Transformations

Prof. George Wolberg
Dept. of Computer Science
City College of New York
Objectives

- Introduce standard transformations
 - Rotations
 - Translation
 - Scaling
 - Shear
- Derive homogeneous coordinate transformation matrices
- Learn to build arbitrary transformation matrices from simple transformations
A transformation maps points to other points and/or vectors to other vectors.

\[\mathbf{Q} = \mathbf{T}(\mathbf{P}) \]

\[\mathbf{v} = \mathbf{T}(\mathbf{u}) \]
Pipeline Implementation

T (from application program)

transformation

rasterizer

frame buffer

vertices

pixels
Translation

• Move (translate, displace) a point to a new location

• Displacement determined by a vector \mathbf{d}
 - Three degrees of freedom
 - $\mathbf{P'} = \mathbf{P} + \mathbf{d}$
Object Translation

Every point in object is displaced by same vector
Translation Using Representations

Using the homogeneous coordinate representation in some frame

\[\mathbf{p} = \begin{bmatrix} x & y & z & 1 \end{bmatrix}^T \]

\[\mathbf{p}' = \begin{bmatrix} x' & y' & z' & 1 \end{bmatrix}^T \]

\[\mathbf{d} = \begin{bmatrix} dx & dy & dz & 0 \end{bmatrix}^T \]

Hence \(\mathbf{p}' = \mathbf{p} + \mathbf{d} \) or

\[x' = x + dx \]

\[y' = y + dy \]

\[z' = z + dz \]

Note that this expression is in four dimensions and expresses that point = vector + point
Translation Matrix

We can also express translation using a 4 x 4 matrix \(T \) in homogeneous coordinates \(p' = Tp \) where

\[
T = T(d_x, d_y, d_z) = \begin{bmatrix}
1 & 0 & 0 & d_x \\
0 & 1 & 0 & d_y \\
0 & 0 & 1 & d_z \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

This form is better for implementation because all affine transformations can be expressed this way and multiple transformations can be concatenated together.
Rotation (2D)

Consider rotation about the origin by θ degrees:
- radius stays the same, angle increases by θ

\[
x' = x \cos \theta - y \sin \theta
\]
\[
y' = x \sin \theta + y \cos \theta
\]
Rotation about the z-axis

- Rotation about z axis in three dimensions leaves all points with the same z
 - Equivalent to rotation in two dimensions in planes of constant z
 \[x' = x \cos \theta - y \sin \theta \]
 \[y' = x \sin \theta + y \cos \theta \]
 \[z' = z \]
 - or in homogeneous coordinates
 \[p' = R_z(\theta)p \]
Rotation Matrix

\[
R = R_z(\theta) = \begin{bmatrix}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]
Rotation about x and y axes

• Same argument as for rotation about z-axis
 - For rotation about x-axis, x is unchanged
 - For rotation about y-axis, y is unchanged

$$ R = R_x(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 & 0 \\ 0 & \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} $$

$$ R = R_y(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} $$
Scaling

Expand or contract along each axis (fixed point of origin)

\[x' = s_x x \]
\[y' = s_y y \]
\[z' = s_z z \]

\[p' = S p \]

\[S = S(s_x, s_y, s_z) = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \]
Reflection

corresponds to negative scale factors

\(s_x = -1 \) \(s_y = 1 \)

\(s_x = -1 \) \(s_y = -1 \)

\(s_x = 1 \) \(s_y = -1 \)
Inverses

• Although we could compute inverse matrices by general formulas, we can use simple geometric observations
 - Translation: $T^{-1}(d_x, d_y, d_z) = T(-d_x, -d_y, -d_z)$
 - Rotation: $R^{-1}(\theta) = R(-\theta)$
 • Holds for any rotation matrix
 • Note that since $\cos(-\theta) = \cos(\theta)$ and $\sin(-\theta) = -\sin(\theta)$
 $R^{-1}(\theta) = R^T(\theta)$
 - Scaling: $S^{-1}(s_x, s_y, s_z) = S(1/s_x, 1/s_y, 1/s_z)$
Concatenation

• We can form arbitrary affine transformation matrices by multiplying together rotation, translation, and scaling matrices.

• Because the same transformation is applied to many vertices, the cost of forming a matrix \(M = ABCD \) is not significant compared to the cost of computing \(Mp \) for many vertices \(p \).

• The difficult part is how to form a desired transformation from the specifications in the application.
Order of Transformations

• Note that matrix on the right is the first applied
• Mathematically, the following are equivalent
 \[p' = ABCp = A(B(Cp)) \]
• Note many references use column matrices to present points. In terms of column matrices
 \[p'^T = p^T C^T B^T A^T \]
A rotation by θ about an arbitrary axis can be decomposed into the concatenation of rotations about the x, y, and z axes

$$ R(\theta) = R_z(\theta_z) R_y(\theta_y) R_x(\theta_x) $$

$\theta_x \theta_y \theta_z$ are called the Euler angles.

Note that rotations do not commute.

We can use rotations in another order but with different angles.
Rotation About a Fixed Point other than the Origin

Move fixed point to origin
Rotate
Move fixed point back

\[M = T(p_f) \ R(\theta) \ T(-p_f) \]
Shear

- Helpful to add one more basic transformation
- Equivalent to pulling faces in opposite directions
Shear Matrix

Consider simple shear along x axis

\[x' = x + y \cot \theta \]
\[y' = y \]
\[z' = z \]

\[H(\theta) = \begin{bmatrix}
1 & \cot \theta & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} \]
3D Transformations

- A vertex is transformed by 4×4 matrices
- All matrices are stored column-major in OpenGL
 - this is opposite of what “C” programmers expect
- Matrices are always post-multiplied
 - product of matrix and vector is \mathbf{Mv}

$$
\mathbf{M} = \begin{bmatrix}
 m_0 & m_4 & m_8 & m_{12} \\
 m_1 & m_5 & m_9 & m_{13} \\
 m_2 & m_6 & m_{10} & m_{14} \\
 m_3 & m_7 & m_{11} & m_{15}
\end{bmatrix} \quad \mathbf{v} = \begin{bmatrix}
 v_1 \\
 v_2 \\
 v_3 \\
 v_4
\end{bmatrix}$$
Affine Transformations

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{bmatrix}
= \begin{bmatrix}
 m_0 & m_4 & m_8 & m_{12} \\
 m_1 & m_5 & m_9 & m_{13} \\
 m_2 & m_6 & m_{10} & m_{14} \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]

- Characteristic of many important transformations
 - Translation
 - Rotation
 - Scaling
 - Shear

- Line preserving
OpenGL Transformations

Prof. George Wolberg
Dept. of Computer Science
City College of New York
Objectives

• Learn how to carry out transformations in OpenGL
 - Rotation
 - Translation
 - Scaling

• Introduce QMatrix4x4 and QVector3D transformations
 - Model-view
 - Projection
Current Transformation Matrix (CTM)

- Conceptually there is a 4 x 4 homogeneous coordinate matrix, the current transformation matrix (CTM) that is part of the state and is applied to all vertices that pass down the pipeline.
- The CTM is defined in the user program and loaded into a transformation unit.
CTM operations

• The CTM can be altered either by loading a new CTM or by postmultiplication
 Load an identity matrix: \(C \leftarrow I \)
 Load an arbitrary matrix: \(C \leftarrow M \)

 Load a translation matrix: \(C \leftarrow T \)
 Load a rotation matrix: \(C \leftarrow R \)
 Load a scaling matrix: \(C \leftarrow S \)

 Postmultiply by an arbitrary matrix: \(C \leftarrow CM \)
 Postmultiply by a translation matrix: \(C \leftarrow CT \)
 Postmultiply by a rotation matrix: \(C \leftarrow CR \)
 Postmultiply by a scaling matrix: \(C \leftarrow CS \)
Rotation about a Fixed Point

Start with identity matrix: \(C \leftarrow I \)
Move fixed point to origin: \(C \leftarrow CT \)
Rotate: \(C \leftarrow CR \)
Move fixed point back: \(C \leftarrow CT^{-1} \)

Result: \(C = TR T^{-1} \) which is backwards.

This result is a consequence of doing postmultiplications. Let’s try again.
Reversing the Order

We want \(C = T^{-1} R T \) so we must do the operations in the following order

\[
\begin{align*}
C &\leftarrow I \\
C &\leftarrow CT^{-1} \\
C &\leftarrow CR \\
C &\leftarrow CT
\end{align*}
\]

Each operation corresponds to one function call in the program.

The last operation specified is the first executed in the program!
Rotation, Translation, Scaling

Create an identity matrix:

```cpp
QMatrix4x4 m;
m.setToIdentity();
```

Multiply on right by rotation matrix of \textbf{theta} in degrees where \((vx, vy, vz)\) define axis of rotation

```cpp
m.rotate(theta, QVector3D(vx, vy, vz));
```

Do same with translation and scaling:

```cpp
m.scale(sx, sy, sz);
m.translate(dx, dy, dz);
```
Example

• Rotation about z axis by 30 degrees with a fixed point of (1.0, 2.0, 3.0)

```cpp
QMatrix4x4 m;
m.setToIdentity();
m.translate(1.0, 2.0, 3.0);
m.rotate(30.0, QVector3D(0.0, 0.0, 1.0));
m.translate(-1.0, -2.0, -3.0);
```

• Remember that the last matrix specified is the first applied
Arbitrary Matrices

• Can load and multiply by matrices defined in the application program
• Matrices are stored as one dimensional array of 16 elements which are the components of the desired 4×4 matrix stored by columns
• OpenGL functions that have matrices as parameters allow the application to send the matrix or its transpose
Vertex Shader for Rotation of Cube (1)

in vec4 vPosition;
in vec4 vColor;
out vec4 color;
uniform vec3 theta;

void main()
{
 // Compute the sines and cosines of theta for
 // each of the three axes in one computation.
 vec3 angles = radians(theta);
 vec3 c = cos(angles);
 vec3 s = sin(angles);
// Remember: these matrices are column-major

mat4 rx = mat4(1.0, 0.0, 0.0, 0.0,
 0.0, c.x, s.x, 0.0,
 0.0, -s.x, c.x, 0.0,
 0.0, 0.0, 0.0, 1.0);

mat4 ry = mat4(c.y, 0.0, -s.y, 0.0,
 0.0, 1.0, 0.0, 0.0,
 s.y, 0.0, c.y, 0.0,
 0.0, 0.0, 0.0, 1.0);
mat4 rz = mat4(c.z, -s.z, 0.0, 0.0,
 s.z, c.z, 0.0, 0.0,
 0.0, 0.0, 1.0, 0.0,
 0.0, 0.0, 0.0, 1.0);

color = vColor;

gl_Position = rz * ry * rx * vPosition;

}
Sending Angles from Application

GLuint thetaID; // theta uniform location
vec3 theta; // axis angles

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glUniform3fv(thetaID, 1, theta);
 glDrawArrays(GL_TRIANGLES, 0, NumVertices);
}