Geometry

Prof. George Wolberg
Dept. of Computer Science City College of New York

Objectives

- Introduce the elements of geometry
- Scalars
- Vectors
- Points
- Develop mathematical operations among them in a coordinate-free manner
- Define basic primitives
- Line segments
- Polygons

Basic Elements

- Geometry is the study of the relationships among objects in an n-dimensional space
- In computer graphics, we are interested in objects that exist in three dimensions
- Want a minimum set of primitives from which we can build more sophisticated objects
-We will need three basic elements
- Scalar: number representing magnitude
- Vector: quantity representing magnitude and direction
- Point: location in space

Vectors

- Physical definition: a vector is a quantity with two attributes
- Direction
- Magnitude
- Examples include
- Force
- Velocity
- Directed line segments
- Most important example for graphics
- Can map to other types

Vector Operations

- Every vector has an inverse
- Same magnitude but points in opposite direction
- Every vector can be multiplied by a scalar
- There is a zero vector
- Zero magnitude, undefined orientation
- The sum of any two vectors is a vector
- Use head-to-tail axiom

Vectors Lack Position

- These vectors are identical
- Same length and magnitude

- Vectors spaces insufficient for geometry
- Need points

Points

- Location in space
- Operations allowed between points and vectors
- Point-point subtraction yields a vector
- Equivalent to point-vector addition

Planes

- A plane be determined by a point and two vectors or by three points

$$
\mathrm{P}(\alpha, \beta)=\mathrm{R}+\alpha \mathrm{u}+\beta \mathrm{v}
$$

(point and two vectors: $\mathrm{R}, \mathrm{u}, \mathrm{v}$)

$\mathrm{P}(\alpha, \beta)=\mathrm{R}+\alpha(\mathrm{Q}-\mathrm{R})+\beta(\mathrm{P}-\mathrm{Q})$
(three points: R, P, Q)

Triangles

Coordinate System

- Consider a basis $v_{1}, v_{2}, \ldots, v_{\mathrm{n}}$ (such as the x, y, and z axes)
- A vector is written $v=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{\mathrm{n}} v_{\mathrm{n}}$
- The list of scalars $\left\{\alpha_{1}, \alpha_{2}, \ldots . \alpha_{n}\right\}$ is the representation of v with respect to the given basis
-We can write the representation as a row or $\left[\alpha_{1}\right.$ column array of scalars: $\mathbf{a}=\left[\begin{array}{llll}\alpha_{1} & \alpha_{2} & \ldots & \alpha_{n}\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ . \\ \alpha_{n}\end{array}\right]$
Ex: $\mathrm{v}=2 \mathrm{v}_{1}+3 \mathrm{v}_{2}-4 \mathrm{v}_{3} \longrightarrow \mathbf{a}=[23-4]^{\mathrm{T}}$
This representation is with respect to a particular basis

Coordinate Frame

- To form a coordinate frame, we must add a single point, the origin P_{0}, to the basis vectors.

The terms coordinate system and coordinate frame are often used interchangeably.

3D Coordinate Systems

Left-handed
Coordinate System

Representation of Vectors and Points

- Frame determined by $\left(\mathrm{P}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right)$
-Within this frame, every vector can be written as

$$
v=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots .+\alpha_{\mathrm{n}} v_{\mathrm{n}}
$$

- Every point can be written as

$$
\mathrm{P}=\mathrm{P}_{0}+\beta_{1} v_{1}+\beta_{2} v_{2}+\ldots+\beta_{\mathrm{n}} v_{\mathrm{n}}
$$

Point is anchored:
displaced from origin P_{0}

Confusing Points and Vectors

- Points and vectors appear to have similar representations

$$
\begin{aligned}
& \mathbf{p}=\left[\beta_{1} \beta_{2} \beta_{3}\right] \\
& \mathbf{v}=\left[\alpha_{1} \alpha_{2} \alpha_{3}\right]
\end{aligned}
$$

- A vector has no position.

A Single Representation

If we define $0 \cdot \mathrm{P}=0$ and $1 \cdot \mathrm{P}=\mathrm{P}$ then we can write $\mathrm{v}=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3}=\left[\alpha_{1} \alpha_{2} \alpha_{3} 0\right]\left[v_{1} v_{2} v_{3} P_{0}\right]^{\mathrm{T}}$
$\mathrm{P}=\mathrm{P}_{0}+\beta_{1} v_{1}+\beta_{2} v_{2}+\beta_{3} v_{3}=\left[\beta_{1} \beta_{2} \beta_{3} 1\right]\left[v_{1} v_{2} v_{3} \mathrm{P}_{0}\right]^{\mathrm{T}}$
Thus we obtain the 4D homogeneous coordinate representation

$$
\begin{aligned}
& \mathbf{v}=\left[\begin{array}{lll}
\alpha_{1} \alpha_{2} & \alpha_{3} & 0
\end{array}\right]^{\mathrm{T}} \\
& \mathbf{p}=\left[\begin{array}{lll}
\beta_{1} \beta_{2} & \beta_{3} & 1
\end{array}\right]^{\mathrm{T}}
\end{aligned}
$$

3D points and vectors can be represented with a 4D homogeneous coordinate. The only difference is that a vector has a 0 as its $4^{\text {th }}$ component.

Homogeneous Coordinates

The homogeneous coordinates form for a three dimensional point $[x y z]$ is given as
$\mathbf{p}=\left[x^{\prime} y^{\prime} z^{\prime} w\right]^{\mathrm{T}}=\left[\begin{array}{ll}w x & w y \\ w z w\end{array}\right]^{\mathrm{T}}$
We return to a three dimensional point (for $w \neq 0$) by
$x \leftarrow x^{\prime} / w$
$y \leftarrow y^{\prime} / w$
$z \leftarrow z^{\prime} / w$
If $w=0$, the representation is that of a vector
Note that homogeneous coordinates replaces points in three dimensions by lines through the origin in four dimensions
For $w=1$, the representation of a point is $[x y z 1]$

Homogeneous Coordinates and Computer Graphics

- Homogeneous coordinates are key to all computer graphics systems
- All standard transformations (rotation, translation, scaling) can be implemented by matrix multiplications with 4×4 matrices
- Hardware pipeline works with 4D representations
- For orthographic viewing, we can maintain $w=0$ for vectors and $w=1$ for points
- For perspective, we need a perspective division

