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¢ Abstract <

Convolution plays a central role in many image processing applications, including image
resizing, blurring, and sharpening. In all such cases, each output sample is computed to
be a weighted sum of several input pixels. This is a computationally expensive operation
that is subject to optimization. In this gem, we describe a novel algorithm to accelerate
convolution for those applications that require the same set of filter kernel values to
be applied throughout the image. The algorithm exploits some nice properties of the
convolution summation for this special, but common, case to minimize the number
of pixel fetches and multiply/add operations. Computational savings are realized by
precomputing and packing all necessary products into lookup table fields that are then
subjected to simple integer (fixed-point) shift/add operations.

¢ Introduction <

Discrete convolution is expressed as the following convolution summation

N-1
f@) =" flzp)h(z — p)
k=0

where h is the convolution kernel weighted by N input samples f(xy). In practice, h is
nearly always a symmetric kernel, i.e., h(—z) = h(x). We shall assume this to be true
in the discussion that follows.

The computation of one output point is illustrated in Fig. 1, where a convolution
kernel is shown centered at @ among the input samples. The value of that point is equal
to the sum of the values of the discrete input scaled by the corresponding values of the
convolution kernel. This example is appropriate for image resizing, where integer output
addresses map back into real-valued input locations. For instance, output locations 0,
1, 2, 3, ... correspond to input locations 0, .5, 1, 1.5, ... upon two-fold magnification.
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Figure 1.  Convolution

In other applications, such as blurring, the image dimensions remain the same after
convolution and the convolution kernel is always centered on an input sample.

There are two time-consuming phases in convolution: computing the convolution
kernel weights h(z — 1) to be used, and the actual multiply/add core operations.
The first problem is apparent if we consider what happens when the kernel in Fig. 1 is
moved slightly. A new set of kernel values must now be applied to the input. Several re-
searchers have looked at ways of speeding up this computation. In (Ward and Cok 1989,
Wolberg 1990), a technique using coefficient bins is described that places constraints
on where the kernel may be centered. By limiting the kernel to be placed at any
one of, say, 64 subpixel positions, the kernel weights may be precomputed and stored
in a table before the actual multiply/add operations begin. As the kernel makes its
way across the input image, it must be recentered to the closest subpixel position. In
(Schumacher 1992), a scaling algorithm is given which stores the computed kernel values
after processing an input row, and reuses those weights for all subsequent scanlines.

This gem describes an efficient means for implementing fast convolution using lookup
table operations. It assumes one important constraint: the same set of kernel values
are applied throughout the image. This is appropriate for low-pass filtering (blurring),
for instance, where the kernel is always centered directly on an input sample, and the
same set of weights are applied to the neighbors. It is also appropriate for two-fold

magnification or minification where, again, only a single set of kernel values is needed
(Wolberg and Massalin 1993).
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Figure 2.  6-point kernel samples

¢ A Fast Convolver for Two-fold Magnification ¢

In order to place this presentation on firm ground, we will first describe this approach
in the context of two-fold image magnification. We will later demonstrate how these
results are generalized to fast convolution with filter kernels of arbitrary length. This
is relevant to any linear filtering operation, such as image blurring, sharpening, and
edge detection. It is important to note that the algorithm is developed for the 1D case,
where only rows or columns may be processed. In 2D, the image is processed separably.
That is, each input row is filtered to produce an intermediate image I. Image I is then
convolved along its columns to produce the final output image. For convenience, our
discussion will assume that we are convolving 8-bit data with a 6-point kernel for the
purpose of image magnification.

Due to symmetry, a 6-point kernel has only three unique kernel values: kq, ko, and k3
(see Fig. 2). The seventh kernel value, kg, in Fig. 2 is unused here since it sits between
the input samples. It will be necessary later when we consider general linear filtering.

Since each kernel value k; can be applied to an integer in the range [0, 255], we may
precompute their products and store them in three lookup tables tab;, for 1 < ¢ < 3. The
product of data sample s with weight k; now reduces to a simple lookup table access, e.g.,
tab;[s]. This makes it possible to implement a 6-point convolver without multiplication;
only lookup table and addition operations are necessary. In order to retain numerical
accuracy during partial evaluations, we designate each 256-entry lookup table to be
10-bits wide. This accommodates 8-bit unsigned integers with 2-bit fractions.

The use of lookup tables to eliminate multiplication becomes unfeasible when a large
number of distinct kernel values are required in the convolution summation. This
is particularly true of general convolution. Fortunately, many filtering applications,
including two-fold magnification, require only a few distinct kernel values. The memory
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demands to support the corresponding lookup tables are very modest, i.e., 256(N/2)
10-bit entries for an N-point kernel, where N is even.

Further computational savings are possible by exploiting some nice properties of the
convolution summation for our special two-fold rescaling problem. These properties are
best understood by considering the output expressions after a 6-point kernel is applied
to input samples A through H. The expanded expressions for convolution output C'D,
DF.,and FF are given below. Note that C'D refers to the output sample lying halfway
between pixels ' and D. The same notation applies to DFE and FF.

cD ksA+ ke B+ kiC 4+ ki D + ko IV 4 ks F
DFE ksB 4 ko€ + kD + ki E 4 ko F + k3G
EF = k3CH+ koD 4+ B+ F A+ kG4 ksl

These results demonstrate a pattern: each input sample s is weighted by all k; values
during the course of advancing the kernel across the data. This is apparent for samples
(' and F in all three expressions. Rather than individually accessing each of the three
tables with sample s, all three tables may be packed side-by-side into one wide table
having 30 bits in width. This permits one index to access three packed products at
once. The largest number of tables that may be packed together is limited only by the
precision with which we store the products and the width of the longest integer, e.g.,
32 bits on most computers.

Figure 3 shows table entries for input samples A through H. Three 10-bit fields are
used to pack three fixed point products. Each field is shown to be involved in some
convolution summation, as denoted by the arrows, to compute output C'D, DF (shown
shaded), and EF. The organization of the data in this manner not only reduces the
number of table accesses, but it also lends itself to a fast convolution algorithm requiring
only shift and add operations. The downward (upward) arrows denote a sequence of
right-shift (left-shift) and addition operations, beginning with the table entry for A (D).
Let fwd and rev be two integers that store both sets of results. The first few shift-add
operations produce fwd and rev with the fields shown in Table 1.

Notice that the low-order 10-bit fields of fwd contain half of the convolution summa-

Table 1. 10-bit Fields in fwd and rev

fwd rev
bits 20-29 | bits 10-19 bits 0-9 bits 20-29 bits 10-19 bits 0-9
ks B ksA+ kB | koA+ k1B ks + koD koE 4+ k1D kE
ks C kaB 4+ koC | ksA+ kB + k1 C ksF + ko E+ kD | o+ kW E ki F
ks D ksC + koD | kB + koC + k1 D ksG+ ke F+ ki E | koG4 ki F kG
ks B ksD+ koFF | kaC + koD + k1 E ksH 4+ koG + k1 F | koH+ kG kiH
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Figure 3.  Afast convolver

tion necessary to compute the output. The other half is contained in the high-order
10-bit fields of rev. Simply adding both fields together generates the output values.

This scheme is hampered by one complication: addition may cause one field to spill
into the next, thereby corrupting its value. This will happen if a field value exceeds
the range [0, 2% — 1]. Note that although we use 10-bit fields, the integer part is 8 bits
wide. We now consider the two range limits on field value v = ksA + ko B + k1 C.

We may guard against negative values by simply adding a bias to the field of all
negative kernel values k;. After rescaling the bias to a 10-bit quantity, it is simply
1024k;. Simultaneously, we must guarantee that the sum of the three kernel values and
the biases is less than unity to ensure that the upper limit is satisfied. Note that the
bias is removed from the computation when we add the low-order 10-bit field of fwd to
the high-order 10-bit field of rev.

The following fragment of C code demonstrates the initialization of the packed lookup
table lut, consisting of 256 32-bit integers.
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#define MASK Ox3FF

#define ROUND 1

#define PACK(A,B,C) (((A)<<20) + ((B)<<10)
#define INT(A) ((int) ((A)*262144+32768)
bl = b2 = b3 = 0;

if(kl < 0) bl = -kl * 1024;

if (k2 < 0) b2 = -k2 * 1024;

if (k3 < 0) b3 = -k3 * 1024;

bias = 2 * (bl + b2 + b3);

for(i=0; 1<256; i++)

lut[i] = PACK( INT(i*k3)+b3, INT(i*k2)+b2+ROUND, INT (i*kl)+bl );

The INT macro converts the real-valued kernel samples into 10-bit fixed point quan-
tities. Notice that since the macro argument A has an 8-bit magnitude, we form an
intermediate 26-bit result by multiplying A by 1<<18. Roundoff is achieved by adding
1<<15 (or .5) before right-shifting by 16 bits to obtain the final 10-bit number. A bias
is added to each field to prevent negative numbers and the undesirable sign extension
that would corrupt its neighbors. ROUND is necessary to avoid roundoff error when
adding the fwd and revterms together to compute the output. Adding ROUND directly
in lut spares us from having to explicitly add it at every output computation.

Once lut is initialized, it is used in the following code to realize fast convolution.
The variable len refers to the number of input samples, and ip and op are input and
output pointers that reference the padded working buffer buf. We assume that the
input samples have already been copied into the even addresses of buf in order to
trivially compute half of the two-fold magnification output. Since we are now using a
6-point kernel, the left padding occupies positions 0 and 2, the first input sample lies
in position 4, and the first output sample will lie in position 5.

/* clamp definition: clamp A into the range [L,H] */
#define CLAMP (A,L,H) ((A)<=(L) ? (L) (A)<=(H) ? (B) (H))
/* initialize input and output pointers, ip and op, respectively */
ip = &buf[0];
op = &buf [5];
fwd = (lut[ip[0]] >> 10) + lutl[ipl[21];
rev = (lut[ipl[6]] << 10) + lutl[ip([8]];
ip += 4;
while (len--) {
fwd = (fwd >> 10) + lutl[ip[O0]];
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rev (rev << 10) + lutl[ipl[6]];
val = ((fwd & MASK) + ((rev >> 20) & MASK) - bias) >> 2;
*op CLAMP (val, 0, 255);

/* input and output strides are 2 */
ip += 2;
op += 2;

The bias terms find their way into the low-order and high-order fields of fwd and rev
through the sequence of shift-add operations. Since these two fields are used to compute
val, we must subtract twice the sum of the bias terms from val to restore its proper
value. Recall that bias was defined in the previous code fragment. We then discard the
fractional part of val by a two-bit right shift, leaving us with an 8-bit integer. Since
val may now be negative, it is necessary to clamp it into the range [0, 255].

Operating with symmetric kernels has already been shown to reduce the number of
arithmetic operations: N/2 multiplies and N — 1 for an N-point kernel, where N is
even. This algorithm, however, does far better. It requires no multiplication (other
than that needed to initialize lut), and a total of four adds per output sample, for a
6-point kernel. Furthermore, no distinction is made between 2-, 4-, and 6-point kernels
because they are all packed into the same integer. That is, a 4-point kernel is actually
implemented as a 6-point kernel with ks = 0. Since there is no additional penalty for
using a 6-point kernel, we are induced to use a superior (6-point) filter at low cost.
Larger kernels can be assembled by cascading additional 6-point kernel stages together
(see the supplied code).

¢ General Convolution ¢

The C code provided with this gem demonstrates the use of the fast convolver for general
linear filtering. This is essentially the same technique as for the two-fold magnifier shown
earlier. There is one important difference though: the N-point kernels are centered on
input samples and so N must be odd. The extra kernel value corresponds to the center
pixel, that must now be weighted by kg. Although this can be explicitly added to
the weighted sum of the neighboring six pixels, the number of addition operations to
compute an output pixel would rise by one. For instance, the following C statement
could be used:

val = ((fwd & MASK) + ((rev >> 20) & MASK) - bias + lutO[*ip]l) >> 2;

where ip points to the center pixel that is used to index [ut0, a lookup table storing the
product of the pixel with kernel sample kg. Note that a total of 5 additions are needed
to compute a 7-point kernel: 1 each for fwd and rev, and 3 for val. We will refer to this



Table 2.  Comparison of Operation Counts

N Method 1 | Method 2
3 5 4
5 5 4
7 5 8
9 9 8
11 9 8
13 9 12
15 13 12

approach as Method 1. In order to reduce one addition, we can embed that weighting
directly in the packed lookup tables by halving ky and permitting it to be applied on
the center pixel in both fwd and rev for the purpose of adding the contribution of that
pixel (Method 2). This, however, reduces the extent of the kernel by one. Table 2
compares the number of additions needed to compute an output value using the two
methods for various values of IV in an N-point kernel.

It is important to note that multiple instances of fwd and rev are needed when they
are cascaded to realize wider kernels. This explains why the number of additions above
rises by increments of four: two to compute a new pair of fwd and rev terms, and two
to add them to wal. Method 2 is generally more efficient than Method 1, except in
instances when the overhead cost of adding an additional fwd and rev pair sets in. The
supplied code implements Method 2.

¢ Summary and Conclusions ¢

In summary, this gem has focused on optimizing the evaluation of the convolution
summation. We achieve large performance gains by packing all weighted instances of
an input sample into one 32-bit integer and then using these integers in a series of
shift-add operations to compute the output. The algorithm benefits from a technique
well known in the folklore of assembler programmers and microcoders: multiple integers
can be added in parallel in a single word if their bit fields do not overlap. This alone,
however, is not the basis of the algorithm. Rather, the novelty of the algorithm lies
in identifying a particularly efficient structure for the fast convolver that can exploit
this straightforward technique for parallel addition and apply it to kernels of arbitrary
length. An additional feature of the fast convolver is that it requires each pixel to be
fetched only once, eventhough it is used in the computation of several output pixels.

The sequence of shift-add operations essentially mimics a pipelined vector processor
on a general 32-bit computer. This approach will likely find increased use with the
forthcoming generation of 64-bit computers. The additional bits will permit us to
handle wider kernels at finer precision.
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$ CCode ¢

The following C code implements the fast convolution algorithm. The program takes
three arguments: filenames for the input image, kernel, and output image. Utility
functions are provided to read and write 8-bit grayscale images. The image format
used is simple: two integers specifying the width and height followed by a stream of
8-bit unsigned pixel data. The kernel is stored in an ASCII file containing one kernel
value per row beginning with kg. For instance, the following kernel file contains a
7-point low-pass filter.

.33333333333333333333
.23958333333333333333
.08333333333333333333
.01041666666666666666

The program handles up to 17-point kernels. Extending this to handle larger kernels
is a simple matter of accommodating additional stages in the [utS data structure and
fastconv() function.

Execution time on a SUN 4/50 (IPX) workstation was measured on the repeated
calls to fastconv() in function convolve(). Convolution of a 256 x 256 image with a
7-point and 17-point kernel took .75 seconds and .85 seconds, respectively. The same
convolution took 1.75 seconds and 3.96 seconds, respectively, when implemented with
standard multiply/add operations. Due to the separable implementation, execution
time grows linearly with filter width.

2
*
* Fast Convolution With Packed Lookup Tables
*
* by George Wolberg and Henry Massalin
*
* Compile: cc convolve.c -o convolve
* Execute: convolve in.bw kernel out.bw
* —=====================================================================
*/

#include <stdio.h>
#include <stdlib.h>

typedef unsigned char uchar;
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typedef struct { /* image data structure */
int width; /* image width (# cols) */
int height; /* image height (# rows) */
uchar *image; /* pointer to image data */

} imageS, *imageP;

typedef struct { /* packed lut structure */
int lut0[256]; /* stage 0 for 5-pt kernel */
int lutl[256]; /* stage 1 for 11-pt kernel */
int lut2[256]; /* stage 2 for 17-pt kernel */
int bias; /* accumulated stage biases */
int stages; /* # of stages used: 1,2,3 */

} luts, *1lutp;

/* definitions */
#define MASK 0x3FF
#define ROUNDD

1

#define PACK(A,B,C) (((A)<<20) + ((B)<<10) + (C))

#define INT (A) ((int) ((A)*262144+32768) >> 16)
#define CLAMP (A,L,H) ((A)<=(L) ? (L) (A)<=(H) ? (A) : (H))
#define ABS(A) ((A) >= 0 ? (Bn) -(Ap))

/* declarations for convolution functions */

void convolve () ;
void initPackedLuts () ;
void fastconv () ;

/* declarations for image utility functions */

imageP allocImage() ;

imageP readImage () ;

int savelImage () ;
)

void freeImage () ;
/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* main

* Main function to collect input image and kernel values.
* Pass them to convolve() and save result in output file.
*/

main (argc, argv)

int argc;
char **argv;
int n;

imageP I1, I2;
float kernel [9] ;
char buf [80] ;
FILE *fp;

/* make sure the user invokes this program properly */

if (arge != 4) {
fprintf (stderr, "Usage: convolve in.bw kernel out.bw\n");
exit (1) ;
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}

/* read input image */

if ((Il=readImage (argv[1])) == NULL) ({
fprintf (stderr, "Can’t read input file %s\n", argv[l]);
exit (1) ;

/* read kernel: n lines in file specify a (2n-1)-point kernel
* Don’t exceed 9 kernel values (17-point symmetric kernel is limit)

*/

if ((fp=fopen(argv([2], "r")) == NULL) ({
fprintf (stderr, "Can’t read kernel file %s\n", argv[2]);
exit (1) ;

1

for (n=0; n<9 && fgets(buf, 80, fp); n++) kernel[n] = atof (buf);

/* convolve input I1 with fast convolver */
I2 = allocImage (I1l->width, Il-s>height);
convolve (I1, kernel, n, I2);

/* save output to a file */

if (saveImage (I2, argv[3]) == NULL) {
fprintf (stderr, "Can’t save output file %s\n", argv[3]);
exit (1) ;
}
}
/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* convolve:
*
* Convolve input image I1 with kernel, a (2n-1)-point symmetric filter
* kernel containing n entries: h[i] = kernel[ |i| ] for -n < i < n.
* Output is stored in I2.
*/
void

convolve (I1, kernel, n, I2)

imageP I1, I2;

float *kernel;

int n;

{
int X, vy, w, h;
uchar *src, *dst;
imageP 1II;

luts luts;

w = Il->width; /* image width */
h = Il1-s>height; /* image height x/
II = allocImage(w, h); /* reserve tmp image */

initPackedLuts (kernel, n, &luts); /* init packed luts */

¢

11
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for(y=0; y<h; y++) { /* process all rows */
src = Il->image + y*w; /* ptr to input row */
dst = II->image + y*w; /* ptr to output row */

fastconv(src, w, 1, &luts, dst);/* w pixels; stride=1 */

for(x=0; xX<w; X++) { /* process all columns */
src = II->image + X; /* ptr to input column */
dst = I2->image + x; /* ptr to output column */

fastconv(src, h, w, &luts, dst);/* h pixels; stride=w */

freeImage (II); /* free temporary image */

}
/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* initPackedLuts:

*

* Initialize scaled and packed lookup tables in lut.

* Permit up to 3 cascaded stages for the following kernel sizes:

* stage 0: 5-point kernel

* stage 1: 1ll-point kernel

* stage 2: 17-point kernel

* lut->1lut0 <== packed entries (i*k2, i*kl, .5*i*k0), for i in [0, 255]
* lut->lutl <== packed entries (i*k5, i*k4, i*k3), for i in [0, 255]
* lut->lut2 <== packed entries (i*k8, i*k7, i*k6), for i in [0, 255]
* where kO, ...k8 are taken in sequence from kernell[].

*

* Note that in lutO, kO is halved since it corresponds to the center

*

pixel’s kernel value and it appears in both fwd0 and rev0 (see gem).
*/

static void

initPackedLuts (kernel, n, luts)

float *kernel;

int n;

lutp luts;

{
int i, k, s, *lut;
int bl, b2, b3;

float k1, k2, k3;
float sum;

/* enforce flat-field response constraint: sum of kernel values = 1 */
sum = kernel[O0];

for(i=1; i<n; i++) sum += 2*kernel[i]; /* account for symmetry */
if(ABS(sum - 1) > .001)
fprintf (stderr, "Warning: filter sum != 1 (=%£f)\n", sum);

/* init bias added to fields to avoid negative numbers (underflow) */
luts->bias = 0;
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/* set up lut stages, 3 kernel values at a time */

for (k=s=0; k<n; s++) { /* init lut (stage s) */
k1l = (k < n) ? kernellk++] : 0;
k2 = (k < n) ? kernellk++] : 0;
k3 = (k < n) ? kernellk++] : 0;
if(k <= 3) k1l *= .5; /* kernel[0]: halve k0O */

}

/* select proper array in lut structure based on stage s */
switch(s) {

case 0: lut = luts->1uto; break;
case 1: lut = luts->1lutl; break;
case 2: lut = luts->1lut2; break;

}

/* check k1,k2,k3 to avoid overflow in 10-bit fields */

if (ABS (k1) + ABS(k2) + ABS(k3) > 1) {
fprintf (stderr, "|%£|+|%f|+|%E£| > 1\n", k1, k2, k3);
exit (1) ;

}

/* compute bias for each field to avoid underflow */
bl = b2 = b3 = 0;

if (k1 < 0) bl = -k1 * 1024;
if (k2 < 0) b2 = -k2 * 1024;
if (k3 < 0) b3 = -k3 * 1024;

/* luts->bias will be subtracted in convolve () after adding
* stages; multiply by 2 because of combined effect of fwd
* and rev terms
*/

luts->bias += 2* (bl + b2 + b3);

/* scale and pack kernel values in lut */
for(i=0; 1<256; i++) {
/*
* INT(A) forms fixed point field:
* (A* (1<<18)+(1<<15)) >> 16
*/
lut [i] = PACK( INT (i*k3) + b3,
INT (i*k2) + b2 + ROUNDD,
INT (i*k1l) + bl );

}

luts->stages = s;

[x

* fastconv:
*

* Fast 1D convolver.

¢
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* Convolve len input samples in src with a symmetric kernel packed in luts,
* a lookup table that is created by initPackedLuts() from kernel values.

* The output goes into dst.

*/

static void

fastconv(src, len, offst, luts, dst)

int len, offst;

uchar *src, *dst;

lutp luts;

{
int x, padlen, val, bias;
int fwdo, fwdl, fwd2;
int rev0, revl, rev2;
int *lut0, *lutl, *lut2;
uchar *pl, *p2, *ip, *op;
uchar buf [1024] ;

/* copy and pad src into buf with padlen elements on each end */

padlen = 3*(luts->stages) - 1;
pl = src; /* pointer to row (or column) of input */
p2 = buf; /* pointer to row of padded buffer */

for (x=0; x<padlen; x++) /* pad left side: replicate first pixel */
*pP2++ = *pl;

for(x=0; x<len; x++) { /* copy input row (or column) */
*pP2++ = *pl;
pl += offst;

1

pl -= offst; /* point to last valid input pixel x/

for (x=0; x<padlen; x++) /* pad right side: replicate last pixel */
*pP2++ = *pl;

/* initialize input and output pointers, ip and op, respectively */
ip = buf;
op = dst;

/* bias was added to lut entries to deal with negative kernel values */
bias = luts->bias;

switch(luts->stages) ({

case 1: /* 5-pt kernel */
lut0 = luts->1lutO;
ip += 2; /* ip[0] is center pixel */
fwdo = (luto[ip[-2]] >> 10) + lutO[ip[-11];
rev0 = (lutO[ip[ 0]] << 10) + lutOo[ip[ 11];
while (len--)
fwdo = (fwd0 >> 10) + lutO[ip[0]];
rev0 = (rev0 << 10) + lutO[ip[2]];
val = ((fwd0 & MASK) + ((rev0 >> 20) & MASK) - bias)

>> 2;
*op = CLAMP(val, 0, 255);
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case 3:
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}

break;

luto =
lutl =

ip +=
fwdo =
rev0 =

fwdl =
revl =

ip++;
op += offst;

/* 11l-pt kernel x/
luts->1uto0;
luts->lutl;

5; /* ip[0] is center pixel */
(luto([ip[-2]] >> 10) + lutO[ip[-11];
(luto[ip[ 0]] << 10) + lutO[ip[ 1]11;

(lutl[ip[-5]]1 >> 10) + lutll[ip[-4]1];
(lutl[ip[ 311 << 10) + lutllip[ 411;

while (len--)

}

break;

luto =
lutl =
lut2 =

ip +=
fwdo =
rev0 =

fwdl =
revl =

fwd2 =
reva =

fwd0 = (fwd0 >> 10) + lutO[ip[0]];
rev0 = (rev0 << 10) + lutO[ip[2]];

fwdl = (fwdl >> 10) + lutl[ip[-3]1];
revl = (revl << 10) + lutll[ip[ 511;

val = ((fwd0 & MASK) + ((revO0 >> 20) & MASK)
+(fwdl & MASK) + ((revl >> 20) & MASK)
>> 2;

*op = CLAMP(val, 0, 255);

ip++;
op += offst;

/* 17-pt kernel x/
luts->1uto0;
luts->lutl;
luts->1lut2;

8; /* ip[0] is center pixel */
(luto([ip[-2]] >> 10) + lutO[ip[-11];
(luto[ip[ 0]] << 10) + lutO[ip[ 1]11;

(lutl[ip[-5]11 >> 10) + lutll[ip[-41];
(lutl[ip[ 311 << 10) + lutillip[ 411;

(lut2[ip[-8]] >> 10) + lut2[ip[-71];
(lut2[ip[ 611 << 10) + lut2lip[ 711;

while (len--)

fwd0o = (fwd0 >> 10) + lutO[ip[0]];
rev0 = (rev0 << 10) + lutO[ip[2]];

fwdl = (fwdl >> 10) + lutl[ip[-31];
revl = (revl << 10) + lutll[ip[ 511;

- bias)

¢
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*
*
*
*
*
*

/

imageP

fwd2 = (fwd2 >> 10) + lut2[ip[-6]];
rev2 = (rev2 << 10) + lut2[ip[ 811];
val = ((fwd0 & MASK) + ((rev0 >> 20) & MASK)
+(fwdl & MASK) + ((revl >> 20) & MASK)
+(fwd2 & MASK) + ((rev2 >> 20) & MASK) - bias)

>> 2;

*op = CLAMP(val, 0, 255);
ip++;
op += offst;

1

break;

readImage:

Read an image from file.
Format: two integers to specify width and height,
Return image structure pointer.

readImage (file)

char

{

*file;
int sz [2];
FILE *fp;

imageP I = NULL;

/* open file for reading */

if((fp = fopen(file, "r")) != NULL) ({ /*
fread(sz, sizeof (int), 2, fp); /*
I = allocImage( sz[0],sz[1]); /*
fread(I->image, sz[0],sz[1],£fp);/*
fclose (fp) ; /*

1

return(I); /*

* savelmage:

* Save image I into file.

* Return NULL for failure,

*/

int

savelImage (I,

1 for success.

file)

followed by uchar data.

file for read */
image dimensions*/
init image structure */
read data into I */
close image file */

open
read

return image pointer */



imageP I;

.1 FAST CONVOLUTION WITH PACKED LOOKUP TABLES

char *file;
{
int sz [2], status = NULL;
FILE *fp;
if ((fp = fopen(file, "w")) != NULL) { /* open file for save */
sz[0] = I->width;
sz[1] = I->height;
fwrite(sz, sizeof (int), 2, fp); /* write dimensions */
fwrite (I->image,sz[0],sz[1],fp);/* write image data */
fclose (fp) ; /* close image file */
status = 1; /* register success */
1
return (status) ;
1
/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

* allocImage:

* Allocate space for an uchar image of width w and height h.
* Return image structure pointer.

*/
imageP
allocImage (w, h)
int w, h;
{
imageP I;
/* allocate memory for image data structure */
1f((I = (imageP) malloc (sizeof (imageS))) != NULL) {
I->width = w; /* init width x/
I->height = h; /* init height */
I->image =(uchar*) malloc(w+*h);/* init data pointer */
1
return(I); /* return image pointer */
1
/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

* freeImage:
*

* Free image memory.

*/
void
freeImage (I)
imageP I;

{

free((char *) I->image);
free((char *) I);

¢
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