
Geometry

Prof. George Wolberg
Dept. of Computer Science
City College of New York



2

Objectives

• Introduce the elements of geometry
- Scalars
- Vectors
- Points

•Develop mathematical operations among 
them in a coordinate-free manner

•Define basic primitives
- Line segments
- Polygons
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Basic Elements

• Geometry is the study of the relationships 
among objects in an n-dimensional space

- In computer graphics, we are interested in objects that 
exist in three dimensions

• Want a minimum set of primitives from which 
we can build more sophisticated objects

• We will need three basic elements
- Scalar: number representing magnitude
- Vector: quantity representing magnitude and direction
- Point: location in space
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Vectors

•Physical definition: a vector is a quantity 
with two attributes

- Direction
- Magnitude

•Examples include
- Force
- Velocity
- Directed line segments

• Most important example for graphics
• Can map to other types

v
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Vector Operations

• Every vector has an inverse
- Same magnitude but points in opposite direction

• Every vector can be multiplied by a scalar
• There is a zero vector

- Zero magnitude, undefined orientation
• The sum of any two vectors is a vector

- Use head-to-tail axiom

v -v αv
v

u

w
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Vectors Lack Position

• These vectors are identical
- Same length and magnitude

• Vectors spaces insufficient for geometry
- Need points
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Points

•Location in space
•Operations allowed between points and 
vectors

- Point-point subtraction yields a vector
- Equivalent to point-vector addition 

P=v+Q

v=P-Q
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Planes

•A plane be determined by a point and two 
vectors or by three points

P(α,β)=R+αu+βv P(α,β)=R+α(Q-R)+β(P-Q)

R

(point and two vectors: R, u, v) (three points: R, P, Q)
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Triangles

convex sum of P and Q

convex sum of S(α) and R

for 0<=α,β<=1, we get all points in triangle
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Coordinate System

• Consider a basis v1, v2,…., vn

• A vector is written v=α1v1+ α2v2 +….+αnvn

• The list of scalars {α1, α2, …. αn}is the 
representation of v with respect to the given basis

• We can write the representation as a row or 
column array of scalars: a=[α1 α2 …. αn]T=





















α

α
α

n

2

1

.

(such as the x, y, and z axes)

Ex: v=2v1+3v2-4v3 a=[2 3 –4]T

This representation is with respect to a particular basis
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Coordinate Frame

• To form a coordinate frame, we must add a single 
point, the origin    , to the basis vectors.

P0 v1

v2

v3

P0

The terms coordinate system and coordinate frame are often used interchangeably.
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3D Coordinate Systems
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Representation of Vectors and Points

• Frame determined by (P0, v1, v2, v3)
• Within this frame, every vector can be written as 

v=α1v1+ α2v2 +….+αnvn
• Every point can be written as

P = P0 + β1v1+ β2v2 +….+βnvn
Point is anchored:
displaced from origin P0

Vector is just direction
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Confusing Points and Vectors
• Points and vectors appear to have similar representations

p = [β1 β2 β3]
v = [α1 α2 α3]

• A vector has no position.

v

p
v

Vector can be placed anywhere

point: fixed
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A Single Representation 

If we define 0•P = 0 and 1•P =P then we can write
v=α1v1+ α2v2 +α3v3 = [α1 α2 α3 0 ] [v1 v2 v3 P0] T

P = P0 + β1v1+ β2v2 +β3v3= [β1 β2 β3 1 ] [v1 v2 v3 P0] T

Thus we obtain the 4D homogeneous coordinate
representation

v = [α1 α2 α3 0 ] T

p = [β1 β2 β3 1 ] T

3D points and vectors can be represented with a 4D homogeneous coordinate.
The only difference is that a vector has a 0 as its 4th component.
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Homogeneous Coordinates

The homogeneous coordinates form for a three 
dimensional point [x y z] is given as

p =[x’ y’ z’ w] T =[wx wy wz w] T

We return to a three dimensional point (for w≠0) by
x←x’/w
y←y’/w
z←z’/w
If w=0, the representation is that of a vector
Note that homogeneous coordinates replaces points in 

three dimensions by lines through the origin in four 
dimensions

For w=1, the representation of a point is [x y z 1]
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Homogeneous Coordinates 
and Computer Graphics

•Homogeneous coordinates are key to all 
computer graphics systems

- All standard transformations (rotation, translation, 
scaling) can be implemented by matrix 
multiplications with 4 x 4 matrices

- Hardware pipeline works with 4D representations
- For orthographic viewing, we can maintain w = 0

for vectors and w = 1 for points
- For perspective, we need a perspective division
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