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� Abstract �

Convolution plays a central role in many image processing applications� including image
resizing� blurring� and sharpening� In all such cases� each output sample is computed to
be a weighted sum of several input pixels� This is a computationally expensive operation
that is subject to optimization� In this gem� we describe a novel algorithm to accelerate
convolution for those applications that require the same set of �lter kernel values to
be applied throughout the image� The algorithm exploits some nice properties of the
convolution summation for this special� but common� case to minimize the number
of pixel fetches and multiply�add operations� Computational savings are realized by
precomputing and packing all necessary products into lookup table �elds that are then
subjected to simple integer ��xed�point� shift�add operations�

� Introduction �

Discrete convolution is expressed as the following convolution summation

f�x� �
N��X

k��

f�xk�h�x� xk�

where h is the convolution kernel weighted by N input samples f�xk�� In practice� h is
nearly always a symmetric kernel� i�e�� h��x� � h�x�� We shall assume this to be true
in the discussion that follows�
The computation of one output point is illustrated in Fig� �� where a convolution

kernel is shown centered at x among the input samples� The value of that point is equal
to the sum of the values of the discrete input scaled by the corresponding values of the
convolution kernel� This example is appropriate for image resizing� where integer output
addresses map back into real�valued input locations� For instance� output locations 	�
�� 
� �� ��� correspond to input locations 	� ��� �� ���� ��� upon two�fold magni�cation�
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Figure 1. Convolution

In other applications� such as blurring� the image dimensions remain the same after
convolution and the convolution kernel is always centered on an input sample�

There are two time�consuming phases in convolution computing the convolution
kernel weights h�x � xk� to be used� and the actual multiply�add core operations�
The �rst problem is apparent if we consider what happens when the kernel in Fig� � is
moved slightly� A new set of kernel values must now be applied to the input� Several re�
searchers have looked at ways of speeding up this computation� In �Ward and Cok �����
Wolberg ���	�� a technique using coe�cient bins is described that places constraints
on where the kernel may be centered� By limiting the kernel to be placed at any
one of� say� �� subpixel positions� the kernel weights may be precomputed and stored
in a table before the actual multiply�add operations begin� As the kernel makes its
way across the input image� it must be recentered to the closest subpixel position� In
�Schumacher ���
�� a scaling algorithm is given which stores the computed kernel values
after processing an input row� and reuses those weights for all subsequent scanlines�

This gem describes an e�cient means for implementing fast convolution using lookup
table operations� It assumes one important constraint the same set of kernel values
are applied throughout the image� This is appropriate for low�pass �ltering �blurring��
for instance� where the kernel is always centered directly on an input sample� and the
same set of weights are applied to the neighbors� It is also appropriate for two�fold
magni�cation or mini�cation where� again� only a single set of kernel values is needed
�Wolberg and Massalin ������
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Figure 2. 6-point kernel samples

� A Fast Convolver for Two-fold Magnification �

In order to place this presentation on �rm ground� we will �rst describe this approach
in the context of two�fold image magni�cation� We will later demonstrate how these
results are generalized to fast convolution with �lter kernels of arbitrary length� This
is relevant to any linear �ltering operation� such as image blurring� sharpening� and
edge detection� It is important to note that the algorithm is developed for the �D case�
where only rows or columns may be processed� In 
D� the image is processed separably�
That is� each input row is �ltered to produce an intermediate image I � Image I is then
convolved along its columns to produce the �nal output image� For convenience� our
discussion will assume that we are convolving ��bit data with a ��point kernel for the
purpose of image magni�cation�

Due to symmetry� a ��point kernel has only three unique kernel values k�� k�� and k�
�see Fig� 
�� The seventh kernel value� k�� in Fig� 
 is unused here since it sits between
the input samples� It will be necessary later when we consider general linear �ltering�

Since each kernel value ki can be applied to an integer in the range �	� 
���� we may
precompute their products and store them in three lookup tables tabi� for � � i � �� The
product of data sample s with weight ki now reduces to a simple lookup table access� e�g��
tabi�s�� This makes it possible to implement a ��point convolver without multiplication�
only lookup table and addition operations are necessary� In order to retain numerical
accuracy during partial evaluations� we designate each 
���entry lookup table to be
�	�bits wide� This accommodates ��bit unsigned integers with 
�bit fractions�

The use of lookup tables to eliminate multiplication becomes unfeasible when a large
number of distinct kernel values are required in the convolution summation� This
is particularly true of general convolution� Fortunately� many �ltering applications�
including two�fold magni�cation� require only a few distinct kernel values� The memory
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demands to support the corresponding lookup tables are very modest� i�e�� 
���N�
�
�	�bit entries for an N �point kernel� where N is even�
Further computational savings are possible by exploiting some nice properties of the

convolution summation for our special two�fold rescaling problem� These properties are
best understood by considering the output expressions after a ��point kernel is applied
to input samples A through H � The expanded expressions for convolution output CD�
DE� and EF are given below� Note that CD refers to the output sample lying halfway
between pixels C and D� The same notation applies to DE and EF �

CD � k�A� k�B � k�C � k�D � k�E � k�F

DE � k�B � k�C � k�D � k�E � k�F � k�G

EF � k�C � k�D � k�E � k�F � k�G� k�H

These results demonstrate a pattern each input sample s is weighted by all ki values
during the course of advancing the kernel across the data� This is apparent for samples
C and F in all three expressions� Rather than individually accessing each of the three
tables with sample s� all three tables may be packed side�by�side into one wide table
having �	 bits in width� This permits one index to access three packed products at
once� The largest number of tables that may be packed together is limited only by the
precision with which we store the products and the width of the longest integer� e�g��
�
 bits on most computers�
Figure � shows table entries for input samples A through H � Three �	�bit �elds are

used to pack three �xed point products� Each �eld is shown to be involved in some
convolution summation� as denoted by the arrows� to compute output CD� DE �shown
shaded�� and EF � The organization of the data in this manner not only reduces the
number of table accesses� but it also lends itself to a fast convolution algorithm requiring
only shift and add operations� The downward �upward� arrows denote a sequence of
right�shift �left�shift� and addition operations� beginning with the table entry for A �D��
Let fwd and rev be two integers that store both sets of results� The �rst few shift�add
operations produce fwd and rev with the �elds shown in Table ��
Notice that the low�order �	�bit �elds of fwd contain half of the convolution summa�

Table 1. 10-bit Fields in fwd and rev

fwd rev

bits ����� bits ����� bits ��� bits ����� bits ����� bits ���

k�B k�A� k�B k�A� k�B k�E � k�D k�E � k�D k�E

k�C k�B � k�C k�A� k�B � k�C k�F � k�E � k�D k�F � k�E k�F

k�D k�C � k�D k�B � k�C � k�D k�G� k�F � k�E k�G� k�F k�G

k�E k�D� k�E k�C � k�D � k�E k�H � k�G� k�F k�H � k�G k�H



.1 FAST CONVOLUTION WITH PACKED LOOKUP TABLES � 5

k1*Bk2*B

k3*F k1*F

k3*B

k3*C k2*C k1*C

k1*Dk2*Dk3*D

k3*E k2*E k1*E

k2*F

k3*G k2*G k1*G

CD

DE

k1*Ak2*Ak3*A

k3*H k2*H k1*H

EF

Figure 3. A fast convolver

tion necessary to compute the output� The other half is contained in the high�order
�	�bit �elds of rev� Simply adding both �elds together generates the output values�

This scheme is hampered by one complication addition may cause one �eld to spill
into the next� thereby corrupting its value� This will happen if a �eld value exceeds
the range �	� 
� � ��� Note that although we use �	�bit �elds� the integer part is � bits
wide� We now consider the two range limits on �eld value v � k�A� k�B � k�C�

We may guard against negative values by simply adding a bias to the �eld of all
negative kernel values ki� After rescaling the bias to a �	�bit quantity� it is simply
�	
�ki� Simultaneously� we must guarantee that the sum of the three kernel values and
the biases is less than unity to ensure that the upper limit is satis�ed� Note that the
bias is removed from the computation when we add the low�order �	�bit �eld of fwd to
the high�order �	�bit �eld of rev�

The following fragment of C code demonstrates the initialization of the packed lookup
table lut� consisting of 
�� �
�bit integers�
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#define MASK 0x3FF
#define ROUND 1
#define PACK(A,B,C) (((A)<<20) + ((B)<<10) + (C))
#define INT(A) ((int) ((A)*262144+32768) >> 16)

b1 = b2 = b3 = 0;
if(k1 < 0) b1 = -k1 * 1024;
if(k2 < 0) b2 = -k2 * 1024;
if(k3 < 0) b3 = -k3 * 1024;
bias = 2 * (b1 + b2 + b3);

for(i=0; i<256; i++)
lut[i] = PACK( INT(i*k3)+b3, INT(i*k2)+b2+ROUND, INT(i*k1)+b1 );

The INT macro converts the real�valued kernel samples into �	�bit �xed point quan�
tities� Notice that since the macro argument A has an ��bit magnitude� we form an
intermediate 
��bit result by multiplying A by ������ Roundo� is achieved by adding
����� �or ��� before right�shifting by �� bits to obtain the �nal �	�bit number� A bias
is added to each �eld to prevent negative numbers and the undesirable sign extension
that would corrupt its neighbors� ROUND is necessary to avoid roundo� error when
adding the fwd and rev terms together to compute the output� Adding ROUND directly
in lut spares us from having to explicitly add it at every output computation�
Once lut is initialized� it is used in the following code to realize fast convolution�

The variable len refers to the number of input samples� and ip and op are input and
output pointers that reference the padded working bu�er buf � We assume that the
input samples have already been copied into the even addresses of buf in order to
trivially compute half of the two�fold magni�cation output� Since we are now using a
��point kernel� the left padding occupies positions 	 and 
� the �rst input sample lies
in position �� and the �rst output sample will lie in position ��

/* clamp definition: clamp A into the range [L,H] */
#define CLAMP(A,L,H) ((A)<=(L) ? (L) : (A)<=(H) ? (A) : (H))

/* initialize input and output pointers, ip and op, respectively */
ip = &buf[0];
op = &buf[5];

fwd = (lut[ip[0]] >> 10) + lut[ip[2]];
rev = (lut[ip[6]] << 10) + lut[ip[8]];
ip += 4;

while(len--) {
fwd = (fwd >> 10) + lut[ip[0]];
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rev = (rev << 10) + lut[ip[6]];
val = ((fwd & MASK) + ((rev >> 20) & MASK) - bias) >> 2;
*op = CLAMP(val, 0, 255);

/* input and output strides are 2 */
ip += 2;
op += 2;

}

The bias terms �nd their way into the low�order and high�order �elds of fwd and rev

through the sequence of shift�add operations� Since these two �elds are used to compute
val� we must subtract twice the sum of the bias terms from val to restore its proper
value� Recall that bias was de�ned in the previous code fragment� We then discard the
fractional part of val by a two�bit right shift� leaving us with an ��bit integer� Since
val may now be negative� it is necessary to clamp it into the range �	� 
����
Operating with symmetric kernels has already been shown to reduce the number of

arithmetic operations N�
 multiplies and N � � for an N �point kernel� where N is
even� This algorithm� however� does far better� It requires no multiplication �other
than that needed to initialize lut�� and a total of four adds per output sample� for a
��point kernel� Furthermore� no distinction is made between 
�� ��� and ��point kernels
because they are all packed into the same integer� That is� a ��point kernel is actually
implemented as a ��point kernel with k� � 	� Since there is no additional penalty for
using a ��point kernel� we are induced to use a superior ���point� �lter at low cost�
Larger kernels can be assembled by cascading additional ��point kernel stages together
�see the supplied code��

� General Convolution �

The C code provided with this gem demonstrates the use of the fast convolver for general
linear �ltering� This is essentially the same technique as for the two�fold magni�er shown
earlier� There is one important di�erence though the N �point kernels are centered on
input samples and so N must be odd� The extra kernel value corresponds to the center
pixel� that must now be weighted by k�� Although this can be explicitly added to
the weighted sum of the neighboring six pixels� the number of addition operations to
compute an output pixel would rise by one� For instance� the following C statement
could be used

val = ((fwd & MASK) + ((rev >> 20) & MASK) - bias + lut0[*ip]) >> 2;

where ip points to the center pixel that is used to index lut	� a lookup table storing the
product of the pixel with kernel sample k�� Note that a total of � additions are needed
to compute a ��point kernel � each for fwd and rev� and � for val� We will refer to this
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Table 2. Comparison of Operation Counts

N Method � Method �

� 	 


	 	 


� 	 �

� � �

�� � �

�� � ��

�	 �� ��

approach as Method �� In order to reduce one addition� we can embed that weighting
directly in the packed lookup tables by halving k� and permitting it to be applied on
the center pixel in both fwd and rev for the purpose of adding the contribution of that
pixel �Method 
�� This� however� reduces the extent of the kernel by one� Table 

compares the number of additions needed to compute an output value using the two
methods for various values of N in an N �point kernel�
It is important to note that multiple instances of fwd and rev are needed when they

are cascaded to realize wider kernels� This explains why the number of additions above
rises by increments of four two to compute a new pair of fwd and rev terms� and two
to add them to val� Method 
 is generally more e�cient than Method �� except in
instances when the overhead cost of adding an additional fwd and rev pair sets in� The
supplied code implements Method 
�

� Summary and Conclusions �

In summary� this gem has focused on optimizing the evaluation of the convolution
summation� We achieve large performance gains by packing all weighted instances of
an input sample into one �
�bit integer and then using these integers in a series of
shift�add operations to compute the output� The algorithm bene�ts from a technique
well known in the folklore of assembler programmers and microcoders multiple integers
can be added in parallel in a single word if their bit �elds do not overlap� This alone�
however� is not the basis of the algorithm� Rather� the novelty of the algorithm lies
in identifying a particularly e�cient structure for the fast convolver that can exploit
this straightforward technique for parallel addition and apply it to kernels of arbitrary
length� An additional feature of the fast convolver is that it requires each pixel to be
fetched only once� eventhough it is used in the computation of several output pixels�
The sequence of shift�add operations essentially mimics a pipelined vector processor

on a general �
�bit computer� This approach will likely �nd increased use with the
forthcoming generation of ���bit computers� The additional bits will permit us to
handle wider kernels at �ner precision�
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� C Code �

The following C code implements the fast convolution algorithm� The program takes
three arguments �lenames for the input image� kernel� and output image� Utility
functions are provided to read and write ��bit grayscale images� The image format
used is simple two integers specifying the width and height followed by a stream of
��bit unsigned pixel data� The kernel is stored in an ASCII �le containing one kernel
value per row beginning with k�� For instance� the following kernel �le contains a
��point low�pass �lter�

.33333333333333333333

.23958333333333333333

.08333333333333333333

.01041666666666666666

The program handles up to ���point kernels� Extending this to handle larger kernels
is a simple matter of accommodating additional stages in the lutS data structure and
fastconv�� function�
Execution time on a SUN ���	 �IPX� workstation was measured on the repeated

calls to fastconv�� in function convolve��� Convolution of a 
�� � 
�� image with a
��point and ���point kernel took ��� seconds and ��� seconds� respectively� The same
convolution took ���� seconds and ���� seconds� respectively� when implemented with
standard multiply�add operations� Due to the separable implementation� execution
time grows linearly with �lter width�

/* ======================================================================
*
* Fast Convolution With Packed Lookup Tables
*
* by George Wolberg and Henry Massalin
*
* Compile: cc convolve.c -o convolve
* Execute: convolve in.bw kernel out.bw
* ======================================================================
*/

#include <stdio.h>
#include <stdlib.h>

typedef unsigned char uchar;
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typedef struct { /* image data structure */
int width; /* image width (# cols) */
int height; /* image height (# rows) */
uchar *image; /* pointer to image data */

} imageS, *imageP;

typedef struct { /* packed lut structure */
int lut0[256]; /* stage 0 for 5-pt kernel */
int lut1[256]; /* stage 1 for 11-pt kernel */
int lut2[256]; /* stage 2 for 17-pt kernel */
int bias; /* accumulated stage biases */
int stages; /* # of stages used: 1,2,3 */

} lutS, *lutP;

/* definitions */
#define MASK 0x3FF
#define ROUNDD 1
#define PACK(A,B,C) (((A)<<20) + ((B)<<10) + (C))
#define INT(A) ((int) ((A)*262144+32768) >> 16)
#define CLAMP(A,L,H) ((A)<=(L) ? (L) : (A)<=(H) ? (A) : (H))
#define ABS(A) ((A) >= 0 ? (A) : -(A))

/* declarations for convolution functions */
void convolve();
void initPackedLuts();
void fastconv();

/* declarations for image utility functions */
imageP allocImage();
imageP readImage();
int saveImage();
void freeImage();

/* ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
* main:
*
* Main function to collect input image and kernel values.
* Pass them to convolve() and save result in output file.
*/

main(argc, argv)
int argc;
char **argv;
{

int n;
imageP I1, I2;
float kernel[9];
char buf[80];
FILE *fp;

/* make sure the user invokes this program properly */
if(argc != 4) {

fprintf(stderr, "Usage: convolve in.bw kernel out.bw\n");
exit(1);
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}

/* read input image */
if((I1=readImage(argv[1])) == NULL) {

fprintf(stderr, "Can’t read input file %s\n", argv[1]);
exit(1);

}

/* read kernel: n lines in file specify a (2n-1)-point kernel
* Don’t exceed 9 kernel values (17-point symmetric kernel is limit)
*/

if((fp=fopen(argv[2], "r")) == NULL) {
fprintf(stderr, "Can’t read kernel file %s\n", argv[2]);
exit(1);

}
for(n=0; n<9 && fgets(buf, 80, fp); n++) kernel[n] = atof(buf);

/* convolve input I1 with fast convolver */
I2 = allocImage(I1->width, I1->height);
convolve(I1, kernel, n, I2);

/* save output to a file */
if(saveImage(I2, argv[3]) == NULL) {

fprintf(stderr, "Can’t save output file %s\n", argv[3]);
exit(1);

}
}

/* ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
* convolve:
*
* Convolve input image I1 with kernel, a (2n-1)-point symmetric filter
* kernel containing n entries: h[i] = kernel[ |i| ] for -n < i < n.
* Output is stored in I2.
*/

void
convolve(I1, kernel, n, I2)
imageP I1, I2;
float *kernel;
int n;
{

int x, y, w, h;
uchar *src, *dst;
imageP II;
lutS luts;

w = I1->width; /* image width */
h = I1->height; /* image height */

II = allocImage(w, h); /* reserve tmp image */
initPackedLuts(kernel, n, &luts); /* init packed luts */
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for(y=0; y<h; y++) { /* process all rows */
src = I1->image + y*w; /* ptr to input row */
dst = II->image + y*w; /* ptr to output row */
fastconv(src, w, 1, &luts, dst);/* w pixels; stride=1 */

}

for(x=0; x<w; x++) { /* process all columns */
src = II->image + x; /* ptr to input column */
dst = I2->image + x; /* ptr to output column */
fastconv(src, h, w, &luts, dst);/* h pixels; stride=w */

}

freeImage(II); /* free temporary image */
}

/* ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
* initPackedLuts:
*
* Initialize scaled and packed lookup tables in lut.
* Permit up to 3 cascaded stages for the following kernel sizes:
* stage 0: 5-point kernel
* stage 1: 11-point kernel
* stage 2: 17-point kernel
* lut->lut0 <== packed entries (i*k2, i*k1, .5*i*k0), for i in [0, 255]
* lut->lut1 <== packed entries (i*k5, i*k4, i*k3), for i in [0, 255]
* lut->lut2 <== packed entries (i*k8, i*k7, i*k6), for i in [0, 255]
* where k0,...k8 are taken in sequence from kernel[].
*
* Note that in lut0, k0 is halved since it corresponds to the center
* pixel’s kernel value and it appears in both fwd0 and rev0 (see gem).
*/

static void
initPackedLuts(kernel, n, luts)
float *kernel;
int n;
lutP luts;
{

int i, k, s, *lut;
int b1, b2, b3;
float k1, k2, k3;
float sum;

/* enforce flat-field response constraint: sum of kernel values = 1 */
sum = kernel[0];
for(i=1; i<n; i++) sum += 2*kernel[i]; /* account for symmetry */
if(ABS(sum - 1) > .001)

fprintf(stderr, "Warning: filter sum != 1 (=%f)\n", sum);

/* init bias added to fields to avoid negative numbers (underflow) */
luts->bias = 0;
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/* set up lut stages, 3 kernel values at a time */
for(k=s=0; k<n; s++) { /* init lut (stage s) */

k1 = (k < n) ? kernel[k++] : 0;
k2 = (k < n) ? kernel[k++] : 0;
k3 = (k < n) ? kernel[k++] : 0;
if(k <= 3) k1 *= .5; /* kernel[0]: halve k0 */

/* select proper array in lut structure based on stage s */
switch(s) {
case 0: lut = luts->lut0; break;
case 1: lut = luts->lut1; break;
case 2: lut = luts->lut2; break;
}

/* check k1,k2,k3 to avoid overflow in 10-bit fields */
if(ABS(k1) + ABS(k2) + ABS(k3) > 1) {

fprintf(stderr, "|%f|+|%f|+|%f| > 1\n", k1, k2, k3);
exit(1);

}

/* compute bias for each field to avoid underflow */
b1 = b2 = b3 = 0;
if(k1 < 0) b1 = -k1 * 1024;
if(k2 < 0) b2 = -k2 * 1024;
if(k3 < 0) b3 = -k3 * 1024;

/* luts->bias will be subtracted in convolve() after adding
* stages; multiply by 2 because of combined effect of fwd
* and rev terms
*/

luts->bias += 2*(b1 + b2 + b3);

/* scale and pack kernel values in lut */
for(i=0; i<256; i++) {

/*
* INT(A) forms fixed point field:
* (A*(1<<18)+(1<<15)) >> 16
*/

lut[i] = PACK( INT(i*k3) + b3,
INT(i*k2) + b2 + ROUNDD,
INT(i*k1) + b1 );

}
}
luts->stages = s;

}

/* ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
* fastconv:
*
* Fast 1D convolver.
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* Convolve len input samples in src with a symmetric kernel packed in luts,
* a lookup table that is created by initPackedLuts() from kernel values.
* The output goes into dst.
*/

static void
fastconv(src, len, offst, luts, dst)
int len, offst;
uchar *src, *dst;
lutP luts;
{

int x, padlen, val, bias;
int fwd0, fwd1, fwd2;
int rev0, rev1, rev2;
int *lut0, *lut1, *lut2;
uchar *p1, *p2, *ip, *op;
uchar buf[1024];

/* copy and pad src into buf with padlen elements on each end */
padlen = 3*(luts->stages) - 1;
p1 = src; /* pointer to row (or column) of input */
p2 = buf; /* pointer to row of padded buffer */
for(x=0; x<padlen; x++) /* pad left side: replicate first pixel */

*p2++ = *p1;
for(x=0; x<len; x++) { /* copy input row (or column) */

*p2++ = *p1;
p1 += offst;

}
p1 -= offst; /* point to last valid input pixel */
for(x=0; x<padlen; x++) /* pad right side: replicate last pixel */

*p2++ = *p1;

/* initialize input and output pointers, ip and op, respectively */
ip = buf;
op = dst;

/* bias was added to lut entries to deal with negative kernel values */
bias = luts->bias;

switch(luts->stages) {
case 1: /* 5-pt kernel */

lut0 = luts->lut0;

ip += 2; /* ip[0] is center pixel */
fwd0 = (lut0[ip[-2]] >> 10) + lut0[ip[-1]];
rev0 = (lut0[ip[ 0]] << 10) + lut0[ip[ 1]];

while(len--) {
fwd0 = (fwd0 >> 10) + lut0[ip[0]];
rev0 = (rev0 << 10) + lut0[ip[2]];
val = ((fwd0 & MASK) + ((rev0 >> 20) & MASK) - bias)

>> 2;
*op = CLAMP(val, 0, 255);
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ip++;
op += offst;

}
break;

case 2: /* 11-pt kernel */
lut0 = luts->lut0;
lut1 = luts->lut1;

ip += 5; /* ip[0] is center pixel */
fwd0 = (lut0[ip[-2]] >> 10) + lut0[ip[-1]];
rev0 = (lut0[ip[ 0]] << 10) + lut0[ip[ 1]];

fwd1 = (lut1[ip[-5]] >> 10) + lut1[ip[-4]];
rev1 = (lut1[ip[ 3]] << 10) + lut1[ip[ 4]];

while(len--) {
fwd0 = (fwd0 >> 10) + lut0[ip[0]];
rev0 = (rev0 << 10) + lut0[ip[2]];

fwd1 = (fwd1 >> 10) + lut1[ip[-3]];
rev1 = (rev1 << 10) + lut1[ip[ 5]];

val = ((fwd0 & MASK) + ((rev0 >> 20) & MASK)
+(fwd1 & MASK) + ((rev1 >> 20) & MASK) - bias)
>> 2;

*op = CLAMP(val, 0, 255);

ip++;
op += offst;

}
break;

case 3: /* 17-pt kernel */
lut0 = luts->lut0;
lut1 = luts->lut1;
lut2 = luts->lut2;

ip += 8; /* ip[0] is center pixel */
fwd0 = (lut0[ip[-2]] >> 10) + lut0[ip[-1]];
rev0 = (lut0[ip[ 0]] << 10) + lut0[ip[ 1]];

fwd1 = (lut1[ip[-5]] >> 10) + lut1[ip[-4]];
rev1 = (lut1[ip[ 3]] << 10) + lut1[ip[ 4]];

fwd2 = (lut2[ip[-8]] >> 10) + lut2[ip[-7]];
rev2 = (lut2[ip[ 6]] << 10) + lut2[ip[ 7]];

while(len--) {
fwd0 = (fwd0 >> 10) + lut0[ip[0]];
rev0 = (rev0 << 10) + lut0[ip[2]];

fwd1 = (fwd1 >> 10) + lut1[ip[-3]];
rev1 = (rev1 << 10) + lut1[ip[ 5]];



16 �

fwd2 = (fwd2 >> 10) + lut2[ip[-6]];
rev2 = (rev2 << 10) + lut2[ip[ 8]];

val = ((fwd0 & MASK) + ((rev0 >> 20) & MASK)
+(fwd1 & MASK) + ((rev1 >> 20) & MASK)
+(fwd2 & MASK) + ((rev2 >> 20) & MASK) - bias)
>> 2;

*op = CLAMP(val, 0, 255);

ip++;
op += offst;

}
break;

}
}

/* ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
* readImage:
*
* Read an image from file.
* Format: two integers to specify width and height, followed by uchar data.
* Return image structure pointer.
*/

imageP
readImage(file)
char *file;
{

int sz[2];
FILE *fp;
imageP I = NULL;

/* open file for reading */
if((fp = fopen(file, "r")) != NULL) { /* open file for read */

fread(sz, sizeof(int), 2, fp); /* read image dimensions*/
I = allocImage( sz[0],sz[1]); /* init image structure */
fread(I->image, sz[0],sz[1],fp);/* read data into I */
fclose(fp); /* close image file */

}
return(I); /* return image pointer */

}

/* ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
* saveImage:
*
* Save image I into file.
* Return NULL for failure, 1 for success.
*/

int
saveImage(I, file)
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imageP I;
char *file;
{

int sz[2], status = NULL;
FILE *fp;

if((fp = fopen(file, "w")) != NULL) { /* open file for save */
sz[0] = I->width;
sz[1] = I->height;
fwrite(sz, sizeof(int), 2, fp); /* write dimensions */
fwrite(I->image,sz[0],sz[1],fp);/* write image data */
fclose(fp); /* close image file */
status = 1; /* register success */

}
return(status);

}

/* ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
* allocImage:
*
* Allocate space for an uchar image of width w and height h.
* Return image structure pointer.
*/

imageP
allocImage(w, h)
int w, h;
{

imageP I;

/* allocate memory for image data structure */
if((I = (imageP) malloc(sizeof(imageS))) != NULL) {

I->width = w; /* init width */
I->height = h; /* init height */
I->image =(uchar*) malloc(w*h);/* init data pointer */

}
return(I); /* return image pointer */

}

/* ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
* freeImage:
*
* Free image memory.
*/

void
freeImage(I)
imageP I;
{

free((char *) I->image);
free((char *) I);
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}
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