
Lightweight 3D Modeling of Urban Buildings From Range Data

Weihong Li
Department of Computer Science

Graduate Center, City University of New York
New York, USA
wli@gc.cuny.edu

George Wolberg
Department of Computer Science

City College of New York
New York, USA

wolberg@cs.ccny.cuny.edu

Siavash Zokai
Brainstorm Technology LLC

New York, USA
zokai@brainstorm.com

Abstract—Laser range scanners are widely used to acquire
accurate scene measurements. The massive point clouds they
generate, however, present challenges to efficient modeling and
visualization. State-of-the-art techniques for generating 3D mod-
els from voluminous range data is well-known to demand large
computational and storage requirements. In this paper, attention
is directed to the modeling of urban buildings directly from
range data. We present an efficient modeling algorithm that
exploits a priori knowledge that buildings can be modeled from
cross-sectional contours using extrusion and tapering operations.
Inspired by this simple workflow, we identify key cross-sectional
slices among the point cloud. These slices capture changes across
the building facade along the principal axes. Standard image
processing algorithms are used to remove noise, fill missing data,
and vectorize the projected points into planar contours. Applying
extrusion and tapering operations to these contours permits us
to achieve dramatic geometry compression, making the resulting
models suitable for web-based applications such as Google
Earth or Microsoft Virtual Earth. This work has applications
in architecture, urban design, virtual city touring, and online
gaming. We present experimental results on synthetic and real
urban building datasets to validate the proposed algorithm.

Keywords - 3D Modeling, point cloud, laser scanning,
range data, segmentation, Google SketchUp, vectorization

I. INTRODUCTION

The 3D modeling of urban buildings is an area of active
research with increasing attention drawn from the computer
graphics and computer vision communities. Current state-of-
the-art algorithms include procedural modeling, 3D laser scan-
ning, and image-based approaches. In addition, conventional
modeling tools are commonly used for this purpose. The most
accurate input source for modeling existing buildings, though,
remains laser range scanners. They provide high geometric
detail by collecting range data from hundreds of meters away
with an accuracy on the order of a few millimeters. This
fidelity is appropriate for construction, architecture, cultural
heritage, and forensics applications. Unfortunately, laser range
scanning can produce an overwhelming amount of data, which
poses great challenges to visualization software that require
lightweight 3D models for interactive use. Polygonal data
generated from range scans are therefore too dense for use in
web-based applications such as Google Earth and Microsoft
Virtual Earth. These applications work best with lightweight
models consisting of only hundreds of polygons.

The goal of this work is to automatically produce high-
quality lightweight models of urban buildings from large-
scale 3D range data. The proposed solution is inspired by the

simple paradigm embedded in procedural modeling as well as
interactive tools such as Google SketchUp. A key idea is that
a simple set of extrusion and tapering operations applied to 2D
contours can grow a wide array of complex 3D urban models.
We propose a reverse engineering approach to infer key cross-
sectional planar contours along with a set of extrusion and
tapering operations to derive lightweight models that conform
to the 3D range data.

The proposed algorithm can generate models across a wide
spectrum of resolutions. A particularly useful feature of the
algorithm is that it outperforms existing approximation tech-
niques by preserving the sharpness of the raw data, even at low
resolution. The contribution of this work is that it combines the
benefits of a priori knowledge of urban buildings and fast 2D
image processing techniques to perform 3D modeling of urban
buildings directly from point cloud data (PCD). This offers the
benefit of a cost-effective geometry compression approach for
voluminous range data within the domain of urban structures.
It can be applied to boost web-based 3D applications, virtual
city touring, and online gaming.

II. RELATED WORK

In an attempt to steer clear of tedious and expensive hand-
made models, procedural modeling of buildings in [1] has
been proposed. By using an effective description language,
buildings and streets of a virtual city can be generated auto-
matically. The strength of this approach is that the description
language can generate a huge number of buildings and streets
quickly and beautifully. This is particularly useful for gaming
and other computer graphics applications. However, since the
parameters used to generate the buildings are randomly gen-
erated, the city generated with these buildings and streets is a
virtual one. This approach is not useful for attempting to model
an existing building. To do so, one has to manually specify the
parameters of the building, which is very cumbersome. Our
goal is to automatically infer the contours and parameters of
an existing building directly from dense range data.

Reconstruction of 3D models from range data has been
addressed in [2] with applications in numerous research areas,
including computer-aided design (CAD), computer vision,
architectural modeling, and medical image processing. The
authors in [3] use a histogram of height data to detect
floors and ceilings for creating accurate floor plan models of
building interiors. In [4], the authors proposed a 3D building
reconstruction from a 2D floorplan image. With the help of a

2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission

978-0-7695-4369-7/11 $26.00 © 2011 IEEE

DOI 10.1109/3DIMPVT.2011.23

124

Data
acquisition

Slab
partitioning

Slab
projection

Input scene Point cloud Volumetric slabs 2D Slice Keyslice detection /
Boundary vectorization

Taper
detection

Extruded keyslicesTapered faces

ExtrusionRendering

Output model Keyslices

Fig. 1. Overview of the proposed approach.

2D floorplan image, both the interior and exterior of a building
can be reconstructed accordingly. A survey on methods for
generating 3D building models from architectural floor plans
is given in [5]. However, reliance on 2D floor plans makes
this approach too limiting for most applications, including our
project.

In [6], known manufacturing features were used to infer
the 3D structure of mechanical parts. Their method benefits
from the domain knowledge that most of the mechanical parts
consist of predefined structures, such as holes, bosses, and
grooves. Our work is partially motivated by this idea since it
also incorporates a priori knowledge about the construction of
urban buildings for further inference. However, their method
is based on predefined simple geometry structures and the
assumption that the input 3D data has no holes. This hinders
their approach for applications with incomplete data.

Multimodal data fusion is another approach for large-scale
urban environment modeling. In [7], both air and ground data
are fused, including laser scans, camera images, and aerial
images. The LIDAR scans are used to create the models
and the camera images are used for texture mapping. Citing
the cumbersome and expensive use of laser scanners, the
researchers in [8] propose an approach that relies solely on
passive sensors (cameras) mounted on a moving vehicle.
Dense 3D point cloud measurements are derived using their
multiview stereo module based on multiple plane sweeping
directions. In an attempt to compress the voluminous data
produced in the method of [8], Xiao et al. [9] introduced an
alternate approach for modeling facades along a street using
prior knowledge about the buildings. They achieve geometry
compression and deliver a clean approximation of the facades
by applying a combination of plane fitting and window de-
tection. Their method, however, relies on limited assumptions
about the planarity of the buildings. The method introduced
in this paper, however, places no such limitations. We can
handle facades of any shape that exploit extrusion and tapering
operations. Toshev et al. proposed a grammar based method
for detecting and parsing buildings from unorganized street-
level point clouds [10] . Despite its efficiency in modeling,

the results could not generate enough level of details for the
buildings.

In [11], the authors divide the point cloud into slices from
which circles can be fitted to extract pillars of buildings.
Although we also use slices of point cloud data, our work
generalizes to arbitrary profiles and multiple sweeping direc-
tions. In related work, [12] uses 2D slices of point cloud data
to segment simple primitives such as lines and arcs. Clustering
these 2D primitives from slice to slice is used to fit planes and
cylinders to the 3D data. This limits the work to recovering
only simple planar and cylindrical fragments of the complete
model. The remaining segments are left as point cloud data.

III. OVERVIEW

We propose an efficient way to reconstruct 3D models from
range data by partitioning the data into thin cross-sectional
volumetric slabs. For each slab, all range data in that slab is
projected onto a 2D cross-sectional contour slice. Producing
this array of slices permits us to avoid costly computation
directly on 3D data. A similarity measure is used to cluster the
sliced images together into keyslices. This term is analogous to
the use of “keyframes” in computer animation, which denote
important snapshots in the animation sequence from which
intermediate results can be derived. In essence, each keyframe
is a slice in the spatiotemporal volume of an animation. Simi-
larly, each keyslice is a 2D image which contains a transitional
cross-section of the building, encapsulating major contours in
the facade. The model is then generated by applying basic
extrusion and tapering operations from one keyslice to the
next. This produces a lightweight representation consisting of
only a few hundred polygons.

Fig. 1 depicts the basic concept of our algorithm. We begin
with the acquisition of a dense 3D point cloud C of a building.
C is then partitioned into a nonoverlapping set of volumetric
slabs. Each slab S is associated with one projection plane
P , sitting at the base of S. The purpose of partitioning C
is to establish a set of cross-sections, or contour slices. By
examining the changes among these slices, we can identify
the prominent slices, or keyslices, as well as the necessary

125

Major Plane
Detection

3D Data
Generation &
Acquisition

Pre-processing

Dataset
Segmentation

2D Slice
Extraction &
Enhancement

Post-processing

Model
Visualization

Model
Generation

Lightweight 3D Reconstruction
Keyslice
Detection

Tapering
Detection

Boundary
Vectorization

More
Segments?

N

Y

Window
Detection

Window
Installation

Fig. 2. The flow diagram of the system.

extrusion and tapering operations that must apply to them
to generate the model. By casting this 3D modeling task
into a series of 2D operations, we reduce the dimension of
the problem to achieve a significant savings in computational
complexity.

The modular flow diagram for our system is shown in Fig. 2.
The whole system consists of three stages of computation. In
the first pre-processing stage, 2D slices are extracted from
the heavy 3D range data and are enhanced by noise removal
and the filling of missing data. The segmentation module is
then carried out to divide the complicated 3D dataset into
simpler segments. The second stage is iteratively applied to
each segment, including window detection, keyslice detection,
boundary vectorization, and tapering detection. The final stage
reconstructs each segment and assembles them into a whole
model.

IV. PREPROCESSING THE RANGE DATA

The input to our system is range data assembled as a
3D point cloud. We have registered the voluminous 3D data
acquired from multiple scans of buildings using the algorithm
in [13]. That same algorithm is also responsible for extracting
the major axes of the building in order to align it to the
axes of the world coordinate system. This is necessary to
properly infer the keyslices. Fig. 3(b) displays a properly
aligned, registered 3D point cloud.

(a) (b)

Fig. 3. (a) Input scene. (b) 3D point cloud of scene assembled by registering
14 scans, each having one million points.

In addition to real data, we also generated some synthetic
datasets for experiments. These synthetic datasets were sam-
pled from 3D building models containing 3D faces and their
normals, which were downloaded from Google 3D warehouse.
The first two rows of Fig. 9 show two such models and their
3D point clouds in (a) and (b), respectively.

A. Major Plane Detection

The input to our system consists of unorganized 3D point
clouds. We solve for the major planes, whose normals are the
sweeping directions from which to extract 2D slices. These
slices are the starting point for segmentation and window
detection. We used moving least squares (MLS) for deriving
a smooth plane from a set of neighboring data points in space
for normal computation. After the normal is computed for
each 3D point, the Hough transform was used to identify
the major plane normals based on voting [14]. These normals
will determine the orientation of the cross-sections that sweep
through the PCD.

B. Extraction of 2D Slices

We consider the PCD as a large array of 3D points to be
sliced into equispaced parallel volumetric slabs. All 3D points
within each slab are projected onto a projection plane, or slice,
at the base of the slab. Fig. 4(a) shows the 3D point cloud in
Fig. 3(b) partitioned into 50 slabs. The projected 3D points in
each slab form cross-sectional contour slices. Fig. 5 depicts
four such slices, associated with the four displayed projection
planes of Fig. 4(a).

Fig. 4. (a) The 3D point cloud of Fig. 3(b) partitioned into uniform volumetric
slabs. The 3D points in each slab are projected onto a projection plane to form
cross-sectional slices. Four such planes are shown; (b) Segmentation result of
Fig. 3(b).

(a) (b)

(c) (d)

Fig. 5. The set of slices corresponding to the four projection planes in
Fig. 4(a).

126

Without loss of generality, the y−axis is used to represent
the bottom-up direction. Over each slab in height range
[Hlo, Hhi), we project the 3D data P (x, y, z), for Hlo ≤ y <
Hhi, onto a 2D image slice. The projection is normalized in
the range [0,W], where W is the image width:

[x2D, y2D]T = ω · [x3Di −XMIN , z
3D
i − ZMIN]T (1)

Note that ω = W/(XMAX − XMIN), and that the [XMIN ,
XMAX] and [ZMIN , ZMAX] pairs define the 3D bounding
box, which can be obtained through user input and can be used
to clip away noise data. Fig. 5(a)-(d) show some examples of
the 2D slices, where noise and incomplete data are observed.
We repeatedly sweep through the volume to extract parallel
volumetric slabs along the directions of the major plane
normals computed in Sec. IV-A. Fig. 8, for example, depicts
slices extracted from the side view.

C. Filling Missing Data

Extracted slices often have missing data due to occlusion or
other visibility issues. Fortunately, most urban buildings have
symmetry that we can exploit to fill these gaps. Symmetry
computation on 3D data is expensive [15], so we conduct
this computation on the 2D image slices. Since the 3D data
has been already rectified during the registration process and
projected onto 2D slices [13], symmetry computation now only
needs 2D translation. Let P (x, y) be a point on the original
image I and P ′(x′, y′) be the reflected point of P with respect
to a symmetry line L. The symmetry computation equation for
L is as follows:

L = argmin
x,y

∑
dx,y(P

′, I) (2)

where dx,y(P
′, I) is the distance between the self-reflected

point P ′ and its nearest data point in image I . The reflected
point P ′ of the original point P is computed with respect to a
line along either the x− or y− axis. Therefore, the symmetry
line L is obtained as the line with minimum summation error
over the reflected data points. Fig. 6(a) and Fig. 6(b) depict
the original input with missing data, and the output after gap
filling using symmetry computation, respectively.

(a) (b)

Fig. 6. Symmetry-based gap filling. (a) Original 2D slice image and (b)
output image after gap filling.

D. Dataset Segmentation

Modeling the PCD of a building as a whole structure
simultaneously is complicated due to the natural complexity of
buildings. To simplify this problem, we utilize the divide and
conquer strategy to segment the whole PCD into simpler parts.
Each of these parts can be easily represented by extrusion/taper

operations. 3D PCD segmentation is generally performed
using region based methods, although their computational cost
may be high. We propose an efficient segmentation approach
based on the observation that different parts of a building
are usually separated by walls, ledges, and other architectural
elements. These “separators” provide segmentation clues.

To detect these separators, we examine the data point
distribution of 2D slices extracted from all major planes, as
depicted in Fig. 7. We identify the separators as the indices of
the slices that coincide with the local maxima and inflection
points in the data point distribution. Once we obtain the
separators, we can segment the original dataset based on the
intersections of these separator planes. As Fig. 4(b) shows,
there are a total of five regions that are identified for the PCD
shown in Fig. 3(b), where each segment is labeled with a
different color.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400

Index of keyslices from X axis

N
or

m
al

iz
ed

 n
um

be
r o

f p
ix

el
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600

Index of keyslices from y axis

N
or

m
al

iz
ed

 n
um

be
r o

f p
ix

el
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600

Index of keyslices from Z axis

N
or

m
al

iz
ed

 n
um

be
r o

f p
ix

el
s

(a) (b)

Fig. 7. The distribution of data points in cross-sectional slices along X, Y, and
Z axes for the model shown in the second row of Fig. 9(b). The distribution
is defined as the sum of pixels of each cross-sectional slice. (b) Top view
of the point cloud with cutting planes inserted at the extremas of the point
distributions shown in (a).

V. LIGHTWEIGHT 3D RECONSTRUCTION

Our 3D modeling algorithm is based on a priori knowledge
that urban buildings can be created through a series of ex-
trusion and tapering operations on the salient cross-sections
contained in the keyslices. The main step for successful
modeling is identifying these salient cross sections upon which
the extrusion and tapering operations apply.

A. Window Detection

Windows and doors are important features for buildings to
be modeled. Moreover, accurate computation of the extrusion
structures depends on this information. Without knowing the
locations of the windows, extra keyslices may be computed
hence leading to excessive extrusion operations on windows.
Our window detection algorithm is based on the work pre-
sented in [16]. Following this, we can generate mask images
based on the boundaries of the detected windows to discard
the 3D points in the window regions for keyslice computation.

127

During the window and door detection step, we retain the
boundary, position, and depth of the windows. After the facade
is extruded from one keyslice to the next (see Sec. V-B), we
project the boundary of the window/door onto the extruded
facade. This projected boundary is pushed into the facade in
the opposite direction of the face normal up to the recovered
depth of the window. This action significantly reduces the
number of polygons from the model.

B. Keyslice Detection

The 2D image slices of an extruded region are similar to
each other. Thus, to detect the keyslices that delimit extruded
regions one only needs to compute the similarity between
adjacent slices. We adopted a light-weighted global and effi-
cient key image detection approach based on distance function
similar to Hausdorff distance as the similarity measure. Let
Pr(xr, yr) and Pi(xi, yi) be a data point in a reference
image and a new observed image I , respectively. The distance
function of image I to reference image Ir is defined as:

dH(I, Ir) =
N∑
i=0

dmin(Pi, Ir) (3)

where dmin(Pi, Ir) is the minimum distance from Pi in image
I to the reference image Ir. Alternatively, we can also define
the distance, dH(Ir, I), from Ir to a new observed image
I , using Eq. (3). These two distances are usually not equal
to each other. As a rule of thumb, one can choose dHD =
MAX{dH(I, Ir), dH(Ir, I)} as the distance. To compute the
keyslices, a threshold τd is used for the distance dHD. If
dHD < τd, the two images I and Ir are considered similar
to each other. Otherwise, a keyslice image is found and Ir is
updated with I , the new keyslice image.

The accuracy of the keyslices detected by using the distance
function is closely tied to threshold τd. Small τd leads to
more accurate models and will require more time and space
to compute and store the result. When the threshold τd is rela-
tively large, potential keyslices which contain salient structure
may be missed. Therefore, there is a trade-off between model
accuracy and time-space efficiency. To address this problem,
the curvature information is computed as a complementary
criteria for keyslice detection.

This idea is based on the observation that the keyslices
are generally located at large curvature changes along 2D
slices extracted in the orthogonal direction (e.g., side view), as
shown in Fig. 8. Therefore, instead of computing the difference
between two images directly, we compute the curvature of
orthogonal 2D slices, map the positions of curvature extrema
back to cross-sections in the original set of volumetric slabs,
and mark these cross-sections as keyslices.

To compute the curvature, we first apply the slice extraction
algorithm described in Sec. IV-B to obtain a series of 2D cross-
sectional images in the orthogonal direction. We then apply the
ball-pivoting algorithm described in Sec. V-C to vectorize the
boundary for each sliced image. We locate those curvatures
that appear in most of the sliced images as the places where

curvature for slice i curvature for slice j

(a) (b)
average curvature

(c)

Fig. 8. Curvature-based key slice detection. (a,b) Two 2D sliced images
from the orthogonal direction (side view). A plot of the curvature of each
slice is displayed alongside. (c) A plot of the average curvatures detected
over all of the sliced images along the orthogonal direction. Thresholding
the curvature yields the location of keyslices, displayed alongside the plot.
Red lines along the average curvature plot indicate local maxima. Blue and
green lines, respectively, indicate zero-crossings in the average curvature. This
delineates the keyslice positions.

keyslices are found, as shown in Fig. 8(c). The combination
of similarity measure and curvature inference ensures that the
salient structures of a building will be preserved.

C. Boundary Vectorization

After the keyslices are detected, K keyslices will be identi-
fied from a total of A image slices. Depending on the threshold
τd, K is usually about one to two orders of magnitude smaller
than A, e.g., K/A is 0.06 when τd = 4.0 for the example in
Fig. 3(b). To generate the 3D model, these keyslice images
need to be vectorized to represent the contours of the building
facade. The Douglas-Peucker algorithm attempts to connect
all of the existing points to form a polygon [17]. Although
the implementation of this approach is very efficient with the
improvement described in [18], this method cannot handle
the case where spurious interior points are present, which
contributes to outlier data. To tackle this issue, we adapted
the ball-pivoting algorithm (BPA) [19] from its original use
on 3D PCD to use on 2D keyslice images where it produces
vectorized boundaries. The key parameter for the BPA algo-
rithm to work successfully is to find the right size of the ball
for pivoting. We implemented a coarse-to-fine adaptive BPA
algorithm to solve this problem.

D. Extrusion and Taper Detection

After the keyslices are detected and vectorized, the contours
of the set of K keyslices are used to represent the building
based on the extrusion operation. That is, the space between
each adjacent pair of keyslices is filled by extruding one
keyslice to the next. By modeling a building using extrusion
operations on the keyslices, we significantly reduce the number
of polygons for urban buildings.

In addition to the extrusion operation, we can further
improve the model and reduce the model size based on the

128

observation that part of the keyslice images may belong to the
same tapering structure. The difficulty in inferring tapering
structures is tied to the complexity of a building structure
itself. Fortunately, the dataset segmentation module introduced
in Sec. IV-D has segmented the complicated structures into
simpler parts. Although the majority of building tapering
structures are linear tapering, such as tapering to point (TTP),
a cone shape geometry, and tapering to line (TTL), a wedge
shape, it could also be a complicated non-linear tapering, such
as a dome shape. Furthermore, a structure may look like a
tapering structure, but it is actually not a real one. For example,
a series of small extruded structures form a tapering-like shape.

We introduced a two-step workflow to accomplish the above
goal. The first step is to locate the potential tapering keyslices
and infer the structure by making an assumption that the
underlying tapering structure is either a TTP or a TTL. A
verification step is conducted to check the correctness of the
inferred shape by measuring the error between the model
and the corresponding 3D PCD. If the error is small, the
inferred shape is confirmed and the underlying keyslices are
not rendered. Otherwise, we can choose to model this special
structure by fitting a triangular mesh to the underlying 3D
point cloud to produce a polygonal model. This algorithm
cannot model a sphere or a dome because such structure cannot
be linearly interpolated as a taper operation.

VI. EXPERIMENTAL RESULTS

To generate the final 3D model, the control points of the 2D
contours can be transformed back into 3D world coordinate
system using the reverse matrix T in equation Eq. (1). For each
segment, we first exam whether it can be modeled by simple
keyslices along any major plane. If so, the push-pull operation
is applied to the keyslice contours to generate the extruded
model. If a tapering structure is detected, we construct the
faces based on the control points of the 2D base geometry
polygon and their corresponding converged points to create
the tapering model.

Fig. 9 shows the experimental results for both synthetic (the
first two rows) and real datasets (the last three rows). Each
row shows a reconstruction of a building. The snapshot of
the original model or the image of the real building is shown
in (a), followed by the snapshot of 3D PCD in (b). Columns
(c)-(e) depict the segmentation result, the vectorized keyslices,
and the snapshot of the reconstructed model, respectively.

To measure the error of a reconstructed 3D model, we first
transform it to the 3D coordinate system. The error E is
measured as the distance between the 3D points in the cloud
to their closest planes in the reconstructed model M :

E =
1

|X|
∑
x∈X

d(x,M) (4)

where X is the set of 3D points, and distance d(x,M) =
minp∈M‖x − p‖ is the minimum Euclidean distance from a
3D point x to its closest face p of M .

Table I lists the relationship among the τd, errors, number of
faces, and model size for the input data in Fig. 3(b). The unit

for τd is in pixels and the unit for error is in meters. The size
of the original point cloud for the 3D building is more than
700 MB. From the table, we can see that even for the most
accurate model, the size is dramatically reduced compared
with the original 3D PCD. This is a desirable property for
web-based applications. These models were generated on a
laptop PC with an Intel Core 2 T7200 CPU at 2.0 GHz with
2.0 GB RAM. Future work includes the optimization of the
BPA vectorization module since it consumes approximately
70% of the computation time.

τd(pixel) Error (m) # of faces Size (KB) time (s)
64 .658 ± .158 1471 15 1977
32 .294 ± .103 3284 32 2353
16 .141 ± .058 8574 86 3008
8 .131 ± .074 13955 137 3696
4 .094 ± .068 27214 261 5391
2 .088 ± .036 31331 335 7586
1 .083 ± .041 32187 337 10927

TABLE I
ERROR MEASUREMENTS FOR RECONSTRUCTION OF THOMAS HUNTER
DATASET USING DISTANCE MEASUREMENT THRESHOLD τd AND BPA

RADIUS THRESHOLD τr = 4.

A. Model Comparison

Although models generated by 3D BPA are of high reso-
lution, they usually require excessive storage capacity. The
model in Fig. 10, for example, needs almost 400 MB of
storage, which prevents this solution from being applied to
web-based applications. One way to improve matters is to
apply some approximation/decimation technique to reduce the
space required by these models.

The holes in the 3D BPA model in Fig. 10 are present in
the original dataset. They are due to the fact that the laser
never reflected back to the scanner after penetrating the glass
windows. The 3D BPA method is deficient in filling these
holes. We counter this problem by first applying a symmetry-
based hole filling algorithm on the 2D slices to create enhanced
slices that are processed by an adaptive 2D BPA method to
fill gaps. Finally, an extrusion operation is applied to create a
watertight 3D model.

Among all mesh reduction techniques, qslim is one of the
most sophisticated and efficient algorithms [20]. We carried
out a comparison between models generated by our proposed
method and those approximated by qslim. The comparisons
were conducted on models sharing the same number of faces.
It is worth noting that qslim ran out of memory on the 3D
model data generated by BPA in Fig. 10. In order to reduce
the size of the model for qslim to work, we had to either
downsample the 3D model generated by BPA or split it into
sub-models which can be handled by qslim.

Fig. 11(a) and Fig. 11(c) respectively depict the models gen-
erated by qslim and our proposed method with approximately
2,000 faces each. Higher resolution models with roughly
32,000 faces each are shown in Fig. 11(b) and Fig. 11(d).
Notice that the models approximated by qslim are inferior

129

(a) (b) (c) (d) (e)

Fig. 9. Experimental results. (a) original model / picture, (b) 3D point cloud of (a), (c) segmentation, (d) keyslices, and (e) reconstructed model with windows.
The data of the Opernhaus Hannover in the bottom row is provided courtesy of the Institute of Cartography and Geoinformatics, University of Hannover.

Fig. 10. Dense triangulated BPA mesh cropped from Fig. 3(b).

since they do not preserve the sharpness of the original
model and are replete with holes. Our symmetry detector and
extrusion operation guarantees no holes.

There have been recent attempts at preserving the sharp
features of buildings during the decimation process [21].
Nevertheless, the output model remains a triangulated mesh.
The benefit of our approach is that we represent the model with

a set of polygons and an associated grammar of extrusion/taper
operations. This furnishes a powerful mechanism by which to
infer a procedural model through 3D point clouds.

VII. CONCLUSION

This paper has presented an efficient algorithm for
lightweight 3D modeling of urban buildings from range data.
Our work is based on the observation that buildings can be
viewed as the combination of two basic operations: extrusion
and taper. The range data is partitioned into volumetric slabs
whose 3D points are projected onto a series of uniform cross-
sectional planes. The points in those planes are vectorized
using an adaptive BPA algorithm to form a set of polygonal
contour slices. Prominent keyslices are extracted from this
set. Applying extrusion to these keyslices forms lightweight
3D models. We achieve further geometry compression by
detecting a series of slices that coincide with a linear tapering
operation.

130

(a) (b)

(c) (d)

Fig. 11. Models generated by qslim with (a) 2,000 and (b) 32,000 faces and
by our approach with (c) 2,000 and (d) 32,000 faces.

Fig. 12. Examples of failed cases: (a) intersection of two extruded structures.
(b) intersection of a tapered structure with an extruded structure.

One limitation of the proposed method is that it could
not handle the intersection of two structures from different
directions. For example, Fig. 12(a) shows a case where two
extruded structures intersect and Fig. 12(b) shows one with
intersection of a tapered structure and an extruded structure.
Therefore, one future direction of our work is to expand our
system to handle them. Additional future work is to investigate
the modeling of the “follow-me” geometry structure. This is
a more complicated geometry structure featured in Google
SketchUp that exists when the model can be reconstructed by
moving a cross-sectional unit along a curve trajectory. Finally,
we will optimize the performance of the BPA vectorization
module, which consumes the bulk of the computation time.

REFERENCES

[1] P. Mueller, P. Wonka, S. Haegler, A. Ulmer, and L. V. Gool, “Procedural
modeling of buildings,” ACM Transactions on Graphics (TOG), pp. 614–
623, 2006.

[2] R. B. Fisher, “Applying knowledge to reverse engineering problems,”
Computer-Aided Design, vol. 36, pp. 501–510, 2004.

[3] B. Okorn, X. Xiong, B. Akinci, and D. Huber, “Toward automated mod-
eling of floor plans,” 3D Data Processing Visualization and Transmission
(3DPVT), 2010.

[4] S. Or, K. Wong, Y. Yu, and M. Chang, “Highly automatic approach
to architectural floorplan image understanding and model generation,”
Proc. Vison, Modeling, and Visualization, 2005.

[5] X. Yin, P. Wonka, and A. Razdan, “Generating 3D building models
from architectural drawings: A survey,” IEEE Computer Graphics and
Applications, pp. 20–30, 2009.

[6] W. Thompson, J. Owen, H. J. Germain, S. R. Stark, and T. C. Hen-
derson, “Feature-based reverse engineering of mechanical parts,” IEEE
Transactions on Robotics and Automation, vol. 15, 1999.

[7] A. Zakhor and C. Frueh, “Automatic 3D modeling of cities with
multimodal air and ground sensors,” Multimodal Surveillance: Sensors,
Algorithms, and Systems, Artech House, Boston, vol. Chapter 15, 2007.

[8] A. Akbarzadeh, J.-M. Frahm, P. Mordohai, B. Clipp, C. Engels,
D. Gallup, P. Merrell, M. Phelps, S. Sinha, B. Talton, L. Wang,
Q. Yang, H. Stewenius, R. Yang, G. Welch, H. Towles, D. Nister, and
M. Pollefeys, “Towards urban 3D reconstruction from video,” 3D Data
Processing, Visualization, and Transmission (3DPVT), pp. 1–8, 2006.

[9] J. Xiao, T. Fang, P. Tan, P. Zhao, E. Ofek, and L. Quan, “Image-based
facade modeling,” SIGGRAPH Asia, 2008.

[10] A. Toshev, P. Mordohai, and B. Taskar, “Detecting and parsing architec-
ture at city scale from range data,” IEEE Computer Vision and Pattern
Recognition, pp. 398–405, 2010.

[11] D. Luo and Y. Wang, “Rapid extracting pillars by slicing point clouds,”
International Archives of Photogrammetry, Remote Sensing and Spatial
Information Sciences, vol. XXXVII, Part B3b, 2008.

[12] P. R. Gonzalvez, D. G. Aguilera, and J. G. Lahoz, “From point cloud
to surface: Modeling structures in laser scanner point clouds,” ISPRS
Workshop on Laser Scanning, pp. 338–344, 2007.

[13] I. Stamos, L. Liu, C. Chen, G. Wolberg, G. Yu, and S. Zokai, “Inte-
grating automated range registration with multiview geometry for the
photorealistic modeling of large-scale scenes,” International Journal of
Computer Vision, vol. 78, no. 2-3, pp. 237–260, 2008.

[14] G. Vosselman, B. Gorte, G. Sithole, and T. R. Levin, “Recognising
structure in laser scanner point clouds,” International Archives of Pho-
togrammetry, Remote Sensing and Spatial Information Sciences, pp. 33–
38, 2004.

[15] J. Podolak, P. Shilane, A. Golovinskiy, S. Rusinkiewicz, and
T. Funkhouser, “A planar-reflective symmetry transform for 3D shapes,”
ACM SIGGRAPH, pp. 549–559, 2006.

[16] S. Pu and G. Vosselman, “Extracting windows from terrestrial laser
scanning,” ISPRS Workshop on Laser Scanning, pp. 320–325, 2007.

[17] D. Douglas and T. Peucker, “Algorithms for the reduction of the
number of points required for represent a digitzed line or its caricature,”
Canadian Cartographer, vol. 10, pp. 112–122, 1973.

[18] J. Hershberger and J. Snoeyink, “Speeding up the douglas-peucker line-
simplification algorithm,” Proc. 5th International Symposium Spatial
Data Handling, pp. 134–143, 1992.

[19] F. Bernardini, J. Mittlelman, H. Rushmeir, and C. Silva, “The ball-
pivoting algorithm for surface reconstruction,” IEEE Transaction on
Visualization and Computer Graphics, vol. 5, pp. 349–359, 1999.

[20] M. Garland and P. Heckbert, “Surface simplification using quadric error
metrics,” ACM SIGGRAPH, 1997.

[21] S. Möser, R. Wahl, and R. Klein, “Out-of-core topologically con-
strained simplification for city modeling from digital surface models,”
International Archives of Photogrammetry, Remote Sensing and Spatial
Information Sciences, vol. XXXVIII-5/W1, Feb. 2009.

131

