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Abstract 
We propose a content-based three-dimensional (3D) 

mosaic representation  for long video sequences of 3D 
and dynamic scenes captured by a camera on a mobile 
platform. The motion of the camera has a dominant 
direction of motion (as on an airplane or ground 
vehicle), but 6 degrees-of-freedom (DOF) motion is 
allowed. In the first step, a pair of generalized parallel-
perspective (pushbroom) stereo mosaics is generated 
that captured both the 3D and dynamic aspects of the 
scene under the camera coverage. In the second step, a 
segmentation-based stereo matching algorithm is 
applied to extract parametric representation of the 
color, structure and motion of the dynamic and/or 3D 
objects in urban scenes where a lot of planar surfaces 
exist. Based on these results, the content-based 3D 
mosaic (CB3M) representation is created, which is a 
highly compressed visual representation for very long 
video sequences of dynamic 3D scenes. Experimental 
results will be given.   
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1. Introduction 
In this paper we address the problems of visual 

representation for large amount of video stream data, of 
three-dimensional (3D) urban scenes in particular, 
captured by a camera mounted on an airborne or a 
ground mobile platform.  Applications include airborne 
or ground video surveillance for moving target 
extraction, automated 3D urban scene construction, 
airborne traffic monitoring, and image-based rendering. 
For these applications, hours of video streams may be 
generated every time the mobile platform performs a 
data collection task. The data amount is in the order of 
100 GB per hour for standard 640*480 raw color 
images. The huge amount of video data not only poses 
difficulties in data recording and archiving but also is 
prohibitive for users to retrieve and to review. In the 

past, video mosaic approaches [1-4] have been 
proposed for video representation and compression, but 
most of the work is for panning (rotating) cameras 
instead of the moving (translating) cameras mostly used 
in the cases of airborne or ground mobile surveillance, 
where obvious motion parallax is the main 
characterization of the video sequences due to the self-
motion of the sensors. Some work has been done in 3D 
reconstruction of panoramic mosaics [5,6], but usually 
the results are 3D depth maps instead of high-level 3D 
scene understanding for static and/or dynamic target 
extraction and indexing. Layered representations [7-9] 
have been studied for motion sequence representations; 
however, the methods are usually computationally 
expensive, and the outputs are typically motion 
segmentation represented by affine planes instead of 
true 3D information. Efficient, high-level, content-
based, and very low bit-rate representations of 3D 
scenes and moving targets are in great demand. 

2. Overview of Our Approach  
We propose a content-based 3D mosaic 

representation (CB3M) for long video sequences of 3D 
and dynamic scenes captured by a camera on a mobile 
platform. The motion of the camera has a dominant 
direction of motion (as on an airplane or ground 
vehicle), but 6 DOF motion is allowed. In the first step, 
a pair of generalized parallel-perspective (pushbroom) 
stereo mosaics is generated that captured both the 3D 
and dynamic aspects of the scene under the camera 
coverage. Bundle adjustment techniques [14] can be 
used for camera pose estimation, sometimes integrated 
with the geo-referenced data from GPS and INS when 
available. A ray interpolation approach [10] is used to 
generate a pair of seamless parallel-perspective 
(pushbroom) stereo mosaics under the obvious motion 
parallax of a translating camera. The pair of stereo 
mosaics is a compact representation for a long video 
sequence for a 3D scene with independent moving 



targets. Therefore, the mosaics are dynamic pushbroom 
stereo mosaics.  

However, the representation is still an image-based 
one without object content representation. Therefore, in 
the second step, a segmentation-based stereo matching 
algorithm [11] is applied to extract parametric 
representation of the color, structure and motion of the 
dynamic and/or 3D objects in urban scenes, where a lot 
of planar surfaces exist. In the algorithm, we use the 
fact that all the static objects obey the epipolar 
geometry, i.e. along the epipolar lines of pushbroom 
stereo. An independent moving object (moving on a 
road surface), on the other hand, either violates the 
epipolar geometry if the motion is not in the direction 
of sensor motion or exhibits unusual 3D structure – e.g., 
obviously hanging above the road or hiding below the 
road.  

Based on the above two steps, the content-based 3D 
mosaic (CB3M) representation is created. This is a 
highly compressed visual representation for a very long 
video sequence of a dynamic 3D scene. For example, a 
real image sequence of a campus scene has 1000 frames 
of 640*480 color images. With its CB3M 
representation, a compression ratio of more than 2,000 
is achieved. More importantly, the CB3M 
representation has object contents.  

The rest of the paper is organized as the follows. The 
two important steps to prepare the CB3M 
representation will be summarized based on our 
previous work. First, a brief summary of the dynamic 
pushbroom stereo mosaic step is given in Section 3. 
Second, the 3D and motion content extraction step is 
summarized in Section 4. Then in Section 5, the 
content-based 3D mosaic representation is described. 
Experimental results are given for the CB3M 
representation construction Section 6 gives concluding 
remarks. 

3. Dynamic Pushbroom Stereo Mosaics 
First, we assume the motion of a camera is an ideal 

1D translation, the optical axis is perpendicular to the 
motion, and the frames are dense enough. Then, we can 
generate two spatio-temporal images by extracting two 
columns of pixels (perpendicular to the motion) at the 
leading and trailing edges of each frame in motion (Fig. 
1). The mosaic images thus generated are parallel-
perspective, which have perspective projection in the 
direction perpendicular to the motion and parallel 
projection in the motion direction. In addition, these 
mosaics are obtained from two different oblique 
viewing angles of a single camera’s field of view, so 
that a stereo pair of left and right mosaics captures the 
inherent 3D information.  The geometry in this ideal 

case (i.e. 1D translation with constant speed) is the 
same as the linear pushbroom camera model proposed 
in [15]. Therefore we also call this representation 
pushbroom stereo mosaics (we drop the term “linear” 
since the linear constraint will be removed in the 
general case when the camera motion is not 1D 
translation). 

 
 

Left view mosaic 

……

Rays of left view 

……

Rays of right view  

Right  view mosaic 

leading edge trailing edge 

Perspective image 

X

Z

Y O

 dy 

motion direction 

 
 

Fig. 1. Principle of the parallel-perspective 
pushbroom stereo mosaics 
 

In real applications, there are two challenging 
issues. The first problem is that the camera usually 
cannot be controlled with ideal 1D translation and 
camera poses are unknown; therefore, camera 
orientation estimation (i.e., dynamic calibration) is 
needed. In our previous study on an aerial video 
application, we used external orientation instruments, 
i.e., GPS, INS and a laser profiler, to ease the problem 
of camera orientation estimation [10, 16]. More general 
approaches using bundle adjustment techniques [14] are 
under investigation for efficiently estimating camera 
poses of long image sequences. In this paper, we 
assume that the extrinsic and intrinsic camera 
parameters are known at each camera location. The 
second problem is to generate dense parallel mosaics 
with a sparse, uneven, video sequence, under a more 
general motion, and for a complicated 3D scene. To 
solve this problem, we have proposed a generalized 
stereo mosaic representation under constrained 6 DOF 
motion, and a parallel ray interpolation for stereo 
mosaics (PRISM) approach [10]. 

In principle, the PRISM approach needs to match all 
the points between the two overlapping slices of the 
successive frames to generate a complete parallel-
perspective mosaic. In an effort to reduce the 
computational complexity, a fast PRISM algorithm [10] 
has been designed, based on the proposed PRISM 
method. It only requires matches between a set of point 
pairs in two successive images, and the rest of the 
points are generated by warping a set of triangulated 
regions defined by the control points in each of the two 



images. The proposed fast PRISM algorithm can be 
easily extended to use more feature points (thus smaller 
triangles) in the overlapping slices so that each triangle 
really covers a planar patch or a patch that is visually 
indistinguishable from a planar patch, or to perform 
pixel-wise dense matches to achieve true parallel-
perspective (pushbroom) geometry. 
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Fig. 2. Dynamic pushbroom stereo mosaics 
 

Dynamic pushbroom stereo mosaics [11] are 
generated in the same way as with the static pushbroom 
stereo mosaics described above. Fig.2 illustrates the 
geometry. A 3D point P(X,Y,Z) on a target is first seen 
through the leading edge of an image frame when the 
camera is at location L1. If the point P is static, we can 
expect to see it through the trailing edge of an image 
frame when the camera is at location L2. The distance 
between leading and trailing edges is dy (pixels), which 
denotes the constant “disparity” between this pair of 
images. However, if point P moves during that time, the 
camera needs to be at a different location L’2 to see this 
moving point through its trailing edge. For simplifying 
equations, we assume that the motion of the moving 
point between two observations (L1 and L’2) is a 2D 
motion (Sx, Sy), which indicates that the depth of the 

point does not change over that period of time. 
Therefore, the depth of the moving point can be 
calculated as 
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where F is the focal length of the camera and By is the 
distance of the two camera locations (in the y direction).  
Mapping this relation into stereo mosaics following the 
notation in [10], we have 
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where H is the depth of plane on which we want to 
align our stereo mosaics, ( ∆x, ∆y) is the visual motion 
of the moving 3D point P, which can be measured in 
the stereo mosaics. The vector (sx, sy) is the target 
motion represented in stereo mosaics. Obviously, we 
have sx = ∆x.  

The above analysis only shows the geometry of a 
moving camera with 1D translational motion. In fact, a 
pair of generalized stereo mosaics can be generated 
when the camera undertakes a constrained 6 DOF 
motion. Details of the representation and algorithms can 
be found in [10]. Fig. 3 shows a red-blue stereo image 
with a pair of the dynamic pushbroom stereo mosaics 
generated from a video sequence with about 1000 
frames, where the camera had obvious motion in the x 
direction as well as the y direction. In this figure, for 
stereo viewing with a pair of red-blue stereo glasses, the 
left mosaic is in the green and blue channels, and the 
right mosaic is in the red channel of a single RGB color 
bitmap. Visual displacements due to 3D structures and 
independent object motion can be observed if close-up 
views are shown. 
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Fig. 3.  Dynamic pushbroom stereo mosaics: Left view in
the green/blue channels and right view in the red channel
of a RGB image for stereo viewing 



4. 3D and Motion Content Extraction  
We have the following interesting observations 

about the dynamic pushbroom stereo geometry for 3D 
and moving target extraction. 

(1) Stereo fixation. For a static point (i.e. Sx = Sy = 
0), the visual motion of the point with a depth H is 
(0,0), indicating that the stereo mosaics thus generated 
fixate on the plane of depth H. This fixation facilitates 
the stereo matching and the detection of moving targets 
on that plane. 

(2) Motion accumulation. For a moving point (Sx ≠ 0 
and/or Sy ≠ 0), the motion between two observations 
accumulates over a period of time due to the large 
distance between the leading and trailing edges in 
creating the stereo mosaics. This will increase the 
discrimination of slow moving objects viewed from a 
relatively fast moving aerial camera. 

(3) Epipolar constraints. In the ideal case of 1D 
translation of the camera (with which we present our 
dynamic pushbroom stereo geometry in this paper), the 
correspondences of static points are along horizontal 
epipolar lines, i.e. ∆x = 0. (As a generalization, an 
epipolar curve geometry under 3D camera motion is 
given in [10].) Therefore, for a moving target P, the 
visual motion with nonzero ∆x (i.e., the visual motion 
in the x direction) will identify itself from the static 
background in the general case, which implies that the 
motion of the target in the x direction is not zero (i.e., Sx 

≠ 0). In other words, the correspondence pair of such a 
point will violate the epipolar line constraint for static 
points (i.e. ∆x = 0). 

(4) 3D constraints. Even if the motion of the target 
happens to be in the direction of the camera’s motion 
(i.e., the y direction), we can still discriminate the 
moving target by examining 3D anomalies. Typically, a 
moving target (a vehicle or a human) moves on the flat 
ground surface (i.e., road) over the time period during 
which it is observed through the leading and trailing 
edges of video images with a limited field of view. We 
can usually assume that the moving target share the 
same depth as its surroundings, given that the distance 
of the camera from the ground is much larger than the 
height of the target. (The method to deal with 3D 
structure of 1 moving target is discussed in [11].) A 
moving target in the direction of camera movement, 
when treated as a static target, will show 3D anomaly - 
either hanging up above the road (when it moves to the 
opposite direction, i.e., Sy < 0), or hiding below the road 
(when it moves in the same direction, i.e., Sy > 0). 

After a moving target has been identified, the motion 
parameters of the moving target can be estimated. We 
first estimate the depth of its surroundings and apply 

this depth Z to the target, then calculate the object 
motion sy using Eq. (2) and (Sx, Sy), using Eq. (3), given 
the visual motion (∆x,∆y) measured in the stereo 
mosaics. 
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Fig. 4. Content-based 3D mosaic 
representation: results for a portion of the 
stereo mosaics marked in Fig. 3: (a) left color 
mosaic; (b) right color mosaic; (c) and (d) left 
color labels and region boundaries; (e) depth 
map of static regions; (f) moving targets 
(motion: blue to red). Note how close the color 
label image to the original color image is. 
 

Based on these observations, the proposed 
segmentation-based stereo matching approach [11] 
integrates the estimation of 3D structure of an urban 
scene and the extraction of independent moving objects 
from a pair of dynamic pushbroom stereo mosaics in a 
unified framework. The algorithm starts with the left 
mosaic (see a portion in Fig. 4a), by segmenting it into 
homogeneous color regions that are treated as planar 
patches (Figs. 4c and 4d). We apply the mean-shift-
based approach [12] for color segmentation. Then the 
stereo matching is performed based on these patches, 
called natural matching primitives [11], between two 
original color mosaics (Figs. 2a and 2b). The natural 
matching primitives are named since they are based on 
the real shapes of objects in the natural scenes. The 
basic idea is to only match those pixels that belong to 
each region (patch) between two color images in order 
to both produce sharp depth boundaries for man-made 
targets (Fig. 2d) and to facilitate the searching and 
discrimination of the moving targets (each covered by 
one or more homogeneous color patches) (Fig. 2f). 

As a summary, the natural matching algorithm has 
the following four steps.  



(1). Stereo Matching. After segmenting the left 
image using the mean-shift method, stereo matching is 
performed on each natural matching primitive, i.e. the 
selected “interest points” along the boundary of every 
patch.  The following three sub-steps are performed: 
planar fitting for refining the local matches of interest 
points, neighborhood supporting for correcting possible 
errors of the local matches, and region merging so that 
those neighboring regions with the same planar 
parameters will be grouped into one larger, physically 
meaningful region.  

(2). Epipolar test. Using pushbroom epipolar 
geometry in stereo matching, correct matches are found 
for the static objects, but moving objects will be those 
“outliers” without correct matches along epipolar lines.  

(3). 3D anomaly test. After ground surface fitting 
(and road detection if possible), moving objects in the 
same motion direction as the camera’s will exhibit 
wrong 3D characteristics (e.g., hanging above roads or 
hiding below roads).  

(4). Motion extraction. Searching matches for 
outliers (which are candidates for moving objects) with 
a 2D and larger search range, or along the road 
directions (if available). 

5. CB3M: Content-Based 3D Mosaics  
The proposed content-based 3D mosaic (CB3M) 

representation is a highly compressed visual 
representation for a very long video sequence of a 
dynamic 3D scene. It could fit into the MPEG-4 
standard [13], in which a scene is described as a 
composition of several Video Objects (VOs), encoded 
separately.  

A CB3M representation is a set of VO primitives 
(patches) that are defined as  

CB3M = {VOi, i =1, …, N}  
 = { (ci, bi, ni, mi), i =1, …, N}  (4) 

where  
(1) N is the number of VOs, i.e., natural patches 

(regions);  
(2) ci is the color (3 bytes) of the ith region;  
(3) bi is the 2D boundary of the ith region in the 

left mosaic, chain-coded as bi = {(x0, y0), b1, 
b2 , … bKi}, where the starting point (x0,y0) 
has 4 bytes, and each chain code has 3 bits. Ki 
is the number of boundary points and K = ∑Ki 
is the total for all regions;  

(4) ni = (nx, ny, nz, d) represents the plane 
parameters of the region in 3D, 4 bytes for 
each parameter; and  

(5) mi represents the L motion parameters of the 
region if in motion (e.g. L =2 for 2D 
translation on the ground).  

Therefore the total data amount is  
Ncolor+ Nboundaryr+ Nstructure+ Nmotion 
= 3N + (4N+3K/8) + 4*4N+4L*Nm 
= 23N+3K/8+4LNm (bytes)   (5) 

when each of the motion and structure parameters needs 
4 bytes. In the above equation, Nm is the number of 
moving regions (which is much smaller than the total 
region number N).  

The compression of a video sequence comes from 
two steps: stereo mosaicing and then content extraction. 
For the real image sequence of a campus scene we 
discussed before, we have 1000 frames of 640*480 
color images, so the data amount is 879 MB. The size 
of pair of the stereo mosaics (Fig. 3) is 4448*1616*2, 
which has 41MB (without compression and with more 
than half empty space due to the fact that the mosaics 
go in a diagonal direction). The two mosaics in high-
quality JPEG format only have 2*560 KB; therefore, a 
compression ratio of about 800 is achieved for the 
stereo mosaics (the first step).  

Then after color segmentation 3D planar fitting and 
motion estimation, we obtained the CB3M 
representation of the video sequence, with the total 
number of the natural regions N = 20,636 and the total 
number of boundary points K = 1,009,247. The total 
amount of data in its CB3M representation is 888 KB 
(with a header but without coding the motion). This real 
file size is consistent with the estimation of data amount 
using Eq. (5), which is about 833 KB. The data amount 
is reduced to 398 KB with a simple lossless Winzip on 
the CB3M data; therefore, the compression ratio is 
about 2261. More importantly, the CB3M 
representation has object contents which can be used 
for object indexing, retrieval and image-based 
rendering.   

6. Conclusions 
In this paper we propose a content-based 3D mosaic 

representation (CB3M) for long video sequences of 3D 
and dynamic scenes captured by a camera on a mobile 
platform. In real applications, the motion of the camera 
should have a dominant direction of motion (as on an 
airplane or ground vehicle), but 6 DOF motion is 
allowed. In the first step, a pair of generalized parallel-
perspective (pushbroom) stereo mosaics is generated 
that captures both the 3D and dynamic aspects of the 
scene under the camera coverage. In the second step, a 
segmentation-based stereo matching algorithm is 
applied to extract parametric representation of the color, 



structure and motion of the dynamic and/or 3D objects, 
and to represent them as planar surface patches.  

The content-based 3D mosaic (CB3M) 
representation is a highly compressed visual 
representation for very long video sequences of 
dynamic 3D scenes. It could fit into the MPEG-4 
standard, in which a scene is described as a composition 
of several Video Objects (VOs), encoded separately. 
The compression of a video sequence comes from both 
steps: stereo mosaicing and then content extraction. For 
the real image sequence of a campus scene discussed in 
the paper, with 1000 frames of 640*480 color images, a 
compression ratio of more than 2,000 is achieved. More 
importantly, the CB3M representation has object 
contents represented. The CB3M representation 
presented in this paper, however, it still in its 
conceptual level, and many details and practical issues 
have not been considered. First, more experiments are 
needed with both simulated and real video sequences to 
evaluate the coding and compression capabilities of this 
representation. Second, in order to use the CB3M 
representations for real applications, further 
enhancements are also needed. For example, the 
neighboring regions, which have been extracted in the 
second steps, and which are important in object 
recognition and occlusion handling in image rendering, 
are not represented in the current model. Developing 
higher-level representations that group the lower-level 
natural patches for physical objects may also be very 
useful for many applications.  
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