) t = 7.5, (c) t = 13.8.
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respectively. Let Fl : V ! R denote the smoothed discrete
surface signal (curvatures) at level l, and define
Fl ¼ Flðv1Þ � � � FlðvNÞ

� �>. We employ the implicit sur-
face smoothing scheme of [12] to obtain the smoothed sur-
face signal, Fl+1, at level l + 1, by solving the following
sparse system of linear equations

ðI� klLÞFlþ1 ¼ Fl; ð5Þ

where kl > 0 is a time step, and L and I denote the N � N
Laplacian and identity matrices, respectively. The elements
of the Laplacian matrix L = (wij)N�N are given as

wij ¼
�1 for i ¼ j;

1
jN ðiÞj for j 2 NðiÞ;
0 otherwise;

8><
>: ð6Þ

where jN ðiÞj denotes size of the 1-ring neighbor set NðiÞ of
vertex vi. The Laplacian matrix may also be populated with
other types of weights, such as cotan weights [12]. The lin-
ear system in Eq. (5) can be efficiently solved using the
Biconjugate Gradient method.

The scale-space representation of the surface signal f is
then given by the sequence (F0, . . . ,FL�1), which is obtained
recursively using

Fl ¼ ðI� kl�1LÞ�1Fl�1 if l > 0;
f if l ¼ 0;

(
ð7Þ

for l = 0, . . . ,L � 1.
The resulting transfer function of the implicit Lapla-

cian smoothing in Eq. (5) is h(x) = (1 + klx2)�1, where
x denotes surface signal frequency [12]. When a stack
of smoothed signals with L levels is constructed accord-
ing to Eq. (7), with corresponding time steps (k0, . . . ,kL�2),
the transfer function of the filter at level L � 1 is given
by

hL�1ðxÞ ¼
YL�2

l¼0

ð1þ klx2Þ�1
: ð8Þ

Note that the representation needs to be defined in a
recursive manner since the transfer function of the filter
defined by Eq. (5) is not a Gaussian. On the other hand,
the transfer functions of our recursive formulation ap-
proach Gaussians as L grows.

The time steps are selected as kl = kl�1d = k0d
l, where k0

denotes an initial time step and d > 1 is a constant. It is
important to note that the time steps kl are not equivalent
to the scale parameter t in the original scale-space repre-
sentation of signals given by Eq. (2). Fig. 2 shows a 3D
model and its corresponding CS3 representation at various
scales.

2.3.1. Estimating the scale parameter
To recover the scale parameter t at each level l, we fit a

Gaussian to the transfer function of the smoothing filter for
that level, and define the scale of the smoothed signal as
the scale of the fitted Gaussian. This is done by sampling
the transfer function hl in Eq. (8). As a result, we obtain a
set of pairs C ¼ fðxj;hlðxjÞÞgJ�1

j¼0 , which is used to estimate
the scale tl of a fitted Gaussian glðx; tlÞ ¼ e�x2tl , in the
least-squares sense:
tl ¼
Pj<jCj

j¼0 x2
j

Pk<l�1
k¼0 ln 1þ kkx2

j

� �
Pj<jCj

j¼0 x4
j

: ð9Þ

The scale parameter tl for each level l can alternatively
be defined in terms of the variance of the transfer function
at that level:

tl ¼

R1
�1

Ql�1
k¼0ð1þ kkx2Þ�1

� �
dxR1

�1 x2
Ql�1

k¼0ð1þ kkx2Þ�1
� �

dx
: ð10Þ

Since the transfer function at each level is analytic and only
depends on the known sequence of time steps, kl, its vari-
ance can be precomputed numerically. In this work, we use
Eq. (9) to estimate the scale parameter. The obtained se-
quence of scales, (t0, . . . , tL�1), together with the stack of
smoothed signals, (F0, . . . ,FL�1), define the CS3 representa-
tion of the surface.

2.4. Feature extraction with automatic scale selection

The CS3 representation of a 3D surface may be used di-
rectly for feature extraction. Let UðMÞ ¼ ðF0; . . . ; FL�1Þ and
WðMÞ ¼ ðt0; . . . ; tL�1Þ correspond to the CS3 representation
of surfaceM. The difference between the smoothed signals
at consecutive levels l and l + 1 can be used to approximate
the Laplacian of the signal at level l. This difference can be
stated in terms of convolution of the original signal with
Gaussian filters as

Flþ1 � Fl � F0 � ðgð�; tlþ1Þ � gð�; tlÞÞ; ð11Þ

where � denotes convolution defined over the surface, and
g(�; tl) is a Gaussian with scale tl. Noting that @g

@t ¼ 0:5Dg, we
have

@g
@t
¼ 0:5Dg � gð�; tlþ1Þ � gð�; tlÞ

tlþ1 � tl
; ð12Þ

and consequently,

Flþ1 � Fl � 0:5ðtlþ1 � tlÞF0 � Dg: ð13Þ

Therefore, the estimated Laplacian of F0, at level l, which
we denote by DFl, is approximated by

DFl � 2ðFlþ1 � FlÞ
tlþ1 � tl

: ð14Þ

We define the scale-normalized Laplacian of the surface sig-
nal at scale tl as

DnormFl ¼ tlDFl ¼ 2tlðFlþ1 � FlÞ
tlþ1 � tl

: ð15Þ

Throughout this work, we assume the surface signal corre-
sponds to the surface mean curvatures. DnormF then corre-
sponds to the scale-normalized Laplacian of mean
Curvatures (LoC).

The local extrema of DnormF could be used to define fea-
ture points (keypoints) on a 3D model. For example, Fig. 3
depicts the computed scale-normalized Laplacian of mean
curvatures on a 3D model and its noisy counterpart, at le-
vel l = 20 (scale t = 21.7); the red spheres indicate the loca-



Fig. 3. Extracted features on (a) original, and (c) noisy Bimba models at t = 21.7; the false-colors in (b) and (d) reflect the response of the Dsi (Eq. (16)) at
each vertex on the original and noisy models, respectively. The models in (c) and (d) contain 80% Gaussian noise. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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tions where LoC is locally maximum or minimum at the
displayed level. As seen in the figure, the detected locations
of the extrema of LoC, despite their high differential order,
are robust against noise and may be used for extraction of
stable and well-localized feature points. Additionally, note
that the extracted features are distributed throughout the
entire surface.

The plots in Fig. 4 show the computed LoC values at a
few selected vertices on the models in Fig. 3 as functions
of scale. As expected, the values for both the noisy and
noise-free models converge at the higher scales. However,
the corresponding LoC values of the vertices at the scale
shown in Fig. 3 are not the same between the two models
due to the noise. To alleviate this, we introduce the scale-
invariant LoC as

DsiFl ¼ DFl � �Fl

rl
; ð16Þ

where

�Fl ¼ 1
N

1>DFl1; rl ¼
1ffiffiffiffi
N
p kDFl � �Flk; ð17Þ

denote the vector-form mean, and standard deviation of
the LoC values at level l, respectively; N is the total
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Fig. 4. Plots of LoC values of a few vertices on the surfaces in Fig. 3. The vertical
number of vertices in M, and 1 is an N-dimensional
vector of all 1’s.

Fig. 5 shows the scale-invariant LoC plots of the same
vertices as in Fig. 4. As can be seen, the LoC curves of the
two surfaces begin to converge at a much finer scale, and
look more similar. The scale-invariant LoC is resilient to
changes in resolution, spatial scaling, and additive i.i.d.
noise.

According to the principle of automatic scale selection
[7], the scale(s) where DnormFi becomes a local extremum
across scales can be expected to correspond to the size of
surface structures at vertex vi. This is visually verified in
Figs. 6 and 1, where the size of the blue spheres indicate
the computed spatial scale (neighborhood size) at a few se-
lected keypoints. An approach similar to Lowe’s [8] was used
to select the keypoints (shown as red spheres) on the mod-
els, in the two figures. The keypoints were selected as the
vertices that were local extrema among their immediate
neighbors, both on the current level and two adjacent levels
on the stack: let set Q lðiÞ ¼ fFlþk

j g [ fF
l�1
i ; Flþ1

i g, for k =
�1,0,1, and j 2 NðiÞ. Then, vertex vi, at level l, is selected as
a keypoint if Fl

i > qj;8qj 2 Q lðiÞ or Fl
i < qj;8qj 2 QlðiÞ. Let tl

be the scale associated with level l. tl then defines the scale
of the detected keypoint vi. The radius of each blue sphere
in Figs. 6 and 1 was computed using
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black lines indicate the location of the displayed scale (t = 21.7) in Fig. 3.
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Fig. 5. Plots of the scale-invariant LoC values of a few vertices on the surfaces in Fig. 3.
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Fig. 6. Automatic scale selection on the Caesar model. (a) Estimated scales at a few locations; the radii of the blue spheres are computed using Eq. (18). (b)
Plots of the scale-normalized Laplacian of the surface mean curvatures at the selected vertices as functions of scale; the locations of the filled squares on the
scale-axis indicate the detected scale for the keypoints. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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r ¼ tl�e; ð18Þ

where �e is the average edge length in the surface mesh.
The graph in Fig. 6c shows the plots of LoC values at the

few selected keypoints (blue spheres) on the model in
Fig. 6a. The filled squares on the curves indicate the loca-
tion of the detected scale for each keypoint. In our experi-
ments we noticed that the estimated scale parameter for
keypoints extracted at the lower scales (t < 3) was more
sensitive to noise and therefore less reliable. As a result,
we clip the detected scale of all keypoints with a value of
t < 3 to 3.

Fig. 7 provides a comparison between the Dsi plots on
the original, scaled, and higher resolution versions of the
same model as in Fig. 3a. The higher resolution version
of the model was obtained by applying one iteration of
Loop’s subdivision scheme, which increases the number
of mesh vertices by a factor of four, and approximately
halves the average edge length in the resulting mesh.
As can be seen, spatial scaling of the model has no effect
on the plotted Dsi curves. On the other hand, the
increase in the resolution of the surface scales the LoC
curves, and consequently the locations of their extrema,
by a factor of two. This results in the detected scale, tl,
for each vertex to be scaled by two. Since the increase
in the resolution of the surface halved the average edge
length, �e, the extracted radii of the surface features (r in
Eq. (18)) remain approximately the same between the
original and higher resolution model. This guarantees
that the detected surface feature sizes are intrinsic to
the surface.

In Fig. 8, we show the effects of noise on the positions of
extracted keypoints on a model. The figure shows the gen-
eralized Voronoi diagram of the keypoints on the surface of
the model. Each cell’s false color shows how much its cor-
responding node was displaced between the original and
the noisy model. As the table below the figure shows, the
average displacement in terms of the average edge length
on the surface mesh is approximately four vertices. Addi-
tionally, as evident in the figure, the displacement is small
in areas with high curvature, and large on more planar
regions.
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Fig. 7. Comparison of scale-invariant LoC plots of the Bimba model (Fig. 3a) with different spatial scales and sampling resolutions. Plot in (a) is identical to
the plot for the original model, shown in Fig. 5a, while (b) has been scaled by a factor of approximately two.

Fig. 8. Displacements of extracted keypoints between the original and a
noisy version (80% Gaussian) of the Bimba model. The darker and lighter
cell colors indicate smaller and larger displacements, respectively. The
table shows a summary of the displacement statistics on the model. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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2.5. Performance evaluation

In this section, we evaluate the performance of our pro-
posed keypoint extractor using the evaluation benchmark
of [23], where the methods are categorized into two clas-
ses: fixed scale and adaptive scale detectors. As the names
imply, a fixed scale detector operates at a constant scale,
while an adaptive scale detector operates on a range of
possible scales. The following detectors were evaluated in
the experiments:

� Fixed scale: Local Surface Patches (LSPs) [24], Intrinsic
Shape Signatures (ISSs) [25], KeyPoint Quality (KPQ)
[26], Heat Kernel Signature (HKS) [20].
� Adaptive scale: Laplace–Beltrami Scale-Space (LBSS)

[19], MeshDoG [18], KeyPoint Quality—Adaptive-Scale
(KPQ-AS) [26], Salient Points (SP) [16].

The experiments were run on five datasets:

� Kinect: data obtained using a Microsoft Kinect device.
� Space time: data obtained using a stereo reconstruction

technique.
� Laser scanner: data obtained from a laser scanner [26].
� Retrieval: synthetic noisy data created using models

from the Stanford Repository—single, complete 3D sur-
faces were used to create the individual models and
uncluttered scenes with no occlusions.
� Random views: synthetic noisy data created using mod-

els from the Stanford Repository—unlike the Retrieval
dataset, the scenes contained multiple models, clutter
and occlusions.

These are the same datasets used in [23] and are in-
cluded here for direct comparison with the competing
methods they evaluated in their benchmark. We compared
the performance of our CS3 representation against both
fixed and adaptive scale classes of detectors. In all adaptive
scale experiments, a CS3 stack with 32 levels (1 < t < 48.6)
was obtained for all input surfaces and the automatic scale
selection mechanism described in Section 2.4 was used to
extract keypoints. In the fixed scale experiments, the key-
points were obtained as the local extrema of the Laplacian
of surface mean curvatures at the desired scale (t) in the
CS3 stack. The level whose estimated scale (t) was closest
to the experiment’s scale was used in each case.

The following definitions for absolute repeatability, rel-
ative repeatability, and scale repeatability are used from
[23]: A keypoint ki

h extracted from model Mh is said to be
repeatable in scene Sl, under the ground truth rotation Rhl

and translation thl, if a keypoint kj
l exists in Sl such that

kRhlk
i
h þ thl � kj

lk < �; ð19Þ

where � is a distance threshold. Let RKhl denote the set of
repeatable keypoints between the model/scene pair (Mh, -
Sl). The absolute repeatability is defined as

rabs ¼ jRKhlj; ð20Þ

and the relative repeatability is defined as

r ¼ jRKhlj
jKhlj

; ð21Þ

where Kkl is the set of all keypoints extracted from model
Mh that are not occluded in scene Sl. Distance threshold
of � = 2 �mesh resolution (mr) was used in the experi-
ments; mesh resolution denotes the average edge length
in a mesh.



Fig. 9. Relative and absolute repeatability scores of adaptive scale detectors.
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The scale repeatability of pair of keypoints ki
h and kj

l

with respective scales ri
h and rj

l is defined as

rij
scale ¼

V Sphereðri
hÞ \ Sphere rj

l

� �� �
V Sphere ri

h

� �
[ Sphere rj

l

� �� � ; ð22Þ

where Sphere(r) and V(Sp) denote the sphere with radius r
and volume of region Sp in R3, respectively. The overall
scale repeatability of the set of keypoints extracted for a
model/scene pair is defined as

rscale ¼

P
ðki

h ;k
j
l
Þ2RKhl

rij
scale

jRKhl
: ð23Þ

Fig. 9 compares the relative and absolute repeatability
of all adaptive scale detectors in the experiments. Both
the absolute and relative repeatability score of CS3 were
consistently at the same level or better than the other ap-
proaches. The relative repeatability of CS3 is slightly lower
than MeshDoG’s for the Space Time dataset, however, in all
other cases, CS3 performs better than MeshDoG.
Fig. 10. Scale repeatability scores
In Fig. 10, we compare the scale repeatability scores of
the adaptive scale detectors. In all experiments, CS3 per-
formed slightly worse than LBSS but outperformed all
other methods. LBSS, while having the best scale repeat-
ability score, consistently performed worse than all other
methods in both absolute and relative repeatability. This
behavior, however, is to be expected as LBSS tends to select
much fewer keypoints than other methods.

In Fig. 11, we compare the relative and absolute repeat-
ability scores of fixed scale detectors at various scales on
the Laser Scanner, Kinect, and Space Time datasets. The
absolute repeatability of CS3 is higher than the rest of
the methods in most cases, while its relative repeatability
is at the same level as those of ISS and KPQ: on the Laser
Scanner dataset, ISS performs slightly better than CS3 in
all scales, while CS3 performs better than ISS on the Kinect
dataset. However, the absolute repeatability of ISS is much
lower than that of CS3 in all cases. Fig. 12 shows the rela-
tive and absolute repeatability scores of fixed scale detec-
tors for the Retrieval and Random Views datasets. In the
majority of cases, CS3 has a higher absolute repeatability
score, while its relative repeatability score drops lower
of adaptive scale detectors.



Fig. 11. Relative and absolute repeatability scores of fixed scale detectors on the Laser Scanner, Kinect, and Space Time datasets.
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than HKS and KPQ in the Retrieval experiment with noise
level of 0.5 mr.

It is important to note that the orientations of a number
of mesh faces in the 3D models in the Retrieval and Random
Views datasets were incorrect (flipped). For example, out of
45,195 faces in the Happy Buddha model, 4293 faces were
incorrectly flipped. When reading these models, our PLY
parser added those faces as separate faces (thereby modi-
fying the geometry and topology of the surfaces). Since
the noise and geometric transformations in the two data-
sets were synthetic (i.e., scenes were obtained from the
same problematic 3D models), the locations of the prob-
lematic faces may have served as landmarks for our detec-
tor. This may explain the suspiciously good performance of
our detector for the Random Views experiment in Fig. 12.
Nonetheless, the performance of our fixed and adaptive
scale detectors are consistently on par or better than the
other methods in the experiments involving the other
datasets.

We followed the same methodology as in [23] to obtain
the timings reported in Fig. 13: lower resolutions of a mesh
from the Kinect dataset with approximately 267 K vertices
were obtained by successively decimating it using the ap-
proach of [27]. We then ran our adaptive and fixed scale
detectors on the resulting meshes on a single core of a
2.3 GHz CPU (Intel Core i7-2820QM). For each fixed scale
detector, the reported timing in [23] corresponds to the
scale at which the detector had the best relative repeat-
ability score. Our fixed scale detector, similar to the other
methods, had its best performance at scale 6. We report



Fig. 12. Relative and absolute repeatability scores of fixed scale detectors on the Retrieval and Random Views datasets.
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the timings for our adaptive scale and fixed scale detectors
in Fig. 13b. In the same graph we have also included the
timings for the most time consuming scale (t = 18) in the
fixed scale experiments. As can be seen, both our fixed
scale and adaptive scale detectors outperform the other
methods. Specifically, the KPQ detector which has the best
relative repeatability scores among the other methods,
performs more than two orders of magnitude slower than
the CS3 detector. Additionally, the HKS detector, because of
its memory requirements, was unable to handle meshes
larger than 30 K vertices. Fixed scale detectors ISS and
LSP report similar timings as CS3. However, LSP performs
consistently worse than CS3 in all fixed scale experiments,
while ISS performs at the same level as CS3 in the Kinect,
Laser Scanner, and Space Time experiments, and worse in
the Retrieval and Random Views experiments. Moreover,
ISS, unlike CS3, is not capable of performing adaptive
(automatic) scale selection. The efficiency of adaptive scale
detector MeshDoG is similar to CS3’s. However, it performs
worse than CS3 in the repeatability experiments.

3. Application: 3D face recognition

We tested the discriminative power of our proposed
scale-invariant Laplacians of surface curvatures in a simple
PCA-based 3D face recognition system. The input to the



Fig. 12. (continued)
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system was a set of 3D faces that were already registered
and consistently remeshed using the approach of [28].
Here, ‘‘consistent’’ means that all meshes have the same
number of vertices and a one-to-one correspondence be-
tween the vertices on the meshes is known. This property
simplifies the process of converting the meshes into fea-
ture vectors, which are used for recognition.

A large body of literature exists on 2D and 3D face rec-
ognition [29,30]. For example, approaches such as the
Bayesian face recognition of [31], or face recognition using
sparse representation [32,28] may be used for this task.
However, in our face recognition system, we employ the
most well-known approach of eigenfaces [33]. We choose
this approach due to its simplicity and ease of implemen-
tation. More importantly, this choice enables us to attri-
bute the better performance of our recognition system
(see Section 3.2) to its feature extraction component,
rather than the classifier it employs.

In Section 3.1, we discuss the steps involved in the
training and recognition phases of our algorithm. In Sec-
tion 3.2, we present the recognition results of our system
on different datasets and compare its performance against
other state-of-the-art 3D face recognition techniques.

3.1. 3D face recognition using CS3 representation

In both the training and recognition stages of our algo-
rithm, each face mask fm with N vertices is converted into



Fig. 13. Timing comparison of CS3 with other methods.

170 H. Fadaifard et al. / Graphical Models 75 (2013) 157–176
an N-dimensional feature vector by first constructing its
CS3 representation and computing the scale-invariant
Laplacians of Curvatures (si-LoCs) at some level l in the
CS3 stack (see Eq. (16)); the optimal choice of l is discussed
in the results section. The feature vector is then formed by
arranging the si-LoC values of the mesh vertices into an
N-dimensional vector. Since the face masks for all faces
are obtained using the same procedure, the vertices in all
meshes have the same ordering and, as a result, the con-
structed feature vectors are consistent. We denote the fea-
ture vector corresponding to face mask fm by vector
xm 2 RN .

Each vector xm corresponds to a point in the N-dimen-
sional feature space. Under the assumption that the fea-
ture vectors are constructed judiciously, multiple feature
vectors corresponding to different 3D scans of the same
individual are expected to form a cluster in the feature
space. The objective of the training phase is then to ob-
tain information about the characteristics (e.g., the
shapes) of these clusters. In the recognition phase, this
information is used to decide to which cluster a given in-
put feature vector belongs. Therefore, in this paradigm,
face recognition is treated as a feature classification
problem.

The eigenfaces approach that is employed in this work
is a simple nearest neighbor classifier. As mentioned previ-
ously, we show that despite this choice, our system is capa-
ble of outperforming most state-of-the-art 3D face
recognition techniques. We argue that this good perfor-
mance is due to both the discriminative power of our fea-
ture vectors and their resilience to noise. In this
application domain, the noise may be due to surface pertur-
bations or facial expressions in the input faces.

3.1.1. 3D eigenfaces
Let X ¼ fðxm; cmÞgM

m¼1 be the training set; xm 2 RN and cm

denote the mth feature vector and its associated class in
the training set, respectively. Let

l ¼ 1
M

XM

m¼1

xm; R ¼ 1
M

XM

m¼1

ðxm � lÞðxm � lÞ> ð24Þ
denote the mean vector and covariance matrix of the fea-
ture vectors in X. The eigendecomposition of R is given
as R = UKU>, where the N � N matrices

U ¼
j j

u1 � � � uN

j j

0
B@

1
CA and K ¼

k1 0

. .
.

0 kN

0
BB@

1
CCA ð25Þ

contain the eigenvectors and eigenvalues of R, respec-
tively. It is assumed that the eigenvalues are ordered in
descending order; i.e., k1 P � � �P kN P 0.

In the case of face recognition, where each xm is derived
from a face model, the K-major eigenvectors u1, . . . ,uK are
referred to as ‘‘eigenfaces’’. The eigenfaces span a K-dimen-
sional subspace of the feature space with the smallest total
orthogonal distance from the feature points in the training
set. Therefore, the projection of the feature vectors onto
the subspace spanned by the eigenfaces results in dimen-
sionality reduction of the feature vectors, with the minimal
loss of variance. We refer to the subspace spanned by the
eigenfaces simply as the eigenspace. When N� K, this
dimensionality reduction enables efficient processing of
the data, which would otherwise be computationally
prohibitive.

In the eigenfaces approach, both the training and test
sets are projected onto the eigenspace, and the classifica-
tion tasks are performed in this space. Let x0 2 RK denote
the projection of feature vector x 2 RN onto the
eigenspace:

x0 ¼ U>ðx� lÞ; ð26Þ

where

U ¼ u1 � � � uKð ÞN�K : ð27Þ

Let set X0 ¼ x0m; cm
� �� �M

m¼1 denote the transformed training
set obtained by projecting the feature vectors in the train-
ing set onto the eigenspace. In the recognition phase, clas-
sification is performed by assigning each test feature
vector xt 2 RN to class c⁄ of x⁄ 2 X, which satisfies

ðx�; c�Þ ¼ arg min
ðx0m ;cmÞ2X0

kx0t � x0mkp; ð28Þ
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where x0t ¼ U>ðxt � lÞ, and k � kp denotes the Lp-norm in
RK , for some p P 1. The optimal choice of p is discussed
in Section 3.2.
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Fig. 14. Accuracy rates for different classes of test sets as functions of the
CS3 level. At each level, the si-LoC values were used to form the feature
vectors. The L1-norm was used to find the nearest neighbors in the
eigenspace.
3.2. 3D face recognition results

We tested the performance of our proposed 3D face rec-
ognition system on the GavabDB [34] and FRGC [35] data-
sets. We first present the recognition results of our system
for GavabDB and then FRGC.

The models in GavabDB are noisier and of lower resolu-
tion than those in FRGC. The scanned faces for each indi-
vidual in GavabDB contains the following poses and
expressions: 1 scan looking up, 1 scan looking down, 2
frontal scans, 1 scan with random gesture, 1 scan with
laughter, and 1 scan with smile.

In the first set of tests, we followed the same leave-one-
out cross-validation procedure as in [28] to test the accu-
racy of our system. In each trial, one class of faces (e.g.,
scans looking up) were used as the test set and the remain-
ing faces in the dataset were used as the training set. The
recognition accuracy was measured as the percentage of
times the system returned the correct individual for each
query face from the test set. Table 1 shows the correct rec-
ognition rates of our system for each test set. In the exper-
iments, si-LoC values at level 10 of the CS3 stack were used
to form the feature vectors for both the training and test
sets. Additionally, the L1-norm was used in the matching
stage of the algorithm, when searching for nearest neigh-
bors in the eigenspace. The test sets in Table 1 have been
grouped together into two categories of ‘‘neutral’’ and
‘‘non-neutral’’, to indicate which sets of scans contained fa-
cial expressions. The accuracy rates for the two groups
(column 4), and the overall accuracy of the system (column
5) were computed by averaging their associated rows in
column 2 of the table.

Since CS3 is a multiscale representation, a level l from
the CS3 stack must be selected in order to construct the
feature vectors for training and matching. Therefore, l is
an unknown parameter whose optimal value must be esti-
mated using the training set. Other parameters that will
also influence system performance are the initial time step,
k0, and the factor, d, by which the step size is increased at
Table 1
Face recognition results on GavabDB. The pose column indicates which
class of scans was taken as the test set while the remaining scans were used
as the training set.

Pose Acc.
(%)

Group Group acc.
(%)

Overall
(%)

Looking down 95.08 Neutral 96.31 95.55
Looking up 93.44
Frontal 1 98.36
Frontal 2 98.36
Random

gesture
88.52 Non-

neutral
94.54

Laughter 96.72
Smile 98.36
each level in the CS3 stack (kl = k0d
l). Throughout this work,

we used the following values for these two variables:
k0 = 1.0, d = 1.2. However, the value of l must be selected
more carefully as it has a higher influence on the perfor-
mance of the system.

In Fig. 14, we show how the performance of our recog-
nition system is affected by the choice of l, for each class of
test sets. In all cases the accuracy first increases and then
decreases. Additionally, Table 2 uses the data from
Fig. 14 to show how the recognition rates for the neutral/
non-neutral groups of test sets are influenced by the choice
of the CS3 level. As can be seen, again level l = 10 yields the
optimal performance for both classes of tests.

We define the optimal CS3 level for recognition, as the
level where the overall accuracy of the system is maximal.
Procedure FindOptimalLevel in Algorithm 1 summa-
rizes the steps involved in finding the optimal level l⁄,
using only the training set. The procedure may be iterated
a number of times to obtain a set of values for l⁄; the arith-
metic mean or median of these values may then be used to
select the optimal level.
Table 2
The accuracy rates of the system for different choices of the CS3 level where
the si-LoC values are selected to form the feature vectors; the L1-norm was
used for matching.

Level Neutral Non-neutral Overall

1 0.7254 0.6174 0.6714

..

. ..
. ..

. ..
.

9 0.9549 0.9344 0.9446
10 0.9631⁄ 0.9454⁄ 0.9542⁄

11 0.9631 0.9344 0.9487

..

. ..
. ..

. ..
.

30 0.3524 0.2459 0.2991



Table 3
Performance accuracy on GavabDB.

Pose This
work
(%)

Mahoor and
Abdel-Mottaleb
[36] (%)

Berretti et al.
[37] (%)

Frontal 95.08 95.0 94
Smile 93.44 83.6 85
Laughter 80.33 68.9 81
Random gesture 78.69 63.4 77
Looking down 88.52 85.3 80
Looking up 85.25 88.6 79

Overall 86.89 82.83 84.29
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Algorithm 1. FindOptimalLevel

Input: Training set T ¼ fðfm; cmÞgM
m¼1; p P 1

Output: Optimal CS3 level l⁄

1: Build CS3 stack with L levels
2: for each level l 2 {1, . . . ,L} do
3: for m = 1 to M do
4: Get feature vector xm from fm using CS3
values at level l
5: end for

6: X fðxm; cmÞgM
m¼1

7: l 1
M

PM
m¼1xm

8: R 1
M

PM
m¼1ðxm � lÞðxm � lÞ>

9: Build U from eigendecomposition of R (Eq.
(27))

10: Partition X into two sets Xtrain ¼ fðxr ; crÞgR
r¼1

and Xtest ¼ fðxs; csÞgS
s¼1

11: for each xr 2 Xtrain do
12: x0r  U>ðxr � lÞ
13: end for

14: X0train  fðx0r ; crÞgR
r¼1

15: for each xs 2 Xtest do
16: x0s  U>ðxs � lÞ
17: end for

18: X0test  fðx0s; csÞgS
s¼1

19: correctl 0
20: for each x0s; cs

� �
2 X0test do

21: ðx�; c�Þ  arg minðx0r ;crÞ2X0train
jx0s � x0r jp

22: if cs = c⁄ then
23: correctl correctl + 1
24: end if
25: end for
26: correctl  correctl

S

27: end for
28: l⁄ argmaxl2{1,. . .,L} correctl

The choice of the distance function used by the classifier
is another issue that needs to be investigated. We also
tested the performance of our recognition system with
L2-norm and the Mahalanobis distance as the metric used
by the classifier in Eq. (28). However, on average, the L1-
norm yielded the best results.

In each experiment shown in Table 1, the training and
test sets contained 366 and 61 meshes, respectively (each
with 3169 vertices). The overall time required to run each
experiment was approximately 230 s on a 2.0 GHz Intel
CPU: 110 s to read the meshes in the training and compute
the feature vectors, 100 s to solve the resulting eigensys-
tem, and 20 s to read and match all the 61 faces in the test
set (approximately 0.33 s to read and match each 3D face).

In the following, we compare the performance of our
system on GavabDB, against competing methods in the lit-
erature. Unfortunately, different authors used different
testing procedures when reporting their results. In order
to provide a fair comparison, in each case, we use the same
testing procedure as the one used by the method against
which we are comparing our system.
Mahoor and Abdel-Mottaleb [36] and Berretti et al. [37]
use only one of the frontal scans as the training set, while
using the remaining scans as test sets. In Table 3, we com-
pare our results with theirs. As can be seen, because of the
reduction in the number of scans per subject in the training
set, the performance of our system has dramatically re-
duced when compared to our results in Table 1. However,
the overall recognition rate of our system is still slightly
better than the other approaches. Also, note that in [36],
the faces in the test set, which contained expressions were
cropped such that only the eyes and nose regions were
used in matching. Moreover, the two approaches do not re-
port on how the performance of their systems are affected
when more samples per subject are provided. Therefore,
there is no indication that the performances of their sys-
tems improve as the number of scans per subject in the
training set is increased. However, we show that the per-
formance of our system improves greatly as more samples
are provided (Fig. 16). This is a desirable (if not necessary)
property, since in most real-world applications, more than
one sample per subject is provided in the training set. In
fact, the majority of face recognition approaches (e.g., Fish-
erfaces [38], SVM [39], Bayesian face recognition [31],
sparse representation [28,32]) require more than one sam-
ple per subject, in order to estimate information about the
distribution of the class associated with each subject in the
feature space.

Moreno et al. [39] use two types of experiments to eval-
uate the performance of their PCA and SVM-based 3D face
recognition systems. In the ‘‘controlled’’ setting, the test set
consists of one frontal scan per subject, while the training
set consists of the remaining scans in the dataset. There-
fore, the sizes of the test and training sets are 61 and
366, respectively. In the ‘‘non-controlled’’ setting, they cre-
ate the test set by randomly selecting two (out of 7) scans
for each subject, and using the remaining scans for the sub-
jects in the training set. As a result, the test and training
sets contain 122 and 305 scans, respectively. We use the
same procedure to compare the performance of our system
with theirs, and show the results in Table 4. In the non-
controlled setting, we repeated the experiment seven
times and the results in Table 4 show the average of the
experiments; the best and worst performances were
99.18% and 92.62%, respectively. As can be seen, in all
cases, our system outperforms the method of [39].

In [28], the authors test the performance of their 3D
face recognition system on GavabDB. However, in their



Table 4
Comparison of recognition accuracies of our system with [39].

Approach Controlled (%) Non-controlled (%)

This work 98.36 96.02

Moreno (PCA) 82.00 76.20
Moreno (SVM) 90.16 77.90

Table 5
Comparison of the recognition accuracies of our system with [28].

This work This work Li [28]

Gavab dataset
# Subjects 61 61 61
# Scans/subj. 4 4 4

FRGC dataset
# Subjects 59 553 59
# Scans/subj. 6 1–30 4

Search space
# Subjects 120 614 120
# Scans 598 5032 480

Accuracy
Neutral faces (%) 97.54 98.36 96.67
Non-neutral (%) 95.08 92.90 93.33
Overall (%) 96.07 95.08 94.68
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experiments, they extend the size of the dataset by adding
59 additional 3D faces from the FRGC dataset, while omit-
ting the ‘‘looking up’’ and ‘‘looking down’’ scans from the
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Fig. 15. (a) Histogram of the number of scans per subject for the set of 3D faces w
number of scans per subject; (c) subject count as a function of the minimum num
the CS3 levels used to construct feature vectors.
Gavab dataset. The performance of the system was then
tested by running five different sets of experiments. In
each experiment, the test set consisted of 61 scans (1 scan
per subject) from the 5 different groups of scans (two sets
of frontal scans, 1 set with random gestures, 1 set with
laughter and another set with smile), while the training
set consisted of the remaining scans in the dataset. The rec-
ognition results were then grouped into two classes. The
frontal scans formed the ‘‘neutral’’ class, while the other
scans (with random gesture, laughter, and smile) formed
the ‘‘non-neutral’’ class. The recognition accuracy for each
class was then computed as the average of the recognition
results of its members. In Table 5, we compare the perfor-
mance of our system with [28]. Note that we conducted
two sets of experiments. In the first set of experiments,
we followed the same procedure as in [28], but added
two additional scans for each subject from the FRGC data-
set. This increased the size of the search space by 118 scans
from faces not in the test set, and hence made the recogni-
tion task even more difficult. The second column of Table 5
shows the results for this set of experiments. As can be
seen, our approach outperforms the approach of [28]. To
make the recognition task even more challenging, we
added 4788 scans from the FRGC dataset to the training
set, while keeping the number of scans from the Gavab
dataset the same as before, and followed the same proce-
dure as before to measure the accuracy rate of our recogni-
tion system. The third column of Table 5 shows the results
of this experiment. As can be seen, while the accuracy rate
of our system for non-neutral faces becomes slightly lower
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than [28], our overall accuracy still remains higher than
that of [28].

We also tested our recognition system on 4788 3D faces
from the FRGC dataset, which corresponded to 553 individ-
uals. Unlike GavabDB, in the FRGC dataset, the number of
scans for all individuals (subjects) was not the same. In
Fig. 15a, we plot the histogram of the number of scans
per subject in the dataset that we used in our experiments.
For example, 72 subjects had only 1 scan, and 43 subjects
had 2 scans. In Fig. 15b, we show how the size of the data-
set decreases as we increase the required minimum num-
ber of scans per subject. For example, the total number of
scans in the dataset decreases to 4716, when only subjects
with at least two scans are considered, while the dataset
size becomes 3286, when only subjects with at least 10
scans are kept. In Fig. 15c, we show how the number of
subjects in the dataset decreases as the required minimum
number of scans per subject is increased. For example, the
number of subjects decreases to 481 and 200, when the
minimum required number of scans are set to 2 and 10,
respectively. As is shown in the following experiments,
the minimum number of scans per subject used in the
training set affects the performance of our recognition sys-
tem, even though our PCA-based system does not explicitly
attempt to recover information about the class conditional
probability density function of each face class in the fea-
ture space.
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In Fig. 15d, we show how the accuracy of the system for
the FRGC dataset is influenced by the choice of the CS3 le-
vel used when constructing the feature vectors. As can be
seen, again the optimal performance is achieved approxi-
mately at level l = 10 (with average accuracy rate of
89.05%). Therefore, throughout all our experiments, we
used 10 CS3 levels to construct the required feature vec-
tors. In the six experiments conducted to obtain the plots
in Fig. 15d, we used a subset of the scans in the dataset,
which contained at least two scans per subject. This en-
abled us to partition the dataset into two disjoint sets to
obtain the training and test sets. In each experiment, the
test set was constructed by randomly selecting one scan
for each individual in the dataset, and the remaining scans
were used as the training set.

We argue that the decreased accuracy of the system for
the FRGC dataset (compared to GavabDB) is due to the
large number of subjects in the training set with small
number of scans, and that the increased size of the search
space has a smaller influence on the performance of the
system. All (100%) of the subjects in the GavabDB experi-
ments had 6 scans in the training set, whereas in FRGC only
287 out of 553 (51.9%) of the subjects had at least that
many scans. In Fig. 16a, we show how the performance
of the system is improved as the minimum number of
scans per subject is increased. The graph plots the average
and standard deviation of the accuracy rate of the system
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for a set of 11 experiments where disjoint training and test
sets were randomly constructed. As can be seen, the accu-
racy of the system increases as the minimum required
number of scans per subject is increased. The average accu-
racy rate of the system on a subset of the FRGC dataset
where each subject has at least six scans in the training
set is 94.30%. The training set for this subset contains
287 subjects, and a total of 3683 scans. The performance
of system is further increased to 96.00% when all subjects
in the training set have at least nine scans (200 subjects,
and a total of 3086 scans in the training set). Fig. 16b
shows the averaged Cumulative Match Characteristic
(CMC) curves of our system for different minimum number
of scans per subject in the dataset.

In Fig. 16c and d, we plot the average accuracy rates and
CMC curves of our system for a set of 35 experiments.
However, for these experiments, a fixed number of scans
per subject was used in each experiment—instead of a min-
imum number of scans; e.g., the red curve in Fig. 16d, plots
the average CMC curve of 35 experiments, where in each
experiment, the training set was constructed by randomly
selecting only one scan from each subject in the FRGC data-
set and using the remaining scans in the test set. As the
graphs show, the performance of the system improves dra-
matically as the number of scans per subject increases in
the training set. For example, increasing the number of
scans for each subject in the training set from 1 to 3, im-
proves the accuracy rate of the system by approximately
20%.
4. Conclusion

We presented a new scale-space based representation
for 3D surfaces that was shown to be useful for feature
extraction and shape matching. We showed our proposed
representation to be robust to noise and capable of auto-
matic scale selection. The major benefits of our approach
over existing methods such as [20,21] are automatic scale
selection, improved computational efficiency, lower mem-
ory requirements, and ease of implementation. We com-
pared the performance of our CS3-based keypoint
extractor with competing methods, such as [19,18,26],
and showed that it was able to outperform the other meth-
ods in the majority of cases in terms of speed, relative and
absolute repeatability. We also demonstrated an applica-
tion of our CS3 representation to 3D face recognition,
where our proposed scale-invariant Laplacian of surface
curvatures (si-LoC) was employed to form feature vectors
for measuring the dissimilarity between the faces. We
tested the performance of the recognition system on two
well-known 3D face datasets, and showed its better perfor-
mance over state-of-the-art 3D face recognition systems.
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