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Objectives

• Introduce types of curves and surfaces
- Explicit
- Implicit
- Parametric
- Strengths and weaknesses

•Discuss Modeling and Approximations
- Conditions
- Stability
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Escaping Flatland

•Until now we have worked with flat entities 
such as lines and flat polygons

- Fit well with graphics hardware
- Mathematically simple

•But the world is not composed of flat entities
- Need curves and curved surfaces
- May only have need at the application level
- Implementation can render them approximately 

with flat primitives
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Modeling with Curves

data points
approximating curve

interpolating data point
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What Makes a Good Representation?

•There are many ways to represent curves and 
surfaces

•Want a representation that is
- Stable
- Smooth
- Easy to evaluate
- Must we interpolate or can we just come close to data?
- Do we need derivatives?
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Representation of Curves & Surfaces

•Three types of object representation:
- explicit:

- implicit:

- parametric: .)]()()([)( Tuzuyuxu =p

).(xfy =
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Explicit Representation

•Most familiar form of curve in 2D
y=f(x)

•Cannot represent all curves
- Vertical lines
- Circles

•Extension to 3D 
- y=f(x), z=g(x)
- The form z = f(x,y) defines a surface
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Explicit Representation of Lines

•The explicit form of a curve in 2D gives 
the value of one dependent variable in 
terms of the other independent variable.

- An explicit form may or may not exist.  We write

for the line even though the equation does not 
hold for vertical lines.
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Explicit Representation of Circles

•A circle has constant curvature.
- An explicit form exists only for half of the curve:

- The other half requires a second equation:

- In addition, we must restrict the range of x.
• f is a function, so there must be exactly one value of y for 

every x.
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Explicit Surfaces

•A surface requires two independent 
variables and two equations:

- The line cannot be in a plane of constant x.
- We cannot represent a sphere with only one 

equation of the form
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Implicit Representation

•An implicit curve has the form

•Much more robust
- A line: ax + by + c = 0.
- A circle: x2 + y2 - r2 = 0.

• Implicit functions test membership.
- Does the point (x, y) lie on the curve determined by f ?

• In general, there is no analytic way to find the y
value for a given x.

.0),( =yxf
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Implicit Surfaces

• In three dimensions, a surface is described by 
the implicit form

- A plane: ax + by + cz + d = 0.
- A sphere: x2 + y2 + z2 - r2 = 0.

• Intersect two 3D surfaces to get a 3D curve.
• Implicit curve representations are difficult to 
use in 3D.
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Algebraic Surfaces

•One class of useful implicit surfaces is the 
quadric surface.

- Algebraic surfaces are those for which the 
function f(x, y, z) is the sum of polynomials.

- Quadric surfaces contain polynomials that have 
degree at most two: 2 ≥ i+j+k
This yields at most 10 terms
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Parametric Form

•Expresses the value of each spatial 
component in terms of an independent 
variable u, the parameter:

- 3 explicit functions, 1 independent variable.
- Same form in 2D and 3D.

•The most flexible and robust form for 
computer graphics.
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Parametric Form of Line

•Parametric form of the line:
- More robust and general than other forms
- Extends to curves and surfaces

•Two-dimensional forms
- Explicit: y = mx +b
- Implicit: ax + by +c =0
- Parametric: 

x(α) = (1-α)x0 + αx1
y(α) = (1-α)y0 + αy1



• Separate equation for each spatial variable
x=x(u)
y=y(u)
z=z(u)

• The parametric form describes the locus of points 
being drawn as u varies: umin ≤ u ≤ umax
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Parametric Curves

Matrix notation:
p(u)=[x(u), y(u), z(u)]T

p(u)

p(umin)

p(umax)
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Derivative of the Curve

•The derivative is the velocity with which 
the curve is traced out:

- It points in the direction tangent to the curve.
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Parametric Lines

Line connecting two points p0 and p1

p(u)=(1-u)p0+up1

We can normalize u to be over the interval (0,1)

p(0) = p0

p(1)= p1

Ray from p0 in the direction d
p(u)=p0+ud

p(0) = p0

p(1)= p0 +d

d
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Parametric Surfaces

• Surfaces require 2 parameters
x=x(u,v)
y=y(u,v)
z=z(u,v)

p(u,v) = [x(u,v), y(u,v), z(u,v)]T
• Want same properties as curves: 

- Smoothness
- Differentiability
- Ease of evaluation
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p(u,1)



20

Normals

We can differentiate with respect to u and v to 
obtain the normal at any point p
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Parametric Planes

Point-Vector form

p(u,v)=p0+uq+vr
n = q x r q

r

p0

n

Three-point form

p0

n

p1

p2

q = p1 – p0
r = p2 – p0



22

Parametric Sphere

x(u,v) = r cos q sin f
y(u,v) = r sin q sin f
z(u,v) = r cos f

360 ≥ q  ≥ 0
180 ≥ f  ≥ 0

θ constant: circles of constant longitude
f  constant: circles of constant latitude

differentiate to show  n = p
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Curve Segments

• After normalizing u, each curve is written
p(u)=[x(u), y(u), z(u)]T,   0 ≤ u ≤ 1

• In classical numerical methods, we design a 
single global curve

• In computer graphics and CAD, it is better to 
design small connected curve segments

p(u)

q(u)p(0)
q(1)

join point p(1) = q(0)



24

Parametric Polynomial Curves
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• If N=M=K, we need to determine 3(N+1) coefficients
• Equivalently we need 3(N+1) independent conditions
• Noting that the curves for x, y and z are independent,
we can define each independently in an identical manner

• We will use the form where p can be any of x, y, z
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Why Polynomials

•Easy to evaluate
•Continuous and differentiable everywhere

- Must worry about continuity at join points 
including continuity of derivatives

p(u)

q(u)

join point p(1) = q(0)
but p’(1) ≠ q’(0)
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Cubic Parametric Polynomials

• N=M=L=3, gives balance between ease of 
evaluation and flexibility in design

• Four coefficients to determine for each of x, y and z
• Seek four independent conditions for various 

values of u resulting in 4 equations in 4 unknowns 
for each of x, y and z

- Conditions are a mixture of continuity 
requirements at the join points and conditions for 
fitting the data 
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Cubic Polynomial Surfaces
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p(u,v)=[x(u,v), y(u,v), z(u,v)]T

where

p is any of x, y or z

Need 48 coefficients (3 independent sets of 16) to 
determine a surface patch
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Parametric Polynomial Surfaces

•A surface patch:
- Specify 3(n+1)(m+1) coefficients.
- Let n = m, and let u and v vary over the 

rectangle 0 ≤ u, v ≤ 1.
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