Curves and Surfaces

Prof. George Wolberg Dept. of Computer Science City College of New York

Objectives

- Introduce types of curves and surfaces
 - Explicit
 - Implicit
 - Parametric
 - Strengths and weaknesses
- Discuss Modeling and Approximations
 - Conditions
 - Stability

Escaping Flatland

- Until now we have worked with flat entities such as lines and flat polygons
 - Fit well with graphics hardware
 - Mathematically simple
- But the world is not composed of flat entities
 - Need curves and curved surfaces
 - May only have need at the application level
 - Implementation can render them approximately with flat primitives

Modeling with Curves

What Makes a Good Representation?

- There are many ways to represent curves and surfaces
- Want a representation that is
 - Stable
 - Smooth
 - Easy to evaluate
 - Must we interpolate or can we just come close to data?
 - Do we need derivatives?

Representation of Curves & Surfaces

- Three types of object representation:
 - explicit: y = f(x).
 - implicit: f(x, y) = 0.
 - parametric: $\mathbf{p}(u) = [x(u) \ y(u) \ z(u)]^T$.

Explicit Representation

- Most familiar form of curve in 2D
 - y=f(x)
- Cannot represent all curves
 - Vertical lines
 - Circles
- Extension to 3D
 - y=f(x), z=g(x)
 - The form z = f(x,y) defines a surface

Explicit Representation of Lines

 The explicit form of a curve in 2D gives the value of one dependent variable in terms of the other independent variable.

$$y = f(x).$$

- An explicit form may or may not exist. We write y = mx + b

for the line even though the equation does not hold for vertical lines.

Explicit Representation of Circles

- A circle has constant **curvature**.
 - An explicit form exists only for half of the curve:

$$y=\sqrt{r^2-x^2}.$$

- The other half requires a second equation:

$$y = -\sqrt{r^2 - x^2}.$$

- In addition, we must restrict the range of *x*.
 - *f* is a function, so there must be exactly one value of *y* for every *x*.

Explicit Surfaces

 A surface requires two independent variables and two equations:

$$y = ax + b,$$

$$z = cx + d.$$

- The line cannot be in a plane of constant *x*.
- We cannot represent a sphere with only one equation of the form

$$z = f(x, y).$$

Implicit Representation

• An implicit curve has the form

$$f(x,y)=0.$$

- Much more robust
 - A line: ax + by + c = 0.
 - A circle: $x^2 + y^2 r^2 = 0$.
- Implicit functions test membership.
 - Does the point (x, y) lie on the curve determined by f?
- In general, there is no analytic way to find the *y* value for a given *x*.

Implicit Surfaces

 In three dimensions, a surface is described by the implicit form

$$f(x,y,z)=0.$$

- A plane: ax + by + cz + d = 0.
- A sphere: $x^2 + y^2 + z^2 r^2 = 0$.
- Intersect two 3D surfaces to get a 3D curve.
- Implicit curve representations are difficult to use in 3D.

Algebraic Surfaces

- One class of useful implicit surfaces is the **quadric** surface.
 - Algebraic surfaces are those for which the function f(x, y, z) is the sum of polynomials.

$$\sum_{i}\sum_{j}\sum_{k}x^{i}y^{j}z^{k}=0$$

- Quadric surfaces contain polynomials that have degree at most two: $2 \ge i + j + k$

This yields at most 10 terms

Parametric Form

• Expresses the value of each spatial component in terms of an independent variable *u*, the **parameter**:

$$x = X(u), \quad y = Y(u), \quad z = Z(u).$$

- 3 explicit functions, 1 independent variable.
- Same form in 2D and 3D.
- The most flexible and robust form for computer graphics.

Parametric Form of Line

- Parametric form of the line:
 - More robust and general than other forms
 - Extends to curves and surfaces
- Two-dimensional forms
 - Explicit: y = mx + b
 - Implicit: ax + by + c = 0
 - Parametric:

$$x(\alpha) = (1-\alpha)x_0 + \alpha x_1$$
$$y(\alpha) = (1-\alpha)y_0 + \alpha y_1$$

Parametric Curves

Separate equation for each spatial variable

x=x(u)Matrix notation:y=y(u) $p(u)=[x(u), y(u), z(u)]^T$ z=z(u)

• The parametric form describes the locus of points being drawn as u varies: $u_{min} \le u \le u_{max}$

Derivative of the Curve

• The derivative is the velocity with which the curve is traced out:

$$\frac{d\mathbf{p}(u)}{du} = \begin{bmatrix} dx(u)/du \\ dy(u)/du \\ dz(u)/du \end{bmatrix}.$$

- It points in the direction tangent to the curve.

Parametric Lines

Parametric Surfaces

• Surfaces require 2 parameters

x=x(u,v) y=y(u,v) z=z(u,v)

p(0,v) p(u,1) p(1,v)z p(u,0)

- $\mathbf{p}(u,v) = [x(u,v), y(u,v), z(u,v)]^{\mathsf{T}}$
- Want same properties as curves:
 - Smoothness
 - Differentiability
 - Ease of evaluation

Normals

We can differentiate with respect to \mathbf{u} and \mathbf{v} to obtain the normal at any point \mathbf{p}

$$\frac{\partial \mathbf{p}(u,v)}{\partial u} = \begin{bmatrix} \frac{\partial \mathbf{x}(u,v)}{\partial u} \\ \frac{\partial \mathbf{y}(u,v)}{\partial u} \\ \frac{\partial \mathbf{z}(u,v)}{\partial u} \end{bmatrix} \qquad \frac{\partial \mathbf{p}(u,v)}{\partial v} = \begin{bmatrix} \frac{\partial \mathbf{x}(u,v)}{\partial v} \\ \frac{\partial \mathbf{y}(u,v)}{\partial v} \\ \frac{\partial \mathbf{z}(u,v)}{\partial v} \end{bmatrix}$$
$$\mathbf{n} = \frac{\partial \mathbf{p}(u,v)}{\partial u} \times \frac{\partial \mathbf{p}(u,v)}{\partial v}$$

Parametric Planes

Point-Vector form $p(u,v)=p_0+uq+vr$ $n = q \ge r$

Three-point form

$$\mathbf{q} = \mathbf{p}_1 - \mathbf{p}_0$$
$$\mathbf{r} = \mathbf{p}_2 - \mathbf{p}_0$$

Parametric Sphere

$$\begin{aligned} x(u,v) &= r \cos q \sin f \\ y(u,v) &= r \sin q \sin f \\ z(u,v) &= r \cos f \end{aligned}$$

 $\begin{array}{ll} 360 \geq q & \geq 0 \\ 180 \geq f & \geq 0 \end{array}$

θ constant: circles of constant longitudef constant: circles of constant latitude

differentiate to show $\mathbf{n} = \mathbf{p}$

Curve Segments

- After normalizing u, each curve is written $\mathbf{p}(u)=[x(u), y(u), z(u)]^T$, $0 \le u \le 1$
- In classical numerical methods, we design a single global curve
- In computer graphics and CAD, it is better to design small connected curve *segments*

Parametric Polynomial Curves

$$x(u) = \sum_{i=0}^{N} c_{xi} u^{i} \quad y(u) = \sum_{j=0}^{M} c_{yj} u^{j} \quad z(u) = \sum_{k=0}^{L} c_{zk} u^{k}$$

- If N=M=K, we need to determine 3(N+1) coefficients
- Equivalently we need 3(N+1) independent conditions
- Noting that the curves for x, y and z are independent, we can define each independently in an identical manner
- We will use the form where p can be any of x, y, z

$$\mathbf{p}(u) = \sum_{k=0}^{L} c_k u^k$$

Why Polynomials

- Easy to evaluate
- Continuous and differentiable everywhere
 - Must worry about continuity at join points including continuity of derivatives

Cubic Parametric Polynomials

 N=M=L=3, gives balance between ease of evaluation and flexibility in design

$$\mathbf{p}(u) = \sum_{k=0}^{3} c_k u^k$$

- \bullet Four coefficients to determine for each of $x,\,y$ and z
- Seek four independent conditions for various values of u resulting in 4 equations in 4 unknowns for each of x, y and z
 - Conditions are a mixture of continuity requirements at the join points and conditions for fitting the data

Cubic Polynomial Surfaces

where

$$p(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} c_{ij} u^{i} v^{j}$$

p is any of x, y or z

Need 48 coefficients (3 independent sets of 16) to determine a surface patch

Parametric Polynomial Surfaces

In general,

$$\mathbf{p}(u,v) = \sum_{i=0}^{n} \sum_{j=0}^{m} c_{ij} u^{i} v^{j}$$

• A surface patch:

- Specify 3(n+1)(m+1) coefficients.
- Let n = m, and let u and v vary over the rectangle $0 \le u, v \le 1$.