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Abstract
Range sensing technology allows the photorealistic mod-

eling of large-scale scenes, such as urban structures. The
generated 3D representations, after automated registration,
are useful for urban planning, historical preservation, or vir-
tual reality applications. One major issue in 3D modeling of
complex large-scale scenes is that the final result is a dense
complicated mesh. Significant, in some cases manual, post-
processing (mesh simplification, hole filling) is required to
make this representation usable by graphics or CAD appli-
cations. This paper presents a 3D modeling approach that
models large planar scene areas of the scene with planar
primitives (extracted via a segmentation pre-process), and
non-planar areas with mesh primitives. In that respect, the
final model is significantly compressed. Also, lines of in-
tersection between neighboring planes are modeled as such.
These steps bring the model closer to graphics/CAD appli-
cations. We present results from experiments with complex
range scans from urban structures and from the interior of a
large-scale landmark urban building (Grand Central Termi-
nal, NYC).

1 Introduction
Our goal is the automated generation of coherent 3D mod-

els of large outdoor scenes by utilizing information gath-
ered from laser range scanners and regular cameras. There
is a clear need for highly realistic geometric models of
the world for applications related to Virtual Reality, Tele-
presence, Digital Cinematography, Digital Archeology, Jour-
nalism, and Urban Planning. Recently, there has been a large
interest in reconstructing models of outdoor urban environ-
ments. The areas of interest include geometric and photore-
alistic reconstruction of individual buildings or large urban
areas using a variety of acquisition methods and interpreta-
tion techniques, such as ground-base laser sensing, air-borne
laser sensing, ground and air-borne image sensing.

A typical 3D modeling system involves the phases of
(1) individual range image acquisition from different view-
points, (2) noise removal for each range image, (3) segmen-
tation of each range image (i.e. extraction of lines, planes,
etc.), (4) registration of all images into a common frame of
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reference, (5) transformation of each range image into an
intermediate surface-based or volumetric-based representa-
tion, (6) merging of all range images into a common repre-
sentation (3D model), (7) hole filling in the final 3D model,
(8) simplification of the final 3D model, and (9) construction
of CAD model of the scene. The third step (segmentation)
is not utilized by all systems, but it is very important in our
approach.

There has been significant progress in the area of 3D mod-
eling from dense range scans. Representative 3D modeling
systems include the following: [1, 2, 3, 4, 6, 7, 9, 14, 10]. We
present a method for 3D modeling and mesh-simplification
(sixth, and eighth task of a 3D modeling system) based on
the segmentation results of each range image (third task). We
also provide a hole filling algorithm in the final 3D model.
Our goal is to retain the geometric details of the 3D model in
areas where planar segmentation is not possible and to sim-
plify the model in areas where planar segments from the seg-
mentation module are available. This approach is beneficial
in large-scale scenes that contain a large number of planar
areas (such as urban environments). Our ultimate goal is the
automated generation of a CAD model of the scene.

The fact that we are relying on the original segmenta-
tion results for modeling planar areas increases the time-
efficiency and accuracy of our algorithms in these areas.
Meshing the planar parts using the 3D range points increases
the time- and space-complexity of the method. It is how-
ever much easier to model them as large planes. Also mesh-
ing algorithms are not able to correctly model sharp corner
discontinuities due to noisy range measurements around cor-
ners. We, on the other hand, are able to robustly estimate
the location of these sharp corners by the utilization of the
planar segments. The major steps of our approach are as fol-
lows: (a) detection of planar segments in each range scan
[13], (b) merging of planar components from overlapping
range scans, (c) detection and representation of lines of inter-
section between planar components, (d) identification of the
non-planar parts of the scene, (e) modeling of the non-planar
parts with mesh primitives, and (f) hole filling.

2 Merging Planar Components
In this section we present a method that merges seg-

mented planar areas of two or more overlapping range scans.



We assume that the range-to-range registration problem has
been solved, and that we are given a set of registered and
segmented 3D scans. When two or more scans are reg-
istered, segmented planar areas (abbreviated as SPAs) that
correspond to the same part of the scene but acquired from
different viewpoints overlap. The overlapping SPAs do not
match exactly in size, shape, and position due to (a) occlu-
sions from other scene objects, (b) different fields of views
(not seeing the same part of the scene), (c) different view-
ing angles and distances, (d) different amounts of noise (due
to different grazing angles), and (e) errors introduced by the
segmentation module. Our algorithm must detect the over-
laps and then merge the overlapping regions into consistent
polygonal areas. By doing this we expect to create segments
that describe consistent 3D shapes (polygons in our case),
and not only parts of the shapes seen from different points
of view. Alternatively, a system could segment the final reg-
istered point cloud into SPAs. Such an approach would not
require the merging of SPAs of different range scans. On
the other hand, detecting planar segments along with their
boundaries is a robust and efficient process if performed on
each individual range scan. This is due to the fact that the
structure (grid) of each range scan can be utilized for each
individual image. That is why we independently segment
each range scan and then merge the segments.

Each range scan Ri is represented as a two-dimensional
array of 3D points {r(k, l), k = 1 . . .N, l = 1 . . .M}1. The
segmentation module [13] operates on each range scan Ri

and produces a segmented range scan Si. Each segmented
scan Si consists of a set of segmented planar areas (the terms
SPA, segmented planar area, cluster, or planar cluster will be
used interchangeably in the rest of the document). Each SPA
Ci is a bounded plane with exterior and possible interior (i.e.
holes) borders. It contains the following information:

1. The infinite plane P (Ci) where Ci lies (unit normal and
position of the plane),

2. The set of 3D points of scan Ri that lie on the SPA Ci.

3. A polygonal outer boundary of Ci as a sequence of
range points r(k, l), and

4. Zero or more polygonal inner boundaries of Ci (holes).

5. A geometric center, or centroid.

The algorithm that merges SPAs between two overlapping
scans is as follows (for details refer to Sec. 2.1):

1. The SPAs that do overlap between the two scans are
detected. Two segmented planar areas Ci and Cj over-
lap iff they are co-planar (i.e. the lie on the same infi-
nite plane) and their polygonal boundaries have a non-
empty intersection. To test co-planarity the orienta-
tions and positions of the two infinite planes P (Ci) and

1The indices k, l define the position and orientation of the laser-beam
which produces the 3-D point r(k, l).

P (Cj) need to be compared within an angle threshold
athresh and distance threshold dthresh respectively. In
order to decide whether the co-planar polygonal bound-
aries of Ci and Cj have a non-empty intersection, the
boundaries should first be rotated to become parallel
to the plane z = 0. This allows us to perform 2D
polygonal processing operations. In particular, we can
intersect the rotated polygonal boundaries and decide
whether the intersection is empty or not.

2. Overlapping SPAs are united into a merged planar
area. In order to achieve this the SPAs become paral-
lel to the plane z = 0 through a rotation. Then the areas
are united on the 2D space of the plane z = 0. Finally
the united result is rotated back in 3D space by applying
the inverse rotation.

In order to implement the aforementioned algorithm each
SPA needs to maintain additional information. In particular,
each SPA also includes the following members: conformed
plane normal, conformed plane position, conformed set of
outer/inner boundary points, and conformed centroid. The
conformed data members play a key role. Initially they are
equal to the actual plane normal/position, set of outer/inner
boundary points, and centroid of the planar area. As the al-
gorithm proceeds, the conformed data members diverge from
the original values. In particular, when a set of k ≥ 2 clusters
C1, . . . , Ck are considered to be co-planar, then before any
transformation takes place the (weighted) average normal
and average position of all k clusters is calculated. The con-
formed normal and position of the k clusters is made equal to
the average normal, and the inner and outer boundary points
of each cluster is projected on the conformed plane (i.e. the
average plane going between all k clusters). This projection
constitutes the conformed inner and outer boundaries. Fi-
nally, the conformed centroid of all k clusters is made equal
to the (weighted) average of the actual centroids of the clus-
ters. Now, the conformed boundary points of the k clusters
are rotated around their common conformed centroids. The
fact that we are using the conformed boundary points means
that all the rotated points lie on the exact same plane before
and after the rotational transformation. If after the rotation
the clusters do not overlap, then the algorithm reverts to the
original plane positions, normals, and outer/inner boundary
points.

Finally, the time complexity of the algorithm has been
improved by the utilization of orthogonal bounding boxes
around the boundaries of each planar cluster. If the bounding
boxes of the boundaries of the clusters do not overlap then no
further consideration of planar overlap is needed. A result of
the merging algorithm for one building is shown in Fig. 4.
2.1 Skeleton of the algorithm

In this section we present the merging algorithm in more
detail.
INPUT: A set S1 = {C1

1
, C1

2
, . . . , C1

N} of N planar clusters
(SPAs) from scan R1, and a set S2 = {C2

1
, C2

2
, . . . , C2

M} of



M planar clusters (SPAs) from scan R2.
OUTPUT: A set {Cu

1
, Cu

2
, . . . , Cu

L} of L united planar
clusters , and K unchanged (due to no overlap) clusters
{C3

1
, C3

2
, . . . , C3

K}.

STAGE 1: For each pair of clusters (C1

i , C2

j ) between
scans R1 and R2, decide if there is an actual overlap
between them. No merging is taking place at this stage.
The boolean variable Overlap(C1

i , C2

j ) becomes true
iff an overlap exists.
Testing for overlap between two SPAs is achieved as
follows:
If the bounding boxes of the two planar clusters overlap
and their infinite planes are co-planar within an angle
threshold athresh and distance threshold dthresh, then:

1. Conformed plane normals/positions, centroids,
and boundary points for both clusters are com-
puted.

2. A common conformed centroid (weighted average
based on the number of boundary points) for both
clusters is computed.

3. Both clusters are rotated around the common con-
formed centroid so that they become parallel to the
z = 0 plane.

4. The transformed boundary points are translated
into generalized LEDA [8] polygons. The boolean
intersection operator between the two LEDA
polygons is applied. Finally, the two clusters over-
lap if and only if the intersection of their LEDA
polygons is not empty.

STAGE 2: The pairwise Overlap relation between pairs
of clusters in S1 × S2 defines an equivalence relation
EQ among the clusters in the set S1 ∪ S2. The re-
lation EQ is defined as follows: (a) (Ci, Ci) ∈ EQ

for all clusters Ci ∈ S1 ∪ S2. (b) If Overlap(Ci, Cj)
then (Ci, Cj) ∈ EQ, for all cluster Ci ∈ S1 and
Cj ∈ S2. (c) If (Ci, Cj) ∈ EQ then (Cj , Ci) ∈ EQ,
for all clusters in S1 ∪ S2. (d) If (Ci, Cj) ∈ EQ and
(Cj , Ck) ∈ EQ then (Ci, Ck) ∈ EQ for all clusters in
S1 ∪ S2. In other words this equivalence relationship
partitions the clusters of S1∪S2 into subsets that define
common planar surfaces2.
In this stage the set S1∪S2 of clusters is partitioned into
the equivalence classes defined by EQ. All clusters in
each equivalence class are part of the same extended
planar surface.

STAGE 3: This is the last stage, where all clusters in the
same equivalence class (i.e. clusters that are part of the
same planar extended surface) are being united. Note
that the partition has been computed in the previous

2For instance if Overlap(Ci, Cj) and Overlap(Cj , Ck) then clusters
Ci, Cj and Ck are all part of an extended planar surface.

step. Now for each set {C1, . . . , Cm} of an equivalence
class (with m ≥ 2) the union Cu is computed as fol-
lows:

1. Conformed plane normals/positions, centroids,
and boundary points for all m clusters are com-
puted.

2. A common conformed centroid (weighted average
based on the number of boundary points) for all
clusters is computed.

3. All clusters are rotated around the common con-
formed centroid so that they become parallel to the
z = 0 plane

4. The transformed boundary points are translated
into generalized LEDA polygons and the boolean
unification operator between the two LEDA poly-
gons is applied. A new cluster Cu is created. The
resulted generalized polygon is transformed into
the outer and inner boundaries of Cu.

5. Finally, the inverse of the rotation computed in
step 3 is applied to the boundaries of Cu, so that
it is now expressed in the original coordinate sys-
tem.

STAGE 4: The final output consists of all the united clus-
ters Cu and all clusters Ci ∈ S1∪S2 that do not overlap
with any other cluster in the data set.

3 Producing straight planar borders
One of the drawbacks of automated 3D model creation

from range datasets is the inability to capture clean straight
boundaries at sharp normal discontinuities (corners) due to
noisy measurements around the corners. An example of this
problem is shown in Figures 6(a) and 6(b). Creating straight
borders from the measured boundaries is the second step (af-
ter planar segmentation) of automatic CAD model genera-
tion. Our approach is based on the automated computation
of lines of intersection between neighboring planar clusters.
These lines are very accurately and robustly computed. That
is why they can become the missing straight 3D borders. A
detail of our results is shown in Figures 6(c) and 6(d).

4 Identifying range points not on SPAs
The computation of the merged planar areas from a set

of range scans, naturally leads to the need to combine the
planar with the non-planar areas of the 3D scene. Consider
two range scans R1 and R2 that have been placed into the
same frame of reference after registration. Let us call S1

the set of segmented planar areas of the first scan and S2

the set of segmented planar areas of the second scan. Our
merging module merges the segmented planar areas S1 and
S2 (by uniting overlapping areas) resulting to the set Sm

of planar areas (see section 2). Let us call NP1 the set of
unsegmented points from the first scan. These are the range
points of R1 that are not in any segmented planar area of
S1 (this information is given by the segmentation module).



Figure 2: Axes-aligned bounding boxes of planar areas with
respect to the coordinate system that conforms to the build-
ing structure (shown in red), with tightly enclosed planar ar-
eas (shown in various colors). The scene is seen from a view
that is different that the view used in figures 1(a) and 1(b).

Similarly, NP2 is the set of unsegmented points from the
second scan. We wish to identify the set of points NP ⊂
NP1 ∪ NP2 that lie within the planar areas of Sm. Then
the set of points NP1 ∪ NP2 − NP contains only points
not on any planar area of Sm

We first compute the axes-aligned bounding boxes of the
planar areas in the set Sm. This will help us to perform
a fast3 interiority test. That means that we can efficiently
decide which unsegmented points lie within the bounding
boxes of the planar areas. The points that are interior to the
bounding boxes may or may not overlap the planar areas, and
further testing is necessary. However, points that are exterior
to the bounding boxes do not overlap any planar area; no fur-
ther testing is therefore required for them. Since the range
scans are not aligned with the axes of the coordinate sys-
tem, the computed bounding boxes have large extent, mak-
ing most points being interior to them (see Fig. 1(a)). That is
why the major 3D directions of the 3D scene are calculated.
The range points are then rotated in a way that makes the
three Cartesian axes parallel to the three major directions of
the scene. The bounding boxes are now much smaller and
tightly enclose the planar areas (see Figs. 1(b) and 2). In
this way most of the unsegmented points that do not overlap
the planar areas fall outside of the bounding boxes and are
excluded from further consideration.

The second step is to identify which unsegmented points
in NP1 ∪ NP2 that are interior to the bounding boxes ac-

3O(NM) time complexity, where N is the number of unsegmented
points and M is the number of planar areas. Note that M is much smaller
than the number of range points.

tually lie on planar areas. This step is necessary because a
point that is classified as unsegmented from one view may
happen to lie on a segmented planar area of another view.
For every unsegmented point Pi that lies within the bound-
ing box of a planar area Aj the following processing is per-
formed:

1. The unsegmented point and the planar area are rotated
so as for the planar area to be on plane z = 0.

2. The z-coordinate of the rotated point P ′

i = [xi, yi, zi]
T

is the vertical distance of the point from the planar area.
If this distance is larger than a threshold zth = 0.1m

the point is still considered as unsegmented.

3. Otherwise, the projection [xi, yi]
T of the unsegmented

point on the plane z = 0 is considered. If this projec-
tion lies within the polygonal boundary of the rotated
planar area, then the point actually lies on the area. In
this case the status of the point changes from unseg-
mented to planar. This interiority test is an expensive
operation implemented by the LEDA library. Our algo-
rithm, however, is computationally feasible due to the
fact that most of the points have been discarded from
further consideration in the first step (bounding box in-
teriority step).

In summary an unsegmented point of the set NP1 ∪ NP2

can change its status (i.e. become planar) if and only if all
the following apply:

• The point is interior to one bounding box.

• The distance of the point from the planar area of the
bounding box is smaller than zth = 0.1m (step 2 of the
previous test).

• The projection of the point on the planar area lies within
the boundaries of the planar area (step 3 of the previous
test).

Fig. 3 shows unsegmented points correctly classified as
lying on planar areas or not. From a total of 1, 717, 185
points from two scans 943, 265 (54.9% of the total) are clas-
sified as planar (i.e. the produce the segmented planar ar-
eas of the two scans) by the segmentation phase. Of the
remaining 773, 920 unsegmented points: 1) 54, 351 points
(0.03% of the total) lie on the planar areas and thus become
planar points. 2) 719, 569 points (41% of the total) retain
their status (i.e. they do not lie on any planar area). Fi-
nally, the unsegmented points can be further classified by
calculating their distance from the bounding boxes. Out of
the 719, 569 unsegmented points that retained their status,
528, 807 (30.8%) are within 1 meter from at least one bound-
ing box, and 190, 762 (11% of the total) points are further
away.



(a) (b)

Figure 1: (a) Axes-aligned bounding boxes of planar areas with respect to scanner’s coordinate system (shown in blue). Note that the boxes
have large extent since the measured surfaces are tilted with respect to the axes of the range scanner.(b) Axes-aligned bounding boxes of
planar areas with respect to the coordinate system that conforms to the building structure (shown in red). The bounding boxes are now much
smaller and tightly enclose the planar areas.

5 Meshing Algorithm
Parts of the scene that are not planar (as identified by the

algorithm of the previous section) are modeled via an im-
plementation of the ball pivoting algorithm [3]. This algo-
rithm has a number of advantages: a) it is general, b) it is
conceptually simple, c) it does not average the point mea-
surements but faithfully follows the data, and d) it allows for
space-efficient out-of-core implementation (i.e. the data can
be processed in slices that fit in main memory). Its main
disadvantage (wrt [4] for example) is that the selection of a
ball radius ρ is critical, and that a large number of holes will
appear in the final model. However, its natural out-of-core
implementation makes it appropriate for large datasets.

The basic idea of the algorithm is as follows. The input
is a set of registered range scans that are represented as 3D
points with normals. The connectivity information within
points of the same scan does not need to be maintained. Sup-
pose that we are given a ball of radius ρ. This radius is a
critical parameter that needs to be specified. First, from the
set of 3D points a seed triangle of three points is detected.
Three points define a seed triangle iff an empty ball of radius
ρ passes through all three points. This seed triangle is the
first triangle of the output mesh. The algorithm continues by
rotating the initial ball around one of the edges until it hits
another data point. Then a new triangle (there are special
cases discussed in the original paper) will be added to the
mesh. The ball continues to roll as long as new points are
being considered. We should note that this ball is always in
contact with exactly three points of the dataset and that is al-

ways empty. If the ball is not able to hit any other point, a
search for a new seed triangle is initiated and the process of
the rotating ball continuous. The algorithm terminates when
no seed triangle can be detected. The selection of the radius
ρ is thus very important, since a small ball will pass through
the points and no mesh will be created, and a large ball will
not be able to capture concavities of high curvature. Unfor-
tunately, due to the inability to select one or more optimal
ball sizes, and due to noise in the computation of normals, a
number of holes appear in the data. A hole filling algorithm
is thus essential.

6 Hole Filling
As mentioned in the previous section, the meshing algo-

rithm produces a large number of holes. The sequence of
boundary edges that surround these holes are identified dur-
ing mesh generation. The hole-filling method of [5] consid-
erably smooths the hole areas. It is thus appropriate for small
holes and smooth data sets (such as statues) and less effective
for large holes and scenes with sharp discontinuities. Here is
the outline of our current hole-filling algorithm:
(1) The input mesh is segmented into connected compo-
nents. This step helps to determine interior holes vs. ex-
terior boundaries. Note that exterior boundaries should not
be filled.
(2) The holes are parametrized by edge tweaking [11]. Each
hole is parameterized as follows:

• Starting at an arbitrary first point, traverse the hole in
the order given. For each vertex vi (a) Estimate the



Figure 3: (a) Top. Merged segmented planar areas (shown in
green) from two scans. Unsegmented points that do not lie on pla-
nar areas are shown in blue. Unsegmented points that are classified
as planar are shown in red. These points become planar because
they are in the bounding box of a planar area, their distance from
the planar area is smaller than zth = 0.1m, and their projection lies
within the boundaries of the planar area (see Sec. 4). The unseg-
mented points will be used for the generation of a triangular mesh,
whereas the planar points will become part of the planar areas on
which they lie. (b) Bottom. Unsegmented points and planar areas.
A different part of the scene is shown.

normal at the vertex, (b) Project the previous and next
edge into the plane defined by the estimated normal,
and compute the angle ai between the edges. Finally,
(c) Compute the length li of the previous edge.

• Transfer the 3D angle and length measurements to the
plane as follows: start walking along the x-axis for a
distance of l0 units, then turn a0 degrees. Next, walk l1
units and turn a1 degrees, etc.

• Transferring the angles and lengths into the plane intro-
duces distortion, so that the starting point and the end-
ing point of the loop will not meet in general. Edge
tweaking closes the loop by defining an objective func-
tion that constrains the endpoints to meet. The objec-
tive function allows the edge lengths to vary, but does
not allow the angles to vary.

• If the amount of distortion is too great, the parame-
terized curve will have self-intersections. Solving this
problem is part of our future work.

• Eliminate surface borders by checking the sum of the
angles around the loop. Outer boundaries can be de-
tected because they have the opposite sign from holes.
Large distortions may cause this test to fail. In practice,
this test seems to generate false negatives but not false
positives.

• Triangulate the parameterized loops using Delauney re-
finement [12].

• Lift the new points to 3D space.

We would also like to investigate the algorithm of [15] that
seems promising.

7 Conclusions
We have presented a method that starting from a set of

segmented range scans, produces large planar areas, along
with dense mesh elements. Linear borders of intersection
are also computed. One of our result is shown in Fig. 7.
Our main contribution is that we provide a framework for
automated CAD scene creation from range datasets.
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Figure 5: (Top) 3D model constructed via an implementation
of the ball pivoting algorithm. Note that large planar areas
around the columns are modeled as dense meshes. (Middle)
Hybrid model: planar areas are modeled as large polygons
(gray color for clarity), while non-planar areas are modeled
via mesh. This representation is closer to a 3D CAD model.
(Bottom) Part of the model that is modeled as mesh.


