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Objectives

• In this lecture we describe image reconstruction:
- Interpolation as convolution
- Interpolation kernels for:

• Nearest neighbor
• Triangle filter
• Cubic convolution
• B-Spline interpolation
• Windowed sinc functions
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Introduction

• Reconstruction is synonymous with interpolation.
• Determine value at position lying between samples.
• Strategy: fit a continuous function through the discrete

input samples and evaluate at any desired set of points.
• Sampling generates infinite bandwidth signal.
• Interpolation reconstructs signal by smoothing samples

with an interpolation function (kernel).
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Interpolation

For equi-spaced data, interpolation can be expressed as a convolution:

Kernel Samples: h(-d), h(-1-d), 
h(1-d), h(2-d)

If h is symmetric,
h(d), h(1+d), h(1-d), h(2-d)
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Interpolation Kernel

• Set of weights applied to neighborhood pixels
• Often defined analytically
• Usually symmetric: h(x) = h(-x)
• Commonly used kernels:

- Nearest neighbor (pixel replication)
- Triangle filter (linear interpolation)
- Cubic convolution (smooth; used in digital cameras)
- Windowed sinc functions (highest quality, more costly)
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Nearest Neighbor

Other names: box filter, sample-and hold function, and Fourier window.
Poor stopband. NN achieves magnification by pixel replication. Very blocky. 
Shift errors of up to 1/2 pixel are possible. Common in hardware zooms.
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Triangle Filter

Other names for h: triangle filter, tent filter, roof function, chateau function, and 
Bartlett window.
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Cubic Convolution (1)

Third degree approximation to sinc. Its kernel is derived from constraints
imposed on the general cubic spline interpolation formula.

Determine coefficients by applying following constraints:
1. h(0) = 1 and h(x) = 0 for |x| = 1, 2
2. h must be continuous at |x| = 0, 1, 2
3. h must have a continuous first derivative at |x| = 0, 1, 2
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Cubic Convolution (2)

Constraint (1) states that when h is centered on an input sample, the
interpolation function is independent of neighboring samples. 
First 2 constraints give 4 equations:
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Cubic Convolution (3)

How to pick a? Add some heuristics (make it resemble Sinc function):
h’’(0) = -2(a+3) < 0  a> -3 Concave downward at x = 0
h’’(1) =       -4a > 0                   Concave upward at x = 1
This bounds a to the [-3, 0] range.
Common choices:
a = -1 matches the slope of sinc at x=1 (sharpens image)
a = -0.5 makes the Taylor series approximately agree in as many terms

as possible with the original signal
a = -.75 sets the second derivative of the 2 cubic polynomials in h to 1

(continuous 2nd derivative at x = 1)
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Cubic Splines (1)

6 polynomial segments, each of 3rd degree.
fk’s are joined at xk (for k=1,…, n-2) such that fk , f ’k , and f “k are continuous.

(proof in App. 2)
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Cubic Splines (2)

• The derivatives may be determined by solving the following system of linear 
equations:

• Introduced by the constraints for continuity in the first and second derivatives 
at the knots.
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B-Splines

To analyze cubic splines, introduce cubic B-Spline interpolation kernel:
B0 box filter

B1 = B0 * B0

B2 = B0 * B0 * B0

B3 = B0 * B0 * B0 * B0
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Interpolatory B-Splines

K-1  inverse of tridiagonal matrix; Computation is O(n)
All previous methods used data values for ck from C = K-1F.
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Truncated Sinc Function

• Alternative to previous kernels: use windowed sinc function.
Truncated Sinc

Truncating in spatial domain = convolving spectrum (box) with a Sinc function.

Ringing can be mitigated by using a smoothly tapering windowing function.
Popular window functions: Hann, Hamming, Blackman, Kaiser, and Lanczos.
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Hann/Hamming Window

N = number of samples in windowing function.
Hann:  = 0.5; Hamming:  = 0.54. Also known as raised cosine window.

|H(f)| is sinc+2 shifted sincs. These cancel the right and left side lobes of 
Rect(x).
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Blackman Window
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Lanczos Window (1)
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Lanczos Window (2)

• Generalization to N lobes:

• Let N = 3, this lets 3 lobes pass under the Lanczos window.

• Better passband and stopband response
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Comparison of Interpolation Methods

NN, linear, cubic convolution, windowed sinc, sinc
poor ……………………………………………..> ideal
(blocky,          blurred,                ringing,          no artifacts)
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Convolution Implementation

1. Position (center) kernel in input.
2. Evaluate kernel values at positions coinciding with neighbors.
3. Compute products of kernel values and neighbors.
4. Add products; init output pixel.

Step (1) can be simplified by incremental computation for space-invariant 
warps. (newpos  = oldpos + inc).

Step (2) can be simplified by LUT.



22Wolberg: Image Processing Course Notes

Interpolation with Coefficient Bins

Implementation #1: Interp. with Coefficient Bins  (for space-invariant warps)
• Strategy: accelerate resampling by precomputing the input weights and 

storing them in LUT for fast access during convolution.

u  bin: (quantize u)

n intervals (bins) between input pixels

Input Outputx

0 1 2 ……………… i n-1 Interleaved

h-2, h-1    h1, h2  Kernel values

h-2

f-2 h-1

f-1

h1

f1

h2

f2 Let d = 1 – i/n  (ud<1)
h1 = h(d);      h-1 = h(1-d)
h2 = h(1+d);  h-2 = h(2-d)
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Uninterleaved Coefficient Bins

ii = bin #
0  ii < oversample
val = IN[-2] * kern[2 * oversample + ii]

+ IN[-1] * kern[1 * oversample + ii]
+ IN[ 0] * kern[ii]
+ IN[ 1] * kern[1 * oversample - ii]
+ IN[ 2] * kern[2 * oversample - ii]
+ IN[ 3] * kern[3 * oversample - ii];

if(ii == 0)val +=IN[-3] * kern[3 * oversample - ii];

0 1 2 ……………… i n-10 1 2 ……………… i n-10 1 2 ……………… i n-1

Oversample Oversample Oversample

IN[-3] IN[-2] IN[-1] IN[0] IN[1] IN[2] IN[3]

kern[3+ii]
kern[2+ii] Kern[ii] Kern[1-ii]

Kern[2-ii] Kern[3-ii]

kern[2+ii]

0  ii  1

Refer to code on p. 151
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Kernel Position

• Since we are assuming space invariance, the new position for the kernel = 
oldpos + offset.

OUTlenoversampleINlenpartialdff
OUTlen

oversampleINlendiidffdiioffset
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I J K L

Old
pos.

New
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Offset = 1.6 bins

Offset must be accurate to avoid accrual
of error in the incremental repositioning
of the kernel.
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Forward vs. Inverse Mapping

• Forward mapping: x = X(u, v);  y = Y(u, v)
• Inverse  mapping: u = U(x,y);   v = V(x, y)

u

v

X

Y
OutputInput

Input Output
Inverse mapping

0 OV 2OV 3OV
1-d d

Input Output (accumulator)
Forward mapping

d*OV OV OV

LHS

RHS

Coefficient Bins for kernel eval for fast
Convolution for image reconstruction.

Ch. 3, Sec. 1

OV
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Fant’s Algorithm

Implementation #2: Fant’s Resampling Algorithm (for space-var. warps)

Input and output are streams of pixels that are consumed and generated at rate 
determined by the spatial mapping.
Three conditions per stream:
1) Current input pixel is entirely consumed without completing an output pixel.
2) The input is entirely consumed while completing the output pixel.
3) Output pixel computed without entirely consuming the current input pixel.

Resampler

Algorithm uses linear interpolation for image reconstruction  and box 
filtering (unweighted averaging) for antialiasing. Code on p.156.
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Example
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