Curves and Surfaces

Prof. George Wolberg
Dept. of Computer Science
City College of New York

Objectives

- Introduce types of curves and surfaces
- Explicit
- Implicit
- Parametric
- Strengths and weaknesses
-Discuss Modeling and Approximations
- Conditions
- Stability

Escaping Flatland

- Until now we have worked with flat entities such as lines and flat polygons
- Fit well with graphics hardware
- Mathematically simple
- But the world is not composed of flat entities
- Need curves and curved surfaces
- May only have need at the application level
- Implementation can render them approximately with flat primitives

Modeling with Curves

What Makes a Good Representation?

- There are many ways to represent curves and surfaces
-Want a representation that is
- Stable
- Smooth
- Easy to evaluate
- Must we interpolate or can we just come close to data?
- Do we need derivatives?

Representation of Curves \& Surfaces

-Three types of object representation:

- explicit: $\quad y=f(x)$.
- implicit: $\quad f(x, y)=0$.
- parametric: $\quad \mathbf{p}(u)=\left[\begin{array}{lll}x(u) & y(u) & z(u)\end{array}\right]^{T}$.

Explicit Representation

- Most familiar form of curve in 2D

$$
\mathrm{y}=\mathrm{f}(\mathrm{x})
$$

- Cannot represent all curves y
- Vertical lines
- Circles

- Extension to 3D
$-\mathrm{y}=\mathrm{f}(\mathrm{x}), \mathrm{z}=\mathrm{g}(\mathrm{x})$
- The form $z=f(x, y)$ defines a surface

Explicit Representation of Lines

- The explicit form of a curve in 2D gives the value of one dependent variable in terms of the other independent variable.

$$
y=f(x)
$$

- An explicit form may or may not exist. We write

$$
y=m x+b
$$

for the line even though the equation does not hold for vertical lines.

Explicit Representation of Circles

- A circle has constant curvature.
- An explicit form exists only for half of the curve:

$$
y=\sqrt{r^{2}-x^{2}}
$$

- The other half requires a second equation:

$$
y=-\sqrt{r^{2}-x^{2}}
$$

- In addition, we must restrict the range of x.
- f is a function, so there must be exactly one value of y for every x.

Explicit Surfaces

- A surface requires two independent variables and two equations:

$$
\begin{aligned}
& y=a x+b \\
& z=c x+d
\end{aligned}
$$

- The line cannot be in a plane of constant x.
- We cannot represent a sphere with only one equation of the form

$$
z=f(x, y)
$$

Implicit Representation

- An implicit curve has the form

$$
f(x, y)=0
$$

- Much more robust
- A line: $a x+b y+c=0$.
- A circle: $x^{2}+y^{2}-r^{2}=0$.
- Implicit functions test membership.
- Does the point (x, y) lie on the curve determined by f ?
- In general, there is no analytic way to find the y value for a given x.

Implicit Surfaces

- In three dimensions, a surface is described by the implicit form

$$
f(x, y, z)=0
$$

- A plane: $a x+b y+c z+d=0$.
- A sphere: $x^{2}+y^{2}+z^{2}-r^{2}=0$.
- Intersect two 3D surfaces to get a 3D curve.
- Implicit curve representations are difficult to use in 3D.

Algebraic Surfaces

- One class of useful implicit surfaces is the quadric surface.
- Algebraic surfaces are those for which the function $f(x, y, z)$ is the sum of polynomials.

$$
\sum_{i} \sum_{j} \sum_{k} x^{i} y^{j} z^{k}=0
$$

- Quadric surfaces contain polynomials that have degree at most two: $2 \geq i+j+k$
This yields at most 10 terms

Parametric Form

- Expresses the value of each spatial component in terms of an independent variable u, the parameter:

$$
x=X(u), \quad y=Y(u), \quad z=Z(u)
$$

- 3 explicit functions, 1 independent variable.
- Same form in 2D and 3D.
-The most flexible and robust form for computer graphics.

Parametric Form of Line

- Parametric form of the line:
- More robust and general than other forms
- Extends to curves and surfaces
-Two-dimensional forms
- Explicit: $y=m x+b$
- Implicit: $a x+b y+c=0$
- Parametric:

$$
\begin{aligned}
& x(\alpha)=(1-\alpha) x_{0}+\alpha x_{1} \\
& y(\alpha)=(1-\alpha) y_{0}+\alpha y_{1}
\end{aligned}
$$

Parametric Curves

- Separate equation for each spatial variable

$$
\begin{aligned}
& x=x(u) \\
& y=y(u) \\
& z=z(u)
\end{aligned}
$$

Matrix notation:

Matrix notation:

$$
p(u)=[x(u), y(u), z(u)]^{\top}
$$

- The parametric form describes the locus of points being drawn as u varies: $\mathrm{u}_{\text {min }} \leq \mathrm{u} \leq \mathrm{u}_{\max }$

Derivative of the Curve

- The derivative is the velocity with which the curve is traced out:

$$
\frac{d \mathbf{p}(u)}{d u}=\left[\begin{array}{l}
d x(u) / d u \\
d y(u) / d u \\
d z(u) / d u
\end{array}\right]
$$

- It points in the direction tangent to the curve.

Parametric Lines

We can normalize u to be over the interval $(0,1)$
Line connecting two points \mathbf{p}_{0} and \mathbf{p}_{1}

$$
\begin{aligned}
\mathbf{p}(u)=(1-u) \mathbf{p}_{0}+u \mathbf{p}_{1} \\
\mathbf{p}(0)=\mathbf{p}_{0}
\end{aligned}
$$

$$
\mathbf{p}(1)=\mathbf{p}_{0}+\mathbf{d}
$$

Ray from \mathbf{p}_{0} in the direction \mathbf{d}

$$
p(u)=p_{0}+u d
$$

$$
\mathbf{p}(0)=\mathbf{p}_{0}
$$

Parametric Surfaces

- Surfaces require 2 parameters

$$
\begin{aligned}
x & =x(u, v) \\
y & =y(u, v) \\
z & =z(u, v) \\
p(u, v)= & {[x(u, v), y(u, v), z(u, v)]^{\top} }
\end{aligned}
$$

- Want same properties as curves:

- Smoothness
- Differentiability
- Ease of evaluation

Normals

We can differentiate with respect to u and v to obtain the normal at any point \mathbf{p}

$$
\begin{array}{cc}
\frac{\partial \mathbf{p}(u, v)}{\partial u}=\left[\begin{array}{l}
\partial \mathrm{x}(u, v) / \partial u \\
\partial \mathrm{y}(u, v) / \partial u \\
\partial \mathrm{z}(u, v) / \partial u
\end{array}\right] \\
\mathbf{n}=\frac{\partial \mathbf{p}(u, v)}{\partial u} \times \frac{\partial \mathbf{p}(u, v)}{\partial v}=\left[\begin{array}{l}
\partial \mathrm{x}(u, v) / \partial v \\
\partial \mathrm{y}(u, v) / \partial v \\
\partial \mathrm{z}(u, v) / \partial v
\end{array}\right]
\end{array}
$$

Parametric Planes

Point-Vector form

$$
\begin{aligned}
& \mathbf{p}(u, v)=p_{0}+u q+v r \\
& n=q \times r
\end{aligned}
$$

Three-point form

$$
\begin{aligned}
& \mathbf{q}=\mathbf{p}_{1}-\mathbf{p}_{0} \\
& \mathbf{r}=\mathbf{p}_{2}-\mathbf{p}_{0}
\end{aligned}
$$

Parametric Sphere

$$
\begin{aligned}
& x(u, v)=r \cos q \sin f \\
& y(u, v)=r \sin q \sin f \\
& z(u, v)=r \cos f \\
& 360 \geq q \geq 0 \\
& 180 \geq f \geq 0
\end{aligned}
$$

θ constant: circles of constant longitude f constant: circles of constant latitude

$$
\text { differentiate to show } \mathbf{n}=\mathbf{p}
$$

Curve Segments

- After normalizing u, each curve is written

$$
\mathbf{p}(u)=[x(u), y(u), z(u)]^{\top}, \quad 0 \leq u \leq 1
$$

- In classical numerical methods, we design a single global curve
- In computer graphics and CAD, it is better to design small connected curve segments

Parametric Polynomial Curves

$$
x(u)=\sum_{i=0}^{N} c_{x i} u^{i} y(u)=\sum_{j=0}^{M} c_{y j} u^{j} \quad z(u)=\sum_{k=0}^{L} c_{z k} u^{k}
$$

- If $\mathrm{N}=\mathrm{M}=\mathrm{K}$, we need to determine $3(\mathrm{~N}+1)$ coefficients
- Equivalently we need $3(\mathrm{~N}+1)$ independent conditions
- Noting that the curves for x, y and z are independent, we can define each independently in an identical manner
- We will use the form where p can be any of x, y, z

$$
\mathrm{p}(u)=\sum_{k=0}^{L} c_{k} u^{k}
$$

Why Polynomials

- Easy to evaluate
- Continuous and differentiable everywhere
- Must worry about continuity at join points including continuity of derivatives

Cubic Parametric Polynomials

- $N=M=L=3$, gives balance between ease of evaluation and flexibility in design

$$
\mathrm{p}(u)=\sum_{k=0}^{3} c_{k} u^{k}
$$

- Four coefficients to determine for each of x, y and z
- Seek four independent conditions for various values of u resulting in 4 equations in 4 unknowns for each of x, y and z
- Conditions are a mixture of continuity requirements at the join points and conditions for fitting the data

Cubic Polynomial Surfaces

$$
p(u, v)=[x(u, v), y(u, v), z(u, v)]^{\top}
$$

where

$$
\mathrm{p}(u, v)=\sum_{i=0}^{3} \sum_{j=0}^{3} c_{i j} u^{i} v^{j}
$$

p is any of x, y or z
Need 48 coefficients (3 independent sets of 16) to determine a surface patch

Parametric Polynomial Surfaces

In general,

$$
\mathbf{p}(u, v)=\sum_{i=0}^{n} \sum_{j=0}^{m} c_{i j} u^{i} v^{j}
$$

- A surface patch:

- Specify $3(n+1)(m+1)$ coefficients.
- Let $n=m$, and let u and v vary over the rectangle $0 \leq u, v \leq 1$.

