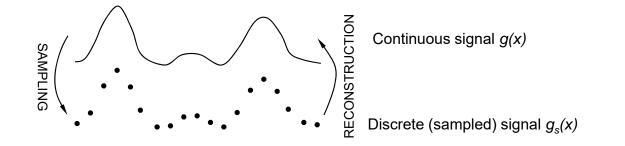
Sampling Theory

Prof. George Wolberg Dept. of Computer Science City College of New York

Objectives

- In this lecture we describe sampling theory:
 - Motivation
 - Analysis in the spatial and frequency domains
 - Ideal and nonideal solutions
 - Aliasing and antialiasing
 - Example: oversampling CD players

Sampling Theory

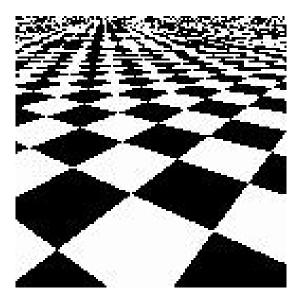


Sampling theory addresses the two following problems:

- 1. Are the samples of $g_s(x)$ sufficient to exactly describe g(x)?
- 2. If so, how can g(x) be reconstructed from $g_s(x)$?

Motivation

• Improper consideration leads to jagged edges in magnification and Moire effects in minification.

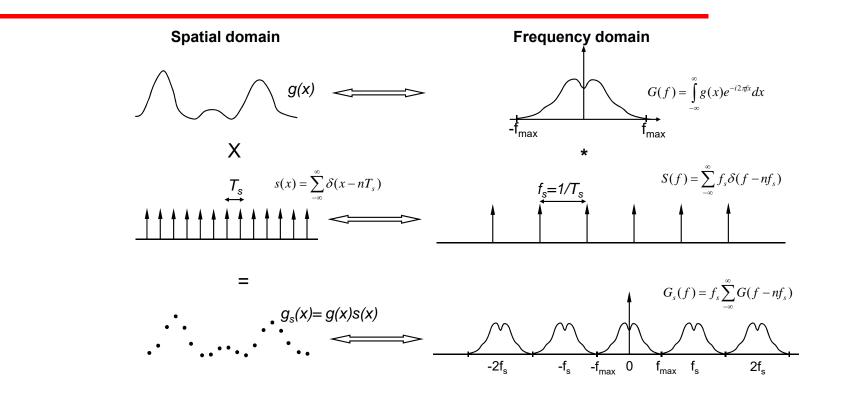


Unfiltered image



Filtered image

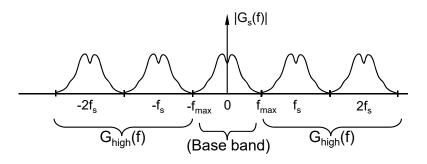
Insight: Analysis in Frequency Domain



Wolberg: Image Processing Course Notes

Exploit Well-Known Properties of Fourier Transforms

- 1. Multiplication in spatial domain \leftrightarrow convolution in frequency domain.
- 2. Fourier transform of an impulse train is itself an impulse train.
- 3. $G_s(f)$ is the original spectrum G(f) replicated in the frequency domain with period f_s .



 $G_s(f) = G(f) + G_{high}(f) \rightarrow \text{introduced by sampling}$

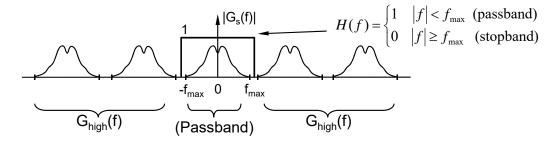
Solution to Reconstruction

Discard replicas $G_{high}(f)$, leaving baseband G(f) intact. Two Provisions for exact reconstruction:

- The signal must be bandlimited. Otherwise, the replicas would overlap with the baseband spectrum.
- $f_s > 2f_{max}$ (Nyquist frequency)

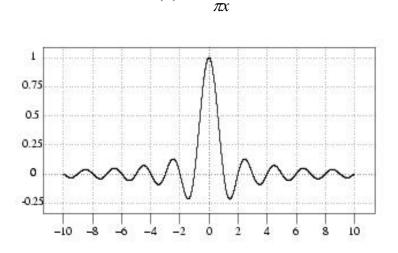
Ideal Filter in the Frequency Domain: Box Filter

 Assuming provisions hold, we can discard G_{high} by multiplying G_s(f) with a box filter in the frequency domain.



Ideal Filter in the Spatial Domain: Sinc Function

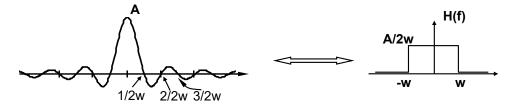
The ideal lowpass filter in the spatial domain is the inverse Fourier transform of the ideal box:



 $\operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$

Reciprocal Relationship

• Reciprocal relationship between spatial and frequency domains:



• For interpolation, A must equal 1 (unity gain when sinc is centered at samples; pass through 0 at all other samples)

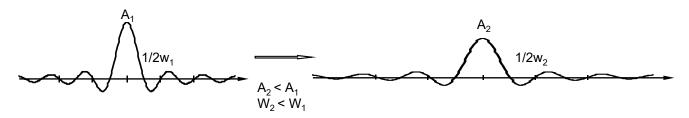
W=f_{max}=0.5 cycle / pixel for all digital images

Highest freq: on-off sequence

1 cycle is 2 pixels (black, white, black, white), therefore $\frac{1}{2}$ cycle per pixel is f_{max} .

Blurring

• To blur an image, $W\downarrow$ and $A\downarrow$ so that A/2W remains at 1.



 To interpolate among sparser samples, A=1 and W↓ which means that (A/2W)↑. Since sampling decreases the amplitude of the spectrum, (A/2W)↑ serves to restore it.

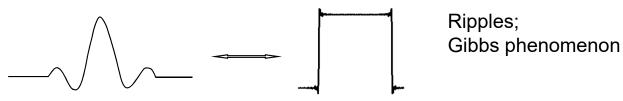
$$g(x) = \operatorname{sinc}(x) * g_s(x)$$
$$= \int_{-\infty}^{\infty} \operatorname{sinc}(\lambda) g_s(x - \lambda) d\lambda$$

Note: sinc requires infinite number of neighbours: impossible.

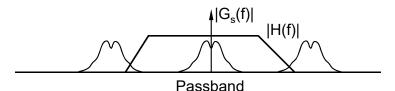
• Ideal low-pass filtering is impossible in the spatial domain. It is not impossible in the frequency domain for finite data streams.

Nonideal Reconstruction

• Possible solution to reconstruction in the spatial domain: truncated sinc.

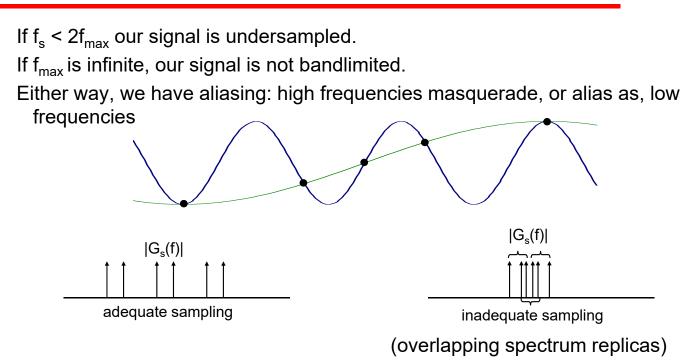


• Alternate solution: nonideal reconstruction



• Nonideal because it attenuates the higher frequencies in the passband and doesn't fully suppress the stopband.

Aliasing

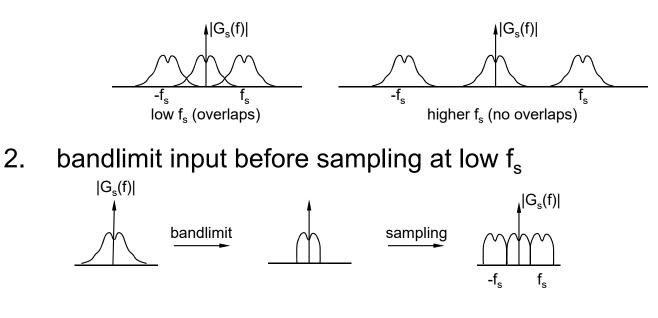


Temporal aliasing: stagecoach wheels go backwards in films (sampled at 24 frames/sec).

Antialiasing

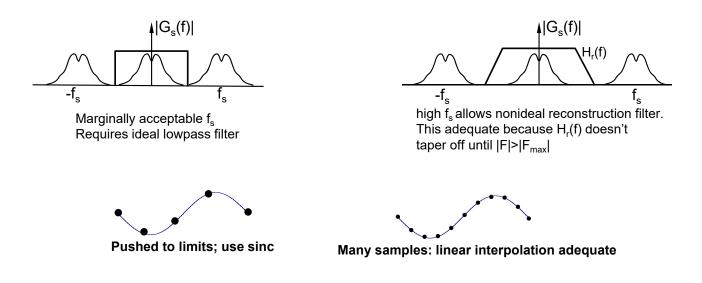
Two approaches to antialiasing for combating aliasing:

1. Sample input at higher rate: increase f_s

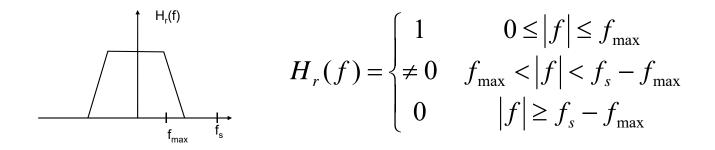


Antialiasing

Intuition for increasing f_s : Higher sampling rates permit sloppier reconstruction filters.



Nonideal Reconstruction Filter

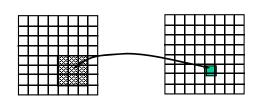


Nonideal Reconstruction Filter

Intuition for bandlimiting input:

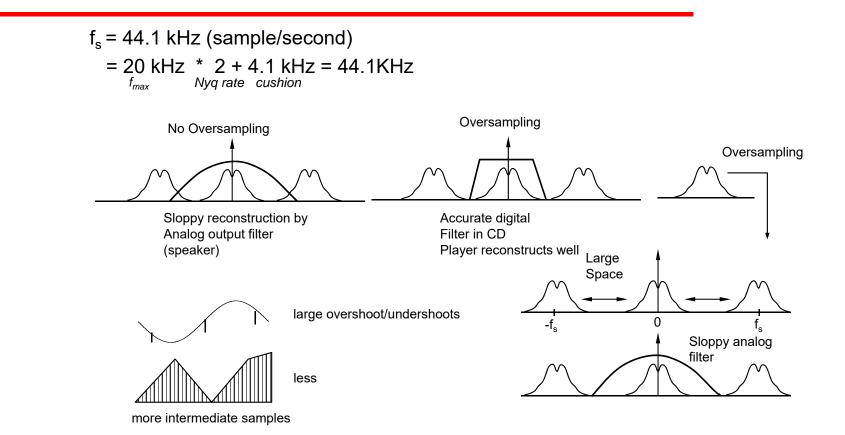
Inability to change fs: e.g., restricted by display resolution.

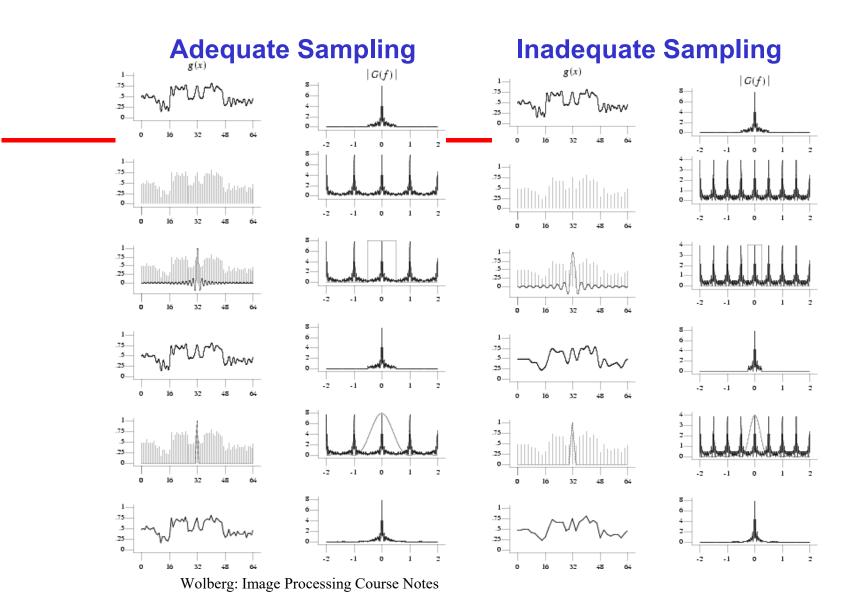
For example, an image in perspective may require infinite pixels to capture all visual details. However, only finite # pixels available, e.g. 512 x 512

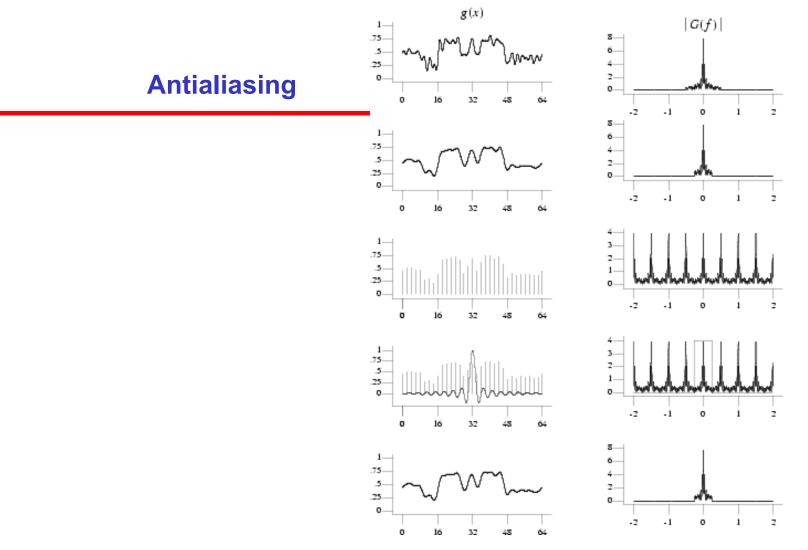


Many pixels in oblique image map to one output pixel. Must blur neighborhood before returning a single value to the output image. In general, dull signals don't need bandlimiting, rich ones do.

Example: Oversampling CD players







Wolberg: Image Processing Course Notes

20