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Toussaint J, Raval CB, Nguyen T, Fadaifard H, Joshi S,
Wolberg G, Quarfordt S, Jan KM, Rumschitzki DS. Chronic
hypertension increases aortic endothelial hydraulic conductivity by
upregulating endothelial aquaporin-1 expression. Am J Physiol Heart
Circ Physiol 313: H1063–H1073, 2017. First published July 28, 2017;
doi:10.1152/ajpheart.00651.2016.—Numerous studies have examined
the role of aquaporins in osmotic water transport in various systems,
but virtually none have focused on the role of aquaporin in hydro-
statically driven water transport involving mammalian cells save for
our laboratory’s recent study of aortic endothelial cells. Here, we
investigated aquaporin-1 expression and function in the aortic endo-
thelium in two high-renin rat models of hypertension, the spontane-
ously hypertensive genetically altered Wistar-Kyoto rat variant and
Sprague-Dawley rats made hypertensive by two-kidney, one-clip
Goldblatt surgery. We measured aquaporin-1 expression in aortic
endothelial cells from whole rat aortas by quantitative immunohisto-
chemistry and function by measuring the pressure-driven hydraulic
conductivities of excised rat aortas with both intact and denuded
endothelia on the same vessel. We used them to calculate the effective
intimal hydraulic conductivity, which is a combination of endothelial
and subendothelial components. We observed well-correlated en-
hancements in aquaporin-1 expression and function in both hyperten-
sive rat models as well as in aortas from normotensive rats whose
expression was upregulated by 2 h of forskolin treatment. Upregulated
aquaporin-1 expression and function may be a response to hyperten-
sion that critically determines conduit artery vessel wall viability and
long-term susceptibility to atherosclerosis.

NEW & NOTEWORTHY The aortic endothelia of two high-renin
hypertensive rat models express greater than two times the aqua-
porin-1 and, at low pressures, have greater than two times the
endothelial hydraulic conductivity of normotensive rats. Data are
consistent with theory predicting that higher endothelial aquaporin-1
expression raises the critical pressure for subendothelial intima com-
pression and for artery wall hydraulic conductivity to drop.

hypertension; aquaporin-1; hydraulic conductivity; hydrostatic pres-
sure; aortic endothelial cells; transcellular flow; forskolin

HYPERTENSION INFLUENCES the function of the entire vascular
tree, particularly the resistance vessels and conduit arteries
preceding them. Prolonged exposure to elevated pressures
alters conduit artery (e.g., the aorta) anatomy, biochemistry,
and arterial responses to both vasoconstrictive and vasodilatory
agonists. These mural changes can contribute to vessel pathol-
ogy, e.g., atherosclerosis, which can limit perfusion to organs
the vessels supply. Changes in renin, angiotensin, endothelial
nitric oxide synthase (eNOS), reactive oxygen formation, and
prostanoid chemistry have been extensively evaluated in the
aortic wall in numerous hypertension models (55). Pathologies
induced by these changes cause vessels to activate mechanisms
to restore endothelial and vascular quiescence. These processes
are less well studied, but Kruppel-like (transcription) factor 2
(KLF2) appears to be an important mediator, inducing a series
of genes that regulate eNOS, thrombomodulin, anti-inflamma-
tory mediators, and, relevant to mural water flow, aquaporin-1
(AQP1) (10).

Despite numerous AQP osmotic transport studies in various
systems, virtually none have addressed hydrostatic pressure
difference (�P)-driven/dominant trans-AQP water transport
save for our laboratory’s recent study of aortic endothelial cells
(AECs) (52) and for its postulation in plant root AQPs (57).
Nguyen et al. (52) showed that AECs express the ubiquitous
membrane protein AQP1. Blockade of AQP1 or reducing
AQP1 expression produced corresponding reductions in the
hydraulic conductivities (Lp) of AEC monolayers [intrinsic
endothelial Lp (Lp,e)] and vessel wall intimae [Lp of endothel-
ium � subendothelial intima (Lp,e�i)] subjected to purely hydro-
static �P. Parallel �P-driven AQP1 and paracellular water flows
may be critically important for subendothelial (where atheroscle-
rosis and other pathologies initiate) advective transport and inter-
cellular communication. Both natural increases and interventions
to increase (52) AQP1 expression/function may rapidly (min-
utes to hours) regulate intima Lp,e�i, which may allow the
aortic wall to better respond to �P influences and paracrine
transport changes. As explained by Nguyen et al. (52) and, in
more detail, by Joshi et al. (33), lower AQP1 function lowers
Lp,e�i/reduces transmural flow more at lower than at higher
�P: at low �P, the subendothelial intima (SI) is decompressed,
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and the intrinsic endothelial Lp,e and medial Lp of denuded
vessel: media � internal elastic lamina (IEL) (Lp,m�I) control
transmural water transport. In contrast, higher �P compresses
the SI so that AECs block IEL fenestrae and reduce flow; SI
resistance is far larger than and overshadows any Lp,e change.
One expects, inversely, increased AQP1 function to decom-
press the SI at higher �P, possibly into the physiological
regime, and to increase flow there.

Here, we demonstrate the concomitant upregulation of
AQP1, a critical downstream KLF2 signaling target, expres-
sion and function for conduit arteries in the AECs of two
high-renin rat hypertension models: the spontaneously hyper-
tensive (SHR), genomically altered variant versus its Wistar-
Kyoto normotensive (WKY) control and Sprague-Dawley
(SD) rats made hypertensive by two-kidney, one-clip (2K1C)
Goldblatt (SD-GB) surgery (19) versus normotensive sham or
no-operation SD rats. We also compare 2-h forskolin (FSK; a
direct cAMP upregulator)-stimulated AQP1 upregulation in
(normal renin) normotensive SD rat aortas. We measured
AQP1 expression in AECs from whole rat aortas by quantita-
tive immunohistochemistry (QIH) rather than by Western
blots, also an antibody method, since the former fixes endo-
thelial cells (ECs) in situ, whereas Western blots require
processing including vessel denudation and EC-smooth muscle
cell (SMC) separation; EC AQP1 levels can change during this
time (5, 56, 77). Careful QIH also allows some assessment of
regional variation in AQP1 expression, whereas Western blots
(~106 ECs) require multiple rat (~105 ECs per) thoracic aortas
per run. We assess function by measuring the Lp of intact
excised aortas at baseline, after chemical (enhancement for
FSK-treated aortas and) blocking of AQP1 (both Lp of the
intact vessel (Lp,t)], and again after endothelial denudation
(Lp,m�I), all on the same vessel at the same series of �P values.
We measure Lp via �P rather than by osmotic swelling since
�P is far larger than osmotic differences in arteries. A mass
transfer theory (data not shown) shows negligible change in
this ordering in hypertension. From these data, we calculated
the apparent SI � endothelial hydraulic conductivities, Lp,e�i,
for each rat cohort and correlated Lp results with AQP1
expression data. We used rats with AQP1 blocking rather than
knockout mice and aortas rather than smaller resistance vessels
because the Lp measurement technique requires a minimum
transwall flow rate, proportional to vessel surface area, for
accuracy and an acceptable signal-to-noise ratio (52). AQP1
knockout mice have compensatory mechanisms and suffer
pathologies, including microcardia, reduced stroke volume,
thin vessels, polyuria, and hypotension, despite impaired nitric
oxide (NO)-induced vessel relaxation (24, 47). Rats, normally
resistant, can become atherosclerotic with feeding (72, 73). A
comparison study by Nguyen et al. (52) of anti-AQP1 siRNA
and far easier and faster HgCl2 AQP1 blocking suggests that
potential HgCl2 nonspecificity is not a problem here. Enhanced
AQP1 expression/function may critically determine conduit
artery wall viability and atherosclerotic susceptibility.

MATERIALS AND METHODS

All animal procedures were City College of the City University of
New York Institutional Animal Care and Use Committee approved.
All rats were obtained from Taconic Biosciences.

Hydraulic Conductivity

Nguyen et al. (52) and Shou et al. (63) have previously described
the surgery and Lp measurement procedures with exhaustive tech-
nique and toxicity controls. Briefly, we cannulated the aorta and
connected it to a fluid reservoir containing 4% (wt/vol) BSA in PBS
with 10�3 M NaNO3 and 0.03% trypan blue (vital stain and leak
reporter) followed by a precision glass tube (into which one can
introduce a bubble to measure the flow rate) and then a constant
pressure reservoir so as to preserve the endothelium intact when
stopping the heart. We excised and placed the thoracic aorta in a petri
dish with the same solution minus trypan blue. A sphygmomanometer
was used to adjust the reservoir pressure to control transmural �P. At
each �P, we measured vessel dimensions and steady-state transmural
flow and calculated Lp. We used physiologically relevant �P values,
i.e., in the normal range for the rat in question: 60–140 mmHg
(non-SHR), 100–180 mmHg (SHR), and 75 and 120 mmHg for the
FSK experiments.

For each SHR and WKY aorta, we measured Lp,t at five �P values,
mechanically denuded the endothelia (52, 63, 69), and remeasured Lp

at the same �P values on the same vessel. For SD/SD-GBs, we did
three or four sets of measurements on each vessel (52, 63). For
FSK-treated rats, before (or on some rats, instead of) HgCl2 treatment,
we flushed with 10 �M FSK (dissolved in 0.1 wt% DMSO in PBS) for
2 h at a 5-mmHg driving pressure difference and measured Lp at the
same �P values. All Lp measurements were done on each aorta.
Intima Lp,e�i follows from the addition of specific resistances (1/Lp)
of vessel layers in series (69):

1

Lp,t
�

1

Lp,e�i
�

1

Lp,m�I
(1)

Twelve-week-old SHRs had a systolic blood pressure (BP) of �150
mmHg for ~5 wk. To compare with SHRs, we maintained 2K1C rats
at an average systolic BP of �150 mmHg for 5 wk before Lp

measurement.

2K1C GB Surgery

We secured a 0.2-�m-internal diameter silver clip around the
isolated right renal artery of restrained 5-wk-old anesthetized healthy
male 140- to 150-g SD rats kept at 37°C (49). Sham operations were
performed in an identical fashion absent clips.

Blood Pressure

BP was measured using a noninvasive BP tail-cuff system attached
to a PowerLab module (AD Instruments, Colorado Springs, CO) on
rats warmed to ~40°C until multiple reproducible readings resulted.
Statistics were performed on these multiple repeated measurements.

Perfusion Fixation, Vessel Harvesting, and Immunohistochemistry

The left femoral vein was cannulated with PE-10 tubing attached to
two syringes, one syringe with excess pentobarbital sodium and one
syringe with 0.3 ml heparin (5,000 USP U/ml, China Chemical &
Pharmaceutical, Taipei, Republic of China). The carotid artery was
cannulated and connected to two pressurized syringes: one syringe
with 0.3 ml heparin-60 ml PBS and the other syringe with Accustain
Bouin’s fixative (Sigma Chemical, St. Louis, MO). The trachea was
intubated and mechanically ventilated. The rat was perfused through
the femoral vein with the heparin and then an overdose of pentobar-
bital sodium to stop the heart. The carotid artery was perfused with
heparin-PBS at 70 mmHg until the efflux from the severed right
femoral artery appeared clear and then switched to Bouin’s solution at
the same pressure with femoral exit. The aorta was removed and
placed in Bouin’s fixative for 1 h, the connective tissue and adventitia
were carefully removed with fine forceps under a dissecting micro-
scope, and the aorta was sectioned into several segments. Segments
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were washed in 70% alcohol plus several drops of NH4OH until all
yellow disappeared, placed in 30% sucrose overnight at 4°C, and
embedded in Tissue-Tek optimal cutting temperature compound
(Sakura Finetek, Torrance, CA). Ten-micrometer-thick cryostat
(Thermo Scientific Microm HM 560 Cryostat) sections were collected
on Superfrost Plus slides (Fisher Scientific, Pittsburgh, PA) and
stained with hematoxylin, Gill no. 2 (Sigma), exactly as previously
described by Presnell and Schreibman (58).

To restrict the elastin’s significant broad-spectrum autofluores-
cence to the red, we incubated sections in 0.5% Pontamine Sky Blue
6BX (Alfa Aesar, Haverhill, MA) for 5 min and washed them in PBS
for 5 min. For immunohistochemistry, we incubated the slides in
blocking solution (3% goat serum, 0.3% Triton X-100, 20 mM sodium
phosphate, 0.9 mM NaCl, and 0.05% saponin) to minimize nonspe-
cific staining for 30 min, washed them three times in PBS, and
exposed them to rabbit anti-rat AQP1 antiserum (AQP11-A, Alpha
Diagnostic) diluted 1:500 (2 �g/ml) in PBS plus 3% goat serum and
0.2% BSA (Sigma) in PBS for 18–24 h. Slides were washed three
times in PBS, incubated with Alexa fluor 488-conjugated goat anti-
rabbit IgG (Molecular Probes, Carlsbad, CA) at 1:50 dilution in PBS
for 90 min at room temperature, washed three times in PBS, and
mounted with Vectashield mounting media for fluorescence (Vector
Laboratories, Burlingame, CA). Coverslips were secured with clear
nail polish, kept in the dark to prevent damage to Alexa fluor 488, and
viewed and captured using a Leica TCS SP2 acoustooptical beam
splitter (AOBS) confocal microscope.

Immunohistochemistry Control Studies

We performed a no-primary antibody and a small-peptide control.
For the latter, excess rat AQP1 control/blocking peptide (AQP11-P,
Alpha Diagnostics) was incubated in primary antiboday (AQP1-A,
Alpha Diagnostics, 1:50) for 90 min at room temperature and then
used in place of the primary antibody.

Confocal Microscopy and Image Analysis

Quantitative fluorescence: laser power meter. We viewed samples
on a Leica TCS SP2 AOBS confocal microscope. Before and during
every confocal image acquisition set, we calibrated the microscope’s
laser intensity and maintained the same settings so that each sample
received the same type and level of laser power for the same amount
of time. This allowed quantitative comparison of different samples.

Internal standards. We compared AQP1 expression between ves-
sels using QIH. Aside from keeping samples in the dark until viewed
and exposing them to the same amount of light, we checked that the
integrated Alexa fluor 488 fluorescence was proportional to the AQP1
amount. To test the main potential source of nonlinearity, the fluoro-
phore number per secondary antibody, we calibrated the experimental
integrated Alexa fluor 488 fluorescent intensity with internal stan-
dards. We prepared samples exactly as above except that we applied
several known concentrations (0–0.1 mg/ml) of the secondary anti-
body-PBS to tissue-containing slides. We proceeded exactly as with
all other samples using the same settings and 488-nm argon laser. A
plot (not shown) showed excellent proportionality of average inte-
grated intensity/rat AEC volume (or area) versus secondary antibody
concentration (mg/ml).

Custom software. The confocal microscope yields a z-stack of 50 or
20 serial two-dimensional sections. We wrote a custom code to
integrate the green intensity in the AECs per unit AEC volume or
surface area for slices from both the internal standards and the
experiments. With user guidance, active contours or snakes (35)
tightly outline and enclose the green Alexa fluor 488-fluorescing
endothelial region beyond the IEL in each of the stack’s aortic
sections. Figure 1E of Nguyen et al. (52) shows this outline for the
overlay of all 50 images of a stack. The program calculates the
perimeter and enclosed area and integrates these and the green
intensity inside the contour with Simpson’s rule to find the EC surface
area, volume, and total green fluorescence for the stack. We examined
eight regions from each aorta to get a representative value for that
vessel.

Statistics

Paired Student’s t-tests compared mean integrated Alexa fluor 488
intensity per unit volume or surface area for different treated and
control rats. One-way ANOVA compared differences among all the
means of a rat group type (P � 0.05) followed by post hoc Tukey
analysis as the criterion for statistical significance. Values are me-
ans � SE except when standard deviation is explicitly indicated.

RESULTS

Male 2K1C-GB (surgically constricted renal artery) SD rats
(n 	 5) became fully hypertensive (systolic BP of greater than
~200 mmHg) ~5 wk postsurgery and remained hypertensive
until death (Table 1). Sham (n 	 2) and no-operation (n 	 3)
control rats remained stable (~110–120 mmHg) and were
pooled. Intergroup differences became significant (P � 0.05)
after 5 wk.

Figure 1 shows high-magnification confocal images of aortic
endothelia/proximal media from control rats (Fig. 1, A–C)
[no-operation SD (Fig. 1A), WKY (Fig. 1B), and vehicle-
treated SD (Fig. 1C)] corresponding to the SD-GB (Fig. 1D),
SHR (Fig. 1E), and SD-FSK-treated (Fig. 1F) rats of interest.
Each panel overlays 50 (Fig. 1, A, B, D, and E) or 20 (Fig. 1,
C and F) serial confocal sections (which introduces blurriness)
to yield summed intensities across the sample (all cases: 10 �m
total). Images show the (black) lumen, green AQP1 in adjacent
ECs, red autofluorescent IEL layer, and well-known (62)
medial SMC green AQP1. EC green staining was far less
intense in normotensive (Fig. 1, A and B) than in the
corresponding hypertensive rats (Fig. 1, D and E) and in
control (Fig. 1C) than in FSK-treated rats (Fig. 1F). A
reciprocal relationship was obtained for EC and SMC AQP1
staining in control (Fig. 1, A–C) versus hypertensive and
FSK-treated aortas (Fig. 1, D–F).

Figure 2 shows the AQP1 amount/EC volume from Fig. 1
for hypertensive/normotensive (Fig. 2A) and SD-DMSO/SD-
FSK rats (Fig. 2B). In SD-DMSO rats, only 0.1 wt% DMSO
was needed to dissolve FSK. SEs expressed aortic region of

Table 1. Rat systolic blood pressure versus time after SD-GB surgery or after sham operation/no operation

Rats Day 0 Day 7 Day 14 Day 21 Day 28 Day 35* Day 42* Day 49

SD-control 113 � 6.0/4.2 121 � 2.9/2.1 109 � 7.3/5.2 117 � 19.5/11.2 122 � 3.0/1.5 118 � 0.9/0.6 104 � 4.0/2.9
SD-GB 112 � 6.0/4.2 115 � 10.5/3.0 147 � 10.1/3.4 144 � 16.7/9.7 155 � 27.1/13.6 194 � 16.4/9.5 203 � 29.3/14.7 184 � 24.8/12.4

Values are means � standard deviation/standard error and are in mmHg. Systolic blood pressure (BP) versus time after two-kidney one-clip Goldblatt (GB)
surgery (n 	 5) or after sham surgery (n 	 3)/no operation (n 	 2) for male Sprague-Dawley (SD) rats are shown; control pools the latter two groups. Sham
SD rat BP remained stable at ~110–120 mmHg; SD-GB BP rose over ~5 wk to ~200 mmHg and remained there for �2 wk until death. *Times at which
differences between curves were significant.
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interest (ROI) variability. SHR (SD-GB) aortic ECs of n 	 35
(n 	 31) ROIs expressed ~2.5 (�2) times the AQP1 of
normotensive WKY ECs (sham or no-operation SD rats) [n 	
31 (n 	 30) ROIs, P �� 0.01 (P � 0.05); Fig. 2A]. Sham and
no-operation SD aortic EC AQP1 expressions were identical
and only slightly higher (P � 0.05) than those of normotensive
WKY rats. AQP1 upregulation in genetically and surgically
induced hypertension models was consistent. SD-FSK aortic
ECs (n 	 19 ROIs) expressed �3 times (P � �0.01) the
AQP1 of SD-DMSO rat aortas (n 	 15 ROIs; Fig. 2B). FSK
directly upregulates adenyl cyclase and may increase AQP1 by
a cAMP upregulation pathway. Thus, both elevated BP and
FSK-enhanced cAMP levels display appreciable EC AQP1
upregulation.

We turn now to function. Figure 3 shows that denuded
vessel (medial SMCs, matrix, and elastic layers) Lp,m�I was
�P insensitive for each rat model (ANOVA, P � 0.05), as
previously described (2, 52, 63, 69). Normotensive and hyper-
tensive Lp,m�I values each agreed (P � 0.05) for both rat
strains. FSK-treated rat Lp,m�I lay on the normotensive curve at
both �P values evaluated. Hypertensive aortic Lp,m�I was
far lower (P �� 0.01) than its control normotensive Lp,m�I

for both strains. Intact Lp,t was consistently higher for WKY
rats than for SHRs (ANOVA and post hoc Tukey test, P �
0.05; Fig. 4A) at the three common �P values and for
SD-GB than for SD rats (; P �� 0.01; Fig. 5), which

reflects the well-known media thickening/remodeling that pro-
longed hypertension induces (22).

Consistent with a prior SD rat Lp study (63), WKY intact
(total) Lp,t (Fig. 4A) and intimal (endothelial � subendothelial)
Lp,e�i (Fig. 4B) were high at 60 mmHg, dropped (~15 and 40%
for Lp,t and Lp,e�i, respectively) by ~100 mmHg, and were flat
at 140 mmHg. In SD rats (Fig. 5A) (52), this Lp,t drop reflects
SI compression under �P, which increases wall flow resis-
tance, 1/ Lp,t, by causing ECs to block IEL fenestrae (29, 30).
(The SHR vs. WKY Lp,t comparison above is in the �P overlap
region where the SI is likely fully compressed for both rat
species.) Since both intact and denuded Lp values were mea-
sured on each rat, one can calculate Lp,e�i for each rat at each
�P from Eq. 1. Clearly (Fig. 4A), the SHR intact and denuded
curves were much closer together, i.e., had far lower flow
resistant (quantified in Fig. 4B) endothelia, than the WKY
curves. SHR Lp,e�i is ~2 times the WKY Lp,e�i at �P values
where both were measured and where WKY Lp,t has leveled off
[i.e., for pooled �P 	 100, 120, and 140 mmHg values (P �
0.02) or independently compared �P 	 100 and 120 mmHg
values (P � 0.02)]. SHRs’ thickened media/lower Lp,m�I gives
them a higher overall flow resistance, 1/Lp,t, than WKY rats
despite SHRs’ significantly higher Lp,e�i. The more facile
transintimal and more difficult transmedial water flow point to
SI thickening, i.e., less SHR fenestral blocking.

A

B

C

D

E

F

Fig. 1. Aortic wall aquaporin 1 (AQP1) ex-
pression for experimental models (D�F) and
their respective controls (A�C). Overlays
(which induce blurriness) of 50 (A, B, D, and
E) or 20 (C and F) serial confocal sections (all
cases: 10 �m total) of an aorta from a male
Sprague-Dawley (SD) rat (A), Wistar-Kyoto
(WKY) rat (B), vehicle-treated SD rat (C), SD
rat subjected to Goldblatt surgery (SD-GB;
D), spontaneously hypertensive rat (SHR; E),
and SD rat treated with forkolin (FSK; F). The
endothelial green AQP1 region is adjacent to
the black lumen followed by the inner elastic
lamina (IEL; red) and alternating green
[smooth muscle cell (SMC) AQP1] and red
(elastin) medial regions. Endothelial AQP1
staining was more intense in hypertensive (D
and E) and FSK-treated (F) aortas than in their
controls (A–C).
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SD-GB rats, with wild-type genomes, yielded similar intimal
and medial water flow changes to SHRs. Since the medial is
the dominant SD-GB resistance, their Lp,t values were lower
than SD Lp,t values at all �P values (Fig. 5, A and B). Again,
the hypertensive SD-GB Lp,t and Lp,m�I curves were much
closer together (much less resistant endothelia/far larger Lp,e�i)
than for normotensive SD rats. [P values comparing SD/
SD-GB Lp,t differences were as follows: 0.016 (60 mmHg),
0.003 (100 mmHg), and 0.006 (140 mmHg); P values on
inverses needed to calculate Lp,e�i were not enlightening since
inverses magnify small differences.]

Both hypertensive and normotensive SD rat aortic Lp,t values
dropped from 60 to 100 mmHg (ANOVA and post hoc Tukey
test showed that the only significant difference was Lp,t for 60
vs. 100 and 140 mmHg for SD rats; this distinction was only
suggestive for SD-GB rats), but denuded Lp,m�I was �P
independent (Fig. 5, A and B). As in normotensive WKY and
SD rats, the higher �P-compressed SD-GB SI contributed a
larger fraction of total wall flow resistance than the lower
�P-uncompressed SI. Figure 5C shows Lp,e�i (Eq. 1) for the

rats shown in Fig. 5, A and B, along with SD-FSK and
SD-DMSO rats. For both SD and SD-GB rats, Lp,e�i dropped
from 60 to 100 mmHg as �P compressed the SI, but it dropped
far more for hypertensive rats. Similarly, intact SD Lp,e�i

dropped from 75 to 120 mmHg before FSK treatment (values
consistent with the other normotensive SD rats), but the drop
was far more pronounced, and similar to SD-GB drops, after
FSK treatment; all Lp,e�i drops were significant. FSK more
than doubled Lp,e�i at 75 mmHg but inflicted no apparent
change at 120 mmHg. The 60-mmHg SD-GB Lp,e�i was only
slightly below the 100-mmHg SHR Lp,e�i (Fig. 4B), but its
higher �P values were far lower. Both hypertensive SHR (Fig.
4) and SD-GB aortas (Fig. 5) had lower Lp,m�I and higher
Lp,e�i and delayed transmedial and accelerated transintimal
water flow than normotensive aortas.

Nguyen et al. (52) showed that AQP blocking with 5 �M
HgCl2 is fully reversible and that blocking SMC AQPs causes
no measurable Lp,m�I change. The post-HgCl2 curves shown in
Fig. 5 thus reflect EC AQP1 suppression. The nine Lp values
shown in Fig. 5 are at just three �P values so that each vessel
remains viable for all three Lp sets. Each aorta showed a
percent drop with HgCl2 at each �P and its mean � SE (Fig.
6). The drops at 60 mmHg shown in Fig. 5 were statistically
different (P � 0.05) from those at 100 and 140 mmHg for both
SD-GB and SD rats. Unlike unblocked Lp,t, in both rat cohorts
both blocked Lp,t values and denuded Lp,m�I values were
essentially �P independent from 60 to 140 mmHg (Fig. 5, A
and B). Denuded Lp,m�I values were ~2 times the high-�P Lp,t

for each rat cohort; that is, at maximal SI compression, the
endothelium � SI accounted for approximately half the overall
aortic wall transmural flow resistance (29, 30).

Joshi et al. (33) extended Huang et al.’s (30) filtration flow
theory through an artery wall with a compressible SI by
including trans-EC, trans-AQP1 flow. It predicts that an in-
crease/decrease in EC AQP1 shifts to higher/lower �P the
dynamic regime over which Lp,t drops from its low-�P to its
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high-�P plateaus. Figure 7 shows a recalculation of Joshi et
al.’s theory using our rats’ baseline Lp,m�I and untreated Lp,t

values, which were uniformly a bit lower than Nguyen et al.’s
(52) and Tedgui and Lever’s (69),1 while retaining their �P
value (88 mmHg) for full SI compression. Blockade of AQP1
should have a big effect at 75 mmHg, through which the
dynamic range shifts, but a much smaller one (likely within
measurement error bars) beyond it at 120 mmHg. The results
shown in Fig. 7 demonstrated good consistency between theory
and experiment (Lp,t from Fig. 5C) and predicted ~150% EC
AQP1 upregulation with FSK.

Figure 6 shows the percent drops, all significantly nonzero,
with HgCl2 in Lp,t (Fig. 6, A and C) and Lp,e�i (Fig. 6, B and

D) for SD-GB and SD (Fig. 6, A and B) and SD-FSK and
SD-DMSO rats (Fig. 6, C and D) from Fig. 5. HgCl2 lowered
Lp,t versus baseline at each �P for all rats, with the largest
average drop at 60 mmHg: 31.9 � 3.7% (SD) and 38.9 � 5.4%
(SD-GB; Fig. 6A); it lowered Lp,e�i by 58.2 � 7.6% (SD) and
77.2 � 6.0% (SD-GB) at 60 mmHg (Fig. 6B). Note that despite
the different Lp magnitudes in Fig. 5, A and B, the percent
drops with HgCl2 (Fig. 6, A and B) were nearly the same for
SD-GB and SD rats at each �P. In contrast, FSK-treated SD
rats showed much larger drops at 75 mmHg but the same drops
at 120 mmHg as untreated SD rats. The different normotensive
percent drops at 60 and 75 mmHg suggest that Lp,t and Lp,e�i

lose much of their sensitivity to AQP1 blocking by ~75–80
mmHg, consistent with approximately fully compressed SIs
with or without HgCl2. In contrast, FSK-treated rat aortas had

1 This absolute variation is normal; trends with treatment are far more aorta
independent.
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similar HgCl2-induced drops at 60 and 75 mmHg, consistent
with SI decompressed after FSK treatment. At 120 mmHg,
both pre- and post-FSK aortas showed little HgCl2 sensitivity,
consistent with fully compressed SIs with or without HgCl2.
These results suggest that EC AQP1 expression and function
modulate the portion of �P acting across the endothelium, as in
Fig. 7.

DISCUSSION

Both chronic hypertension in either genetically hypertensive
SHRs or SD rats made hypertensive by renovascular surgery
and 2-h FSK-treated SD rat aortas cause a 2- to 3-fold
upregulation in aortic EC AQP1 expression [Figs. 2 and 3;
microRNAs may play a role (8, 9)] and a doubling (SD-GB,
75 mmHg; SHR, all �P) or tripling (FSK, 75 mmHg) in
Lp,e�i. SHRs also have elevated inner medulla (39) and, at
high �P, choroid plexus (70) AQP1 expression; in contrast,
low-renin hypertensive, antibody-induced anti-thyroglobulin
type-1 (Thyr1) glomerulonephritis mice and rats have reduced
proximal tubule AQP1 expression (16, 36) as do SD-GBs, at
least at 1 wk postsurgery (43). The present quantitatively
similar rise in AEC AQP1 expression and function indicates
that its enhanced expression alone, rather than chemical mod-
ification (unless it affects antibody recognition) or trafficking,
could explain the parallel rise in Lp,e�i if transendothelial water
transport were mostly through AQP1. Since much of this
transport is paracellular (33, 52), AQP1 changes and SI com-
pression also contribute (below) to a fuller explanation of these
increases. Nevertheless, this parallel rise complements Nguyen
et al.’s (52) finding that rat and bovine AECs express AQP1

and reducing functioning AQP1 lowers Lp,e�i. It supports their
conclusion that AQP1 facilitates hydrostatic �P-driven
trans-EC flow, accounts for a significant fraction of intrinsic
aortic endothelial Lp,e, and impacts Lp,e�i via both Lp,e and SI
compression.

Regional variability (SEs) in ROI AQP1 expression in a
single aorta is similar to that between aortas, consistent with
known local variation in hemodynamics and atherosclerotic
susceptibility (4, 11, 50, 51, 74). We did not systematically
attempt to correlate them and avoided branch site ROIs. We
focused only on aortas since our Lp study required a minimum
vessel size.

High �P lowers Lp,e�i by compressing the SI and causing
ECs to block IEL fenestrae (29, 30). Joshi et al.’s (33) filtration
theory predicts that raising/lowering functioning EC AQP1
raises/lowers the critical �P that achieves the compressing
trans-EC pressure difference (force/area) (33, 52) and thus the
dynamic range over which Lp,t drops. Nguyen et al.’s (52) data,
plotted versus theory given by Joshi et al. (33), are consistent
with a decrease in EC AQP1 shifting this critical �P and
dynamic regime to lower �P (�P �� 60 mmHg). Inversely, in
AQP1-upregulated aortas, compression might begin above 75
mmHg. Thus, AQP1 blocking would compress the SI, causing
a large Lp,t drop at 75 mmHg, but barely change Lp,t at 120
mmHg where the SI is already compressed. In fact, FSK nearly
triples both EC AQP1 expression (Fig. 2) and Lp,e�i at 75
mmHg but leaves Lp,e�i unchanged at 120 mmHg (Fig. 5C), in
agreement with Joshi et al. (Fig. 7) and consistent with FSK
raising the critical �P from �75 to �75 mmHg. Similarly,
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Fig. 6. Percent drops in hydraulic conductivity (Lp) in the intact vessel (Lp,t) and endothelium � subendothelial intima (Lp,e�i) by HgCl2 treatment for
Sprague-Dawley (SD) rats subjected to Goldblatt surgery (SD-GB) compared with SD rats with no operation (SD no op) (A and B; n 	 6) were similar for both
cohorts despite different absolute Lp values (Fig. 5). C and D: values for pre/post-foskolin treatment (FSK) SD rats (n 	 4). Comparison of low-pressure
normotensive Lp,t values in A and C and Lp,e�i values in B and D suggests that both Lp values lose sensitivity to aquaporin 1 blocking (consistent with compressed
subendothelial intima with or without HgCl2) by ~75–80 mmHg. In contrast, after FSK-increased aquaporin 1 expression, SD rats retained HgCl2 sensitivity
(decompressed subendothelial intima) up to �75 but lost it by 120 mmHg (compressed subendothelial intima even without HgCl2).
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SD-GB Lp,e�i seems to2 far exceed SD Lp,e�i at 60 mmHg but
not at 100 and 140 mmHg (Fig. 5C). Taken together, these data
support Joshi et al.’s theory that raising/lowering functioning
EC AQP1 numbers raises/lowers the critical �P needed for SI
compression and thus Lp,t’s dynamic regime. On the other
hand, SHR SI may have lower SI compressibility or not
compress, possibly because of differences in anatomy (e.g., SI
cellularity) or extracellular matrix chemistry (23). Unique
among the high-AEC AQP1 rats studied, SHRs show flat Lp,t

and flat and elevated Lp,e�i for �P studied (100 � �P � 180
mmHg); the lack of low-�P SHR data precludes a direct check
if Lp,t rises at low �P. However, SHR Lp,e�i (1.6–2.7 
 10�7

cm·s�1·mmHg�1) at all �P values exceeds literature values
[~(0.7–1.6) 
 10�7 cm·s�1·mmHg�1 (52, 63, 71)] for intrinsic
endothelial Lp,e of normotensive aortas and Lp,e�i of FSK-
treated, AQP1-upregulated, likely SI-decompressed SD aor-
tas at 75 mmHg (Fig. 5C). Note that normotensive Lp,t(�P)
and Lp,m�I(�P) are consistent for SD and WKY rats (Figs.
4A and 5A).

Elevated pulse (systolic-diastolic) pressures in hypertension
induce changes in aortic wall biomechanics because of larger
wall distensions. Mechanical factors including stretch, strain,
shear, and �P contribute to vascular pathophysiology. �P-
induced stretch expands the aortic lumen, but Lp,t remains flat
above 100 mmHg (2, 3, 63). For 120-, 180-, and 240-mmHg
intraluminal pressures, Giannakoulas et al. (18) computed peak
von Mises wall stresses (a mixture of normal and tangential

stresses) of 22.5, 32.0, and 40.6 N/cm2 and maximum wall
displacements of 0.44, 0.59, and 0.72 mm, respectively. BP
rise affects all stresses [e.g., reduces carotid artery wall shear
stress (40)], which affects the EC cytoskeleton and adherens
junctions and, in turn, can influence AQP1 expression and
trafficking. It can cause alteration of arterial gene expression
and protein production (here), increased Lp,e, and, over long
times, wall remodeling and sometimes atherosclerosis (27).
Rapidly elevated �P, stretch, and EC AQP1 expression in-
crease transendothelial water flow, which may enhance access
of compounds, e.g., reactive oxygen species and H2O2, that
provoke mural remodeling. SHRs have more medial but less
adventitial collagen and elastin content than WKY rats (23).
Medial thickening over months (22) may mitigate vascular
wall stress changes by helping the vessel withstand larger
intraluminal systole-diastole pressure vacillations. It cuts me-
dial Lp,m�I in both hypertensive rats to approximately half the
normotensive Lp,m�I with a concomitant Lp,t reduction despite
increased Lp,e�i. The unremodeled 2-h FSK-treated aorta has
an EC AQP1 increase similar to that of the hypertensive rats
but a normotensive Lp,m�I, resulting in higher Lp,t. The chron-
ically hypertensive remodeled, thicker, stiffer, denser, lower
Lp,m�I media may in themselves lead to endothelial dysfunc-
tion, mediated by decreased nitrate/nitrite and prostacyclin and
increased endothelin-1 (21).

A variety of hormonal differences distinguish SHR and
SD-GB hypertensive rats from their normotensive WKY and
SD counterparts. These include an activated sympathetic ner-
vous system with greater blood catecholamine levels, an en-
hanced renin-angiotensin system (RAS), and elevated plasma
arginine vasopressin (AVP) levels [SHRs have up to 4 times
the AVP levels of WKY (1, 26, 44, 46, 48, 54, 67)]. All of
these eventually enhance endothelial cAMP production by
either hormonal, paracrine, or autocrine mechanisms, but each
mediator (including angiotensin II, AVP, and catechols) may
work through different cellular signalosomes/cellular cascades.
Aldosterone, the final product of the RAS pathway, stiffens
ECs (38), possibly secondary to the activation of cell mem-
brane ion, e.g., Na�, channels that colocalize with AQP1 to
maintain proper osmolarity (17). The cAMP signaling path-
way mediates the major catechols’ actions via adenyl cy-
clase-coupled �-adrenergic receptors that trigger vasorelax-
ation (53).

The activated SD-GB RAS not only directly affects ECs via
angiotensin receptors and aldosterone but also stimulates the
hypothalamus to increase pituitary gland AVP production.
Angiotensin II activates adenyl cyclase via receptors and a G
protein mechanism similar to AVP but likely in a different
signalosome. Belkacemi et al. (5) found that AVP causes a
fourfold AQP1 upregulation in trophoblasts and that a cAMP
analog or a rise in cAMP caused by FSK constitutively up-
regulates AQP1 expression. AVP increases cAMP via vaso-
pressin type 2 receptors (37, 45) and causes the principal cells
of the renal collecting duct to retain water by translocating
AQP2 from intracellular storage to the plasma membrane.
Although Skowronska et al. (65) found that FSK does not
change AQP1 localization in pregnant porcine uterine ECs,
short exposure to FSK, to a cAMP analog [Yool et al. (77)], or
to AVP [Patil et al. (56)] increases membrane permeability of
Xenopus oocytes injected with AQP1 cDNA, the latter show-
ing threefold to fourfold increased membrane AQP1 content.

2 Lp,e�i calculation involves Eq. 1 inverting the small difference of the
inverses of Lp,t and of Lp,m�I; small Lp,t and Lp,e�i errors are magnified in this
difference and thus in its inverse’s SE.
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These studies strongly suggest that a (receptor-mediated if via
AVP) cAMP increase rapidly translocates AQP1 to the plasma
membrane. Elevated BP likely uses these agonists, e.g., AVP,
aldosterone, and adenyl cyclase, to trigger these established EC
cAMP AQP1 pathways.

Agonists that contract (hypertensive: catechols, angiotensin
II, AVP, etc.) or relax (NO, prostacyclin, endothelium-derived
hyperpolarizing factor, etc.) resistance arteries obviously also
influence conduit arteries. Shear forces, which vary over the
cardiac cycle, profoundly affect EC morphology and function.
Hypertension’s influence on shear is poorly understood. Lam-
inar shear induces KLF2, which rapidly induces AQP1 and
eNOS expression (9, 10) and increases SMC cAMP (14).
Human essential hypertension correlates with enhanced KLF2
expression in blood elements (66). Upregulated EC AQP1 can
increase NO transport from ECs to medial SMCs (25), which
can mitigate SMC proliferation, hypertrophy, and contractility,
major factors in vessel wall health. Both the eNOS system and
prostanoid responses differ between high-renin hypertensive
and normotensive states (6). Instead of enhancing eNOS pro-
duction of NO from arginine, both high-renin (SHR and
SD-GB) and low-renin DOCA hypertensive rats cause it to
produce superoxide radicals that enhance NO deactivation (7,
20, 34, 61); blockade of NO degradation leaves cultured aortic
ECs from stroke-prone SHRs with NO levels similar to those
of WKY rats (20). Although different groups found more (60)
or less (12) eNOS, both found lowered eNOS activity in SHR
aortic homogenates. This uncoupling of normal eNOS func-
tions interferes with NO’s palliative effect on EC quiescence
despite increased KLF2 and AQP1; it may be a factor initiating
inflammation. In fact, supplying the appropriate biopterin pre-
cursors to restore this cofactor can reverse this uncoupling in
some disorders and even reverse hypertension (28). The hy-
pertensive aortic SMC is contractile, as in resistance arteries
(59), likely because of this faulty response to, e.g., NO and
prostacyclin, both of which shift from vasodilatory to vasocon-
strictive in hypertensive aortas and to enhanced vasoconstrictor
(AVP and angiotensin II) exposure. This implies elevated
actin-myosin interaction and increased ATP consumption,
which requires increased ATP generation and metabolite ef-
flux; by increasing advection, elevated AQP1 and Lp,e�i facil-
itate these needs. If a feedback system exists between NO
formation and KLF2 activation, it might explain elevated
KLF2 values in blood elements of hypertensive aortas and
enhanced EC AQP1 expression.

Finally, we speculate as to how increased AEC AQP1 may
benefit the vessel aside from increased EC NO release. In-
creased lumen pressure initially increases vessel diameter (then
tempered by a myogenic response), which stretches EC junc-
tions. Increased EC AQP1 shifts part of �P from acting across
the endothelium to acting across the media, thus partially
relieving this stress and thickening the SI (33). Increased EC
AQP1 may also be mechanically antiatherogenic by enhancing
�P-driven water transport/Lp,t via higher Lp,e and fenestral
unblocking. Atherosclerosis begins with �P-driven advective
LDL-cholesterol transport (32, 68) from the blood across
extremely rare endothelial leaks (13, 41, 42), associated with
low shear and KLF2, into the SI, where LDL can bind to the SI
extracellular matrix (15, 64). A decompressed SI shrinks the
high-SI LDL leak region by decreasing spot-spreading radial
SI pressure gradients (30). Increased transmural water trans-

port (Lp,t) across the overwhelmingly nonleaky endothelium
dilutes local SI LDL concentrations, potentially slowing LDL-
extracellular matrix binding kinetics and flushing the SI of
unbound LDL (76). The coronary arteries receive mainly
diastolic exposure (75), yielding reduced time-average �P. By
raising the critical �P enough to decompress the SI and
unblock coronary artery fenestrae, increased AEC AQP1 may
be a rapid (hours) response to hypertension, a poorly under-
stood atherosclerosis risk factor, to slow atherogenesis. Media
remodeling/thickening that lowers Lp,m�I overcomes this effect
over months and lowers Lp,t to reverse these antiatherogenic
trends.

In conclusion, we have shown that the aortas of two strains
of hypertensive rats as well as 2-h FSK treatment of aortas
from normotensive rats exhibit twofold to threefold upregula-
tion of both their EC AQP1 expression and intimal Lp. All
three models have enhanced cAMP; a cAMP mechanism for
AQP1 upregulation would be consistent with literature on other
systems involving AQP upregulation and trafficking to the
plasma membrane. The rapidity of the EC and SMC AQP1
changes suggests that microRNAs may be involved. The pres-
sure dependence of intimal Lp,e�i for these cases is consistent
with Joshi et al.’s (33) theory that high enough transmural
pressure compresses the SI so as to block IEL fenestrae and
lower vessel Lp and that a change in the number of functional
EC AQP1s shifts the pressure regime over which this com-
pression/Lp drop occurs, possibly unblocking IEL fenestrae in
the physiological regime. AQP1 upregulation may be a rapid
response to hypertension aimed at enhancing EC NO release to
relax vessel wall SMCs and at increasing SI thickness. This
increase both relieves EC junction stretch and initially in-
creases transmural water flow, which may be antiatherogenic.
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