
Image Reconstruction

Prof. George Wolberg
Dept. of Computer Science
City College of New York

2Wolberg: Image Processing Course Notes

Objectives

• In this lecture we describe image reconstruction:
- Interpolation as convolution
- Interpolation kernels for:

• Nearest neighbor
• Triangle filter
• Cubic convolution
• B-Spline interpolation
• Windowed sinc functions

3Wolberg: Image Processing Course Notes

Introduction

• Reconstruction is synonymous with interpolation.
• Determine value at position lying between samples.
• Strategy: fit a continuous function through the discrete

input samples and evaluate at any desired set of points.
• Sampling generates infinite bandwidth signal.
• Interpolation reconstructs signal by smoothing samples

with an interpolation function (kernel).

4Wolberg: Image Processing Course Notes

Interpolation

For equi-spaced data, interpolation can be expressed as a convolution:

Kernel Samples: h(-d), h(-1-d),
h(1-d), h(2-d)

If h is symmetric,
h(d), h(1+d), h(1-d), h(2-d)







1

0
)()(

K

k
rk xxhcxf where K is the number of neighborhood pixels

and ck are coefficients for kernel h

5Wolberg: Image Processing Course Notes

Interpolation Kernel

• Set of weights applied to neighborhood pixels
• Often defined analytically
• Usually symmetric: h(x) = h(-x)
• Commonly used kernels:

- Nearest neighbor (pixel replication)
- Triangle filter (linear interpolation)
- Cubic convolution (smooth; used in digital cameras)
- Windowed sinc functions (highest quality, more costly)

6Wolberg: Image Processing Course Notes

Nearest Neighbor

Other names: box filter, sample-and hold function, and Fourier window.
Poor stopband. NN achieves magnification by pixel replication. Very blocky.
Shift errors of up to 1/2 pixel are possible. Common in hardware zooms.

22
)()(:Polynomial ingInterpolat 11  




 kkkk
k

xxxxxxfxf

xk-1 xk xk+1








x

h
5.00

5.0x01
(x) :Kernel ingInterpolat

7Wolberg: Image Processing Course Notes

Triangle Filter

Other names for h: triangle filter, tent filter, roof function, chateau function, and
Bartlett window.



































x
xx

xh

ff
xx
xxfxf

aaforSolve
xx

aaff

axaxf

10
101

)(:Kernelion Interpolat

)()(

 ,
11

] [] [

)(:Polynomial ingInterpolat

01
01

0
0

01
10

0110

01

xk-1 xk xk+1

* =

Sinc x Sinc = Sinc2

In the frequency domain:

8Wolberg: Image Processing Course Notes

Cubic Convolution (1)

Third degree approximation to sinc. Its kernel is derived from constraints
imposed on the general cubic spline interpolation formula.

Determine coefficients by applying following constraints:
1. h(0) = 1 and h(x) = 0 for |x| = 1, 2
2. h must be continuous at |x| = 0, 1, 2
3. h must have a continuous first derivative at |x| = 0, 1, 2
















x

xaxaxaxa
xaxaxaxa

xh
20

21
10

)(0111
2

21
3

31

0010
2

20
3

30

9Wolberg: Image Processing Course Notes

Cubic Convolution (2)

Constraint (1) states that when h is centered on an input sample, the
interpolation function is independent of neighboring samples.
First 2 constraints give 4 equations:












































x
xaxaxaxa
xxaxa

xh

aa
hhaaa

aaahhaaa

ahha

aaaah

aaaah

aaaah

ah

20
21485
101)3()2(

)(

)(variablefree unknowns 8 equations, 7:Total
0)2()2(412

23)1()1(23

)0()0(
:(3) constraint from obtained are equations more 3

248)2(0

)1(0

)1(0

)0(1

23

23

31

''
112131

112131
''

102030

10
''

10

01112131

01112131

00102030

00

10Wolberg: Image Processing Course Notes

Cubic Convolution (3)

How to pick a? Add some heuristics (make it resemble Sinc function):
h’’(0) = -2(a+3) < 0  a> -3 Concave downward at x = 0
h’’(1) = -4a > 0 Concave upward at x = 1
This bounds a to the [-3, 0] range.
Common choices:
a = -1 matches the slope of sinc at x=1 (sharpens image)
a = -0.5 makes the Taylor series approximately agree in as many terms

as possible with the original signal
a = -.75 sets the second derivative of the 2 cubic polynomials in h to 1

(continuous 2nd derivative at x = 1)

11Wolberg: Image Processing Course Notes

Cubic Splines (1)

6 polynomial segments, each of 3rd degree.
fk’s are joined at xk (for k=1,…, n-2) such that fk , f ’k , and f “k are continuous.

(proof in App. 2)

01
2

2
3

3)()()()(axxaxxaxxaxf kkkk 

''
3

''
2

1
'

1

0

1

1

2

23















kk

kk

k

yyya

yyya

yyywhereya

ya

k

k

kkk

k

12Wolberg: Image Processing Course Notes

Cubic Splines (2)

• The derivatives may be determined by solving the following system of linear
equations:

• Introduced by the constraints for continuity in the first and second derivatives
at the knots.

esdependenci global

54
)3(3

)(3
)(3
)(3

45

24
141

141
141

141
42

123

1

24

13

02

210

'
1

'
2

'
3

'
2

'
1

'
0










































































































nnn

nn

n

n

yyy
yy

yy
yy
yy

yyy

y
y

y
y
y
y



13Wolberg: Image Processing Course Notes

B-Splines

To analyze cubic splines, introduce cubic B-Spline interpolation kernel:
B0 box filter

B1 = B0 * B0

B2 = B0 * B0 * B0

B3 = B0 * B0 * B0 * B0
















x

xxxx
xxx

xh
20

218126
10463

6
1)(23

23

Parzen Window: Not interpolatory because it
does not satisfy h(0) = 1, and h(1) = h(2) = 0.
Indeed, it approximates the data.

14Wolberg: Image Processing Course Notes

Interpolatory B-Splines

K-1  inverse of tridiagonal matrix; Computation is O(n)
All previous methods used data values for ck from C = K-1F.

FKC
CKF

c
c

c
c
c

f
f

f
f
f

cccxf

hhhhh

xxhcxf

n

n

n

n

jjjj

j

jk
kjkj

1

1

2

2

1

0

1

2

2

1

0

11

2

2

41
141

141
141

14

6
1

)4(
6
1)(have we

0)2()2(,
6
1)1()1(,

6
4)0(Since

)()(








































































































 



15Wolberg: Image Processing Course Notes

Truncated Sinc Function

• Alternative to previous kernels: use windowed sinc function.
Truncated Sinc

Truncating in spatial domain = convolving spectrum (box) with a Sinc function.

Ringing can be mitigated by using a smoothly tapering windowing function.
Popular window functions: Hann, Hamming, Blackman, Kaiser, and Lanczos.

X









x5.00

5.0x01
Rect(x)

1

16Wolberg: Image Processing Course Notes

Hann/Hamming Window

N = number of samples in windowing function.
Hann:  = 0.5; Hamming:  = 0.54. Also known as raised cosine window.

|H(f)| is sinc+2 shifted sincs. These cancel the right and left side lobes of
Rect(x).





 





wo

Nx
N

x
ng(x)Hann/Hammi

/0
2

1
1

2cos)1(

))())((sinc()(xHannxxh 

17Wolberg: Image Processing Course Notes

Blackman Window





 








wo

Nx
N

x
N

x
)Blackman(x

/0
2

1
1

4cos08.
1

2cos5.42. 

18Wolberg: Image Processing Course Notes

Lanczos Window (1)

20

20
2

sinc
)(2


















x

xx
xLanczos


h(x) = sinc(x) Lanczos2(x)

sinc(x) sinc(x/2) Rect(x/4) Spatial Domain

window

-10 -8 -6 -4 -2 0 2 4 6 8 10 -10 -8 -6 -4 -2 0 2 4 6 8 10

x =

sinc(x/2) Rect(x/4)

h(x)=sinc(x)Lanczos2(x) Frequency DomainH(f) = Rect(f) * Rect(2f) * sinc(4f)

19Wolberg: Image Processing Course Notes

Lanczos Window (2)

• Generalization to N lobes:

• Let N = 3, this lets 3 lobes pass under the Lanczos window.

• Better passband and stopband response


















xN

Nx
N
x

xLanczosN
0

0sinc
)(



20Wolberg: Image Processing Course Notes

Comparison of Interpolation Methods

NN, linear, cubic convolution, windowed sinc, sinc
poor ……………………………………………..> ideal
(blocky, blurred, ringing, no artifacts)

21Wolberg: Image Processing Course Notes

Convolution Implementation

1. Position (center) kernel in input.
2. Evaluate kernel values at positions coinciding with neighbors.
3. Compute products of kernel values and neighbors.
4. Add products; init output pixel.

Step (1) can be simplified by incremental computation for space-invariant
warps. (newpos = oldpos + inc).

Step (2) can be simplified by LUT.

22Wolberg: Image Processing Course Notes

Interpolation with Coefficient Bins

Implementation #1: Interp. with Coefficient Bins (for space-invariant warps)
• Strategy: accelerate resampling by precomputing the input weights and

storing them in LUT for fast access during convolution.

u  bin: (quantize u)

n intervals (bins) between input pixels

Input Outputx

0 1 2 ……………… i n-1 Interleaved

h-2, h-1 h1, h2 Kernel values

h-2

f-2 h-1

f-1

h1

f1

h2

f2 Let d = 1 – i/n (ud<1)
h1 = h(d); h-1 = h(1-d)
h2 = h(1+d); h-2 = h(2-d)

23Wolberg: Image Processing Course Notes

Uninterleaved Coefficient Bins

ii = bin #
0  ii < oversample
val = IN[-2] * kern[2 * oversample + ii]

+ IN[-1] * kern[1 * oversample + ii]
+ IN[0] * kern[ii]
+ IN[1] * kern[1 * oversample - ii]
+ IN[2] * kern[2 * oversample - ii]
+ IN[3] * kern[3 * oversample - ii];

if(ii == 0)val +=IN[-3] * kern[3 * oversample - ii];

0 1 2 ……………… i n-10 1 2 ……………… i n-10 1 2 ……………… i n-1

Oversample Oversample Oversample

IN[-3] IN[-2] IN[-1] IN[0] IN[1] IN[2] IN[3]

kern[3+ii]
kern[2+ii] Kern[ii] Kern[1-ii]

Kern[2-ii] Kern[3-ii]

kern[2+ii]

0  ii  1

Refer to code on p. 151

24Wolberg: Image Processing Course Notes

Kernel Position

• Since we are assuming space invariance, the new position for the kernel =
oldpos + offset.

OUTlenoversampleINlenpartialdff
OUTlen

oversampleINlendiidffdiioffset

)%*(bin

* bins whole# ;











Pixel

Blow-up
of bins.

Subpixel
(bin)

Pixel

I J K L

Current pos.
Let dii = 1

dff = .6
I J K L

Old
pos.

New
pos.

Offset = 1.6 bins

Offset must be accurate to avoid accrual
of error in the incremental repositioning
of the kernel.

25Wolberg: Image Processing Course Notes

Forward vs. Inverse Mapping

• Forward mapping: x = X(u, v); y = Y(u, v)
• Inverse mapping: u = U(x,y); v = V(x, y)

u

v

X

Y
OutputInput

Input Output
Inverse mapping

0 OV 2OV 3OV
1-d d

Input Output (accumulator)
Forward mapping

d*OV OV OV

LHS

RHS

Coefficient Bins for kernel eval for fast
Convolution for image reconstruction.

Ch. 3, Sec. 1

OV

26Wolberg: Image Processing Course Notes

Fant’s Algorithm

Implementation #2: Fant’s Resampling Algorithm (for space-var. warps)

Input and output are streams of pixels that are consumed and generated at rate
determined by the spatial mapping.
Three conditions per stream:
1) Current input pixel is entirely consumed without completing an output pixel.
2) The input is entirely consumed while completing the output pixel.
3) Output pixel computed without entirely consuming the current input pixel.

Resampler

Algorithm uses linear interpolation for image reconstruction and box
filtering (unweighted averaging) for antialiasing. Code on p.156.

27Wolberg: Image Processing Course Notes

Example

0.6 2.3 3.2 3.3 3.9

100 106 92 90

.6 2.3 3.2 3.3 3.9

0 1 2 3 4A0 A1 A2 A3

m(u)

Input

Output
82)6)(.90()1)(.92()2(.

9.
7.)92(

9.
7.1)106(

106)7)(.106()3(.
7.1
4.1)106(

7.1
4.11)100(

101)1(
7.1
4.)106(

7.1
4.1)100(

40)4)(.100(

3

2

1

0






















 






















 






















 



A

A

A

A

100
106

92 90

