C++ GUI Programming
with Qt 4

C++ GUI Programming
with Qt 4

Jasmin Blanchette

Mark Summerfield

In association with Trolltech Press

o
:': Upper Saddle River, NdJ - Boston - Indianapolis - San Francisco
PRENTICE New York - Toronto - Montreal - London - Munich - Paris - Madrid
HALL Capetown - Sydney - Tokyo - Singapore - Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.
The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.
The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to your
business, training goals, marketing focus, and branding interests. For more information, please contact:
U.S. Corporate and Government Sales
(800) 382-3419
corpsales @pearsontechgroup.com
For sales outside the United States, please contact:

International Sales
international @ pearsoned.com

Visit us on the Web: www.prenhallprofessional.com

=- This Book Is Safari Enabled
s 'arl The Safari® Enabled icon on the cover of your favorite technology book means the book

BoOKs ONLINE is available through Safari Bookshelf. When you buy this book, you get free access to
the online edition for 45 days.

Safari Bookshelf is an electronic reference library that lets you easily search thousands of technical books,
find code samples, download chapters, and access technical information whenever and wherever you

need it.
To gain 45-day Safari Enabled access to this book:
* Go to http://www.prenhallprofessional.com/safarienabled

» Complete the brief registration form
* Enter the coupon code FTMP-7EXM-TI8P-6GM1-3Y85

If you have difficulty registering on Safari Bookshelf or accessing the online edition, please e-mail
customer-service @safaribooksonline.com.

Library of Congress Cataloging-in-Publication Data

Blanchette, Jasmin.
C++ GUI programming with Qt 4 / Jasmin Blanchette, Mark Summerfield.
p. cm.
Includes bibliographical references and index.
ISBN 0-13-187249-4 (pbk.: alk. paper)
1. Graphical user interfaces (Computer systems) 2. C++ (Computer program language)
I. Summerfield, Mark. II. Title.

QA76.9.U83B532 2006
005.4’37—dc22
2006013376

Copyright © 2006 Trolltech AS

All rights reserved. Printed in the United States of America. This publication may only be distributed
subject to the terms and conditions set forth in the Open Publication License, v1.0 or later (the latest
version is available at http://www.open-content.org/openpuby/).

Trolltech®, Qt®, Qtopia®, and the Trolltech and Qtopia logos are registered trademarks of Trolltech AS.
ISBN 0-13-1872494

Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.
First printing, June 2006

Contents

Foreword i e ix
Preface ... xi
Acknowledgments i xiii
ABrief Historyof Qt i i XV

1. Getting Started 3
Hello Qt ... e 3
Making Connectionscciiiiiiiinnneeennnnnnnnn. 5
Laying Out Widgets ..., 6
Using the Reference Documentation 9

2. CreatingDialogs i, 13
Subclassing QDialog 13
Signalsand SlotsinDepth ia... 20
Rapid Dialog Designccoiiiiiiiiiiiiiiiiiianeannnn, 23
Shape-Changing Dialogsiiiiiiiiiiiinnn... 29
DynamicDialogs ...t 36
Built-in Widget and Dialog Classescccoovvia... 37

3. Creating Main Windowsciiiiiuieniinn. 43
Subclassing QMainWindow ..., 44
Creating Menus and Toolbarsccoiiiiiieaaa... 48
Setting Upthe StatusBaroo.... 52
Implementingthe File Menu 54
Using Dialogs ... e 61
Storing Settingscoo i e 67
Multiple Documentst 68
Splash Screens ...ttt 71

4. Implementing Application Functionality 73

The Central Widget ..., 73
Subclassing QTableWidget 74
Loading and Savingccoiiiiiiiiiiiiiiiiiiiianan... 80
Implementing the Edit Menu 83
Implementing the Other Menus 87
Subclassing QTableWidgetItem 91
5. Creating Custom Widgets 101
Customizing Qt Widgets ...t 101
Subclassing QWidgeto 103
Integrating Custom Widgets with Qt Designer 113
Double Buffering 116

Part II: Intermediate Qt

6. Layout Management it 137
Laying Out WidgetsonaForm 137
Stacked Layouts 143
St S e e 145
Scrolling Areas ...t e 148
Dock Widgets and Toolbarscciiiiinan..... 150
Multiple Document Interface 152

7. EventProcessing, 163
Reimplementing Event Handlers 163
Installing Event Filters............... o ... 168
Staying Responsive During Intensive Processing 171

8. 2Dand 3D Graphics i e 175
Painting with QPainterot 175
Painter Transformations, 180
High-Quality Rendering with QImage 188
Printing i 190
Graphicswith OpenGLt 198

9. Dragand Drop ...ttt e 205
Enabling Dragand Dropcccoiiiiiiiiiiiiiinna.... 205
Supporting Custom Drag Typesccoiiiiiiieea.... 210
Clipboard Handlingttt 215

vi

10.

11

12.

13.

14.

15.

16.

Item View Classescouiiiiiiiiiiii i, 217

Using the Item View Convenience Classes 218
Using Predefined Modelsccoiiiiiiiiiinnn.. 225
Implementing Custom Modelsccoviiiii... 230
Implementing Custom Delegates.............................. 244
Container Classesttt 251
Sequential Containerscooiiiiiiiiiiiiiiiiinnnnnn.. 252
Associative Containerso 260
Generic Algorithms 263
Strings, Byte Arrays, and Variants 265
Input/OQutput e 273
Reading and Writing Binary Data 274
Reading and Writing Textc i, 279
Traversing Directories.............ccoiiiiiiiinnn .. 285
Embedding Resourcescccoviiiiiiiiiiiiiiinen... 286
Inter-Process Communicationccoiiiiiiina.... 287
Databases ...ttt e 293
Connecting and QUeryingc..oeeeiiiiiiinnnnennnn.. 294
Presenting Data in Tabular Form 299
Implementing Master—Detail Forms 304
Networking i i 311
Writing FTPClients 311
Writing HTTP Clients ..., 320
Writing TCP Client—Server Applications 323
Sending and Receiving UDP Datagrams....................... 333
XV L . oo e 339
Reading XML with SAX i 339
Reading XML with DOM i, 344
Writing XML ... e 348
Providing OnlineHelp, 351
Tooltips, Status Tips, and “What’s This?”” Help 351
Using QTextBrowser as a Simple Help Engine 353
Using Qt Assistant for Powerful OnlineHelp 356

vil

Part III: Advanced Qt

17. Internationalization 361
Working with Unicode, 362
Making Applications Translation-Aware 365
Dynamic Language Switching 371
Translating Applicationscciiiiiiiiiinnn. 376

18. Multithreading i, 381
Creating Threadscciiiiiiiiiiiiiiiiiiiiieeenn. 381
Synchronizing Threadscc i, 385
Communicating with the Main Thread 391
Using Qt’s Classes in Secondary Threads 396

19. Creating Plugins i, 399
Extending Qt with Plugins, ... 400
Making Applications Plugin-Aware 408
Writing Application Plugins, 412

20. Platform-SpecificFeatures 415
Interfacing with Native APIs 415
Using ActiveXon Windowsciiiiiiiiiiiinnn. 419
Handling X11 Session Management 431

21. Embedded Programming0iiiiiiin. 439
Getting Started with Qtopia 440
Customizing QtopiaCorecoiiiiiiiiiiiiiinnnn... 441

Appendices

A Installing Qt i e 447

B. Introduction to C++ for Java and C# Programmers 451

Index ... e 493

viii

Foreword

Why Qt? Why do programmers like us choose Qt? Sure, there are the obvious
answers: Qt’s single-source compatibility, its feature richness, its C++ perfor-
mance, the availability of the source code, its documentation, the high-quality
technical support, and all the other items mentioned in Trolltech’s glossy mar-
keting materials. This is all very well, but it misses the most important point:
Qt is successful because programmers like it.

How come programmers like one technology, but dislike another? Personally I
believe software engineers enjoy technology that feels right, but dislike every-
thing that doesn’t. “Feels right” means many things. In the Qt 3 edition of the
book, I mentioned Trolltech’s phone system as a particularly good example of
some particularly bad technology. The phone system didn’t feel right, because
it forced us to do apparently random things depending on some equally random
context. Randomness doesn’t feel right. Another thing that doesn’t feel right
is repetitiveness and redundancy. Good programmers are lazy. What we love
about computers compared to, say, gardening is that we don’t have to do the
same things over and over.

Let me emphasize this point with a real-world example: travel reimbursement
forms. Typically those forms come as fancy spreadsheets; you fill them out,
and you get real money. Simple technology, one should think, and given the
monetary incentive this should be a simple task for a grown-up engineer.

Reality looks different, though. While nobody else in the company seems to
have any problems whatsoever dealing with those forms, the engineers do. And
having talked to people in other companies, this seems to be a common pattern.
We defer reimbursement until the very last moment, and sometimes we might
even forget about it. Why is that? Looking at our form, it’s a straightforward,
standard procedure. One has to collect receipts, number them, and put those
numbers into the proper fields with the date, the location, a description, and
the amount. The numbering and copying is designed to ease someone’s work,
but strictly speaking it is redundant, given that the date, location, description,
and amount unambiguously identify a receipt. A tiny bit of extra work to get
your money back, one would think.

A small annoyance is the per-diem rate, though, which depends on the travel
location. There’s some separate document somewhere that lists the standard-
ized rates for all the different travel locations. You can’t just select “Chicago”;
instead you have to look up the rate for Chicago yourself. There’s a similar
annoyance with the exchange rate field. One has to find the current exchange
rate somewhere—perhaps with Google’s help—and then enter the rate in ev-

ix

ery single field. Well, strictly speaking, you should wait for your credit card
company to issue a statement to you with the actual exchange rate that they
used. While this is not hard to do, looking up different pieces of information
from different sources, and then copying the relevant items to several places
in the form feels needlessly awkward.

Programming can be a lot like filling in travel reimbursement forms, only
worse. And thisis where Qt comes to the rescue. Qt is different. For one thing,
Qt makes sense. And for another, Qt is fun. Qt lets you concentrate on your
tasks. When Qt’s original architects faced a problem, they didn’t just look for
a good solution, or the simplest solution. They looked for the right solution,
and then they documented it. Granted they made mistakes, and granted some
of their design decisions didn’t pass the test of time, but they still got a lot of
things right, and what wasn’t right could and can be corrected. You can see
this by the fact that a system originally designed to bridge Windows 95 and
Unix/Motif now unifies modern desktop systems as diverse as Windows XP,
Mac OS X, and GNU/Linux, and provides the foundation for the Qtopia appli-
cation platform for embedded Linux.

Long before Qt became so popular and so widely used, the dedication of Qt’s
developers to finding the right solutions made Qt special. That dedication is
just as strong today and affects everyone who develops and maintains Qt. For
us, working on Qt is a responsibility and a privilege. We are proud of helping
to make your professional and open source lives easier and more enjoyable.

Matthias Ettrich
Oslo, Norway
June 2006

Preface

Qt is a comprehensive C++ framework for developing cross-platform GUI appli-
cations using a “write once, compile anywhere” approach. Qtlets programmers
use a single source tree for applications that will run on Windows 98 to XP,
Mac OS X, Linux, Solaris, HP-UX, and many other versions of Unix with X11.
The Qt libraries and tools are also part of Qtopia Core, a product that provides
its own window system on top of embedded Linux.

The purpose of this book is to teach you how to write GUI programs using Qt 4.
The book starts with “Hello Qt” and quickly progresses to more advanced top-
ics, such as creating custom widgets and providing drag and drop. The text is
complemented by a CD that contains the source code of the example programs.
The CD also includes the open source edition of Qt 4.1.1 for all supported plat-
forms, as well as MinGW, a set of freely available development tools that can be
used to build Qt applications on Windows. Appendix A explains how to install
the software.

The book is divided into three parts. Part I covers all the concepts and practices
necessary for programming GUI applications using Qt. Knowledge of this part
alone is sufficient to write useful GUI applications. Part II covers central Qt
topics in greater depth, and Part III provides more specialized and advanced
material. The chapters of Parts II and III can be read in any order, but they
assume familiarity with the contents of Part I.

Readers of the Qt 3 edition of this book will find this new edition familiar in
both content and style. This edition has been updated to take advantage of
Qt 4’s new features (including some that were introduced with Qt 4.1) and
to present code that shows good idiomatic Qt 4 programming techniques. In
many cases, we have used examples similar to the ones used in the Qt 3 edition.
This will not affect new readers, but will help those who read the previous
edition orient themselves to Qt 4’s cleaner, clearer, and more expressive style.

This edition includes new chapters covering Qt 4’s model/view architecture,
the new plugin framework, and embedded programming with Qtopia, as well
a new appendix. And just like the Qt 3 book, the emphasis is on explaining Qt
programming rather than simply rehashing or summarizing Qt’s extensive
online documentation.

We have written the book with the assumption that you have a basic knowl-
edge of C++, Java, or C#. The code examples use a subset of C++, avoiding
many C++ features that are rarely needed when programming Qt. In the few
places where a more advanced C++ construct is unavoidable, it is explained
where it is used.

xi

If you already know Java or C# but have little or no experience with C++, we
recommend that you begin by reading Appendix B, which provides sufficient
introduction to C++ to be able to use this book. For a more thorough introduc-
tion to object-oriented programming in C++, we recommend C++ How to Pro-
gram by Harvey Deitel and Paul Deitel, and the C++ Primer by Stanley B. Lipp-
man, Josée Lajoie, and Barbara E. Moo.

Qt made its reputation as a cross-platform framework, but because of its intu-
itive and powerful API, many organizations use Qt for single-platform develop-
ment. Adobe Photoshop Album isjust one example of a mass-market Windows
application written in Qt. Many sophisticated software systems in vertical
markets, such as 3D animation tools, digital film processing, electronic design
automation (for chip design), oil and gas exploration, financial services, and
medical imaging, are built with Qt. If you are making a living with a success-
ful Windows product written in Qt, you can easily create new markets in the
Mac OS X and Linux worlds simply by recompiling.

Qt is available under variouslicenses. If you want to build commercial applica-
tions, you must buy a commercial Qt license; if you want to build open source
programs, you can use the open source (GPL) edition. Qt is the foundation on
which the K Desktop Environment (KDE) and the many open source applica-
tions that go with it are built.

In addition to Qt’s hundreds of classes, there are add-ons that extend Qt’s scope
and power. Some of these products, like Qt Script for Applications (QSA) and
the Qt Solutions components, are available from Trolltech, while others are
supplied by other companies and by the open source community. See http://
www.trolltech.com/products/3rdparty/ for information on Qt add-ons. Qt also
has a well-established and thriving user community that uses the qt-interest
mailing list; see http://lists.trolltech.com/ for details.

If you spot errors in the book, have suggestions for the next edition, or want to
give us feedback, we would be delighted to hear from you. You can reach us at
qt-booketrolltech.com. The errata will be placed on http://doc.trolltech.com/
gt-book-errata.html.

xii

Acknowledgments

Our first acknowledgment is of Eirik Chambe-Eng, Trolltech’s president.
Eirik not only enthusiastically encouraged us to write the Qt 3 edition of the
book, he also allowed us to spend a considerable amount of our work time
writing it. Eirik and Trolltech CEO Haavard Nord both read the manuscript
and provided valuable feedback. Their generosity and foresight was aided and
abetted by Matthias Ettrich, Trolltech’s lead developer. Matthias cheerfully
accepted our neglect of duty as we obsessed over the writing of the first edition
of this book and gave us a lot of advice on good Qt programming style.

For the Qt 3 edition, we asked two Qt customers, Paul Curtis and Klaus
Schmidinger, to be our external reviewers. Both are Qt experts with an amaz-
ing attention to technical detail, which they proved by spotting some very sub-
tle errors in our manuscript and suggesting numerous improvements. And
within Trolltech, alongside Matthias, our most stalwart reviewer was Reginald
Stadlbauer. His technical insight was invaluable, and he taught us how to do
some things in Qt that we didn’t even know were possible.

For this Qt 4 edition, we have continued to benefit from the unstinting help
and support of Eirik, Haavard, and Matthias. Klaus Schmidinger continued to
give valuable feedback, and within Trolltech, our key reviewers were Andreas
Aardal Hanssen, Henrik Hartz, Vivi Gliickstad Karlsen, Trenton Schulz, Andy
Shaw, and Pal de Vibe.

In addition to the reviewers mentioned above, we received expert help from
Harald Fernengel (databases), Volker Hilsheimer (ActiveX), Bradley Hughes
(multithreading), Trond Kjernasen (3D graphics and databases), Lars Knoll
(2D graphics and internationalization), Sam Magnuson (gmake), Marius Bugge
Monsen (item view classes), Dimitri Papadopoulos (Qt/X11), Paul Olav Tvete
(custom widgets and embedded programming), Rainer Schmid (networking
and XML), Amrit Pal Singh (introduction to C++), and Gunnar Sletta (2D
graphics and event processing).

Extra thanks are due to Trolltech’s documentation and support teams for
handling documentation-related issues while the book consumed so much of
our time, and to Trolltech’s system administrators for keeping our machines
running and our networks communicating throughout the project.

On the production side, Trenton Schulz created the accompanying CD, and
Trolltech’s Cathrine Bore handled the contracts and legalities on our behalf.
Thanks also to Nathan Clement for the Troll illustrations. And last but not
least, thanks to Lara Wysong from Pearsons, for handling the production
practicalities so well.

xiii

A Brief History of Qt

The Qt framework first became publicly available in May 1995. It was initially
developed by Haavard Nord (Trolltech’s CEO) and Eirik Chambe-Eng (Troll-
tech’s president). Haavard and Eirik met at the Norwegian Institute of Tech-
nology in Trondheim, where they both graduated with master’s degrees in com-
puter science.

Haavard’s interest in C++ GUI development began in 1988 when he was com-
missioned by a Swedish company to develop a C++ GUI framework. A couple of
years later, in the summer of 1990, Haavard and Eirik were working together
on a C++ database application for ultrasound images. The system needed to be
able to run with a GUI on Unix, Macintosh, and Windows. One day that sum-
mer, Haavard and Eirik went outside to enjoy the sunshine, and as they sat
on a park bench, Haavard said, “We need an object-oriented display system.”
The resulting discussion laid the intellectual foundation for the object-oriented
cross-platform GUI framework they would soon go on to build.

In 1991, Haavard started writing the classes that eventually became Qt, col-
laborating with Eirik on the design. The following year, Eirik came up with the
idea for “signals and slots”, a simple but powerful GUI programming paradigm
that has now been embraced by several other toolkits. Haavard took the idea
and produced a hand-coded implementation. By 1993, Haavard and Eirik had
developed Qt’s first graphics kernel and were able to implement their own wid-
gets. At the end of the year, Haavard suggested that they go into business to-
gether to build “the world’s best C++ GUI framework”.

The year 1994 began inauspiciously with the two young programmers wanting
to enter a well-established market, with no customers, an unfinished product,
and no money. Fortunately, both their wives were employed and therefore able
to support their husbands for the two years Eirik and Haavard expected to
need to develop the product and start earning an income.

The letter ‘Q’ was chosen as the class prefix because the letter looked beautiful
in Haavard’s Emacs font. The ‘t’ was added to stand for “toolkit”, inspired by
Xt, the X Toolkit. The company was incorporated on March 4, 1994, originally
as Quasar Technologies, then as Troll Tech, and today as Trolltech.

In April 1995, thanks to a contact made through one of Haavard’s university
professors, the Norwegian company Metis gave them a contract to develop
software based on Qt. Around this time, Trolltech hired Arnt Gulbrandsen,
who during his six years at Trolltech devised and implemented an ingenious
documentation system as well as contributing to Qt’s code.

XV

On May 20, 1995, Qt 0.90 was uploaded to sunsite.unc.edu. Six days later, the
release was announced on comp.os.linux.announce. This was Qt’s first public
release. Qt could be used for both Windows and Unix development, offering
the same API on both platforms. Qt was available under two licenses from
day one: A commercial license was required for commercial development,
and a free software edition was available for open source development. The
Metis contract kept Trolltech afloat, while for ten long months no one bought
a commercial Qt license.

In March 1996, the European Space Agency became the second Qt customer,
with a purchase of ten commercial licenses. With unwavering faith, Eirik and
Haavard hired another developer. Qt 0.97 was released at the end of May, and
on September 24,1996, Qt 1.0 came out. By the end of the year, Qt had reached
version 1.1; eight customers, each in a different country, had bought 18 licenses
between them. This year also saw the founding of the KDE project, led by
Matthias Ettrich.

Qt 1.2 was released in April 1997. Matthias Ettrich’s decision to use Qt to build
KDE helped Qt become the de facto standard for C++ GUI development on
Linux. Qt 1.3 was released in September 1997.

Matthias joined Trolltech in 1998, and the last major Qt 1 release, 1.40, was
made in September of that year. Qt 2.0 was released in June 1999. Qt 2 had
a new open source license, the Q Public License (QPL), which complied with
the Open Source Definition. In August 1999, Qt won the LinuxWorld award
for best library/tool. Around this time, Trolltech Pty Ltd (Australia) was es-
tablished.

Trolltech released Qtopia Core (then called Qt/Embedded) in 2000. It was de-
signed to run on embedded Linux devices and provided its own window sys-
tem as a lightweight replacement for X11. Both Qt/X11 and Qtopia Core were
now offered under the widely used GNU General Public License (GPL) as well
as under commercial licenses. By the end of 2000, Trolltech had established
Trolltech Inc. (USA) and had released the first version of Qtopia, an application
platform for mobile phones and PDAs. Qtopia Core won the LinuxWorld “Best
Embedded Linux Solution” award in both 2001 and 2002, and Qtopia Phone
achieved the same distinction in 2004.

Qt 3.0 was released in 2001. Qt was now available on Windows, Mac OS X,
Unix, and Linux (desktop and embedded). Qt 3 provided 42 new classes and its
code exceeded 500,000 lines. Qt 3 was a major step forward from Qt 2, includ-
ing considerably improved locale and Unicode support, a completely new text
viewing and editing widget, and a Perl-like regular expression class. Qt 3 won
the Software Development Times “Jolt Productivity Award” in 2002.

In the summer of 2005, Qt 4.0 was released. With about 500 classes and more
than 9000 functions, Qt 4 is larger and richer than any previous version, and
it has been split into several libraries so that developers only need to link
against the parts of Qt that they need. Qt 4 is a huge advance on previous
versions with improvements that include a completely new set of efficient and

xvi

easy-to-use template containers, advanced model/view functionality, a fast
and flexible 2D painting framework, and powerful Unicode text viewing and
editing classes, not to mention thousands of smaller enhancements across the
complete range of Qt classes. Qt 4 is the first Qt edition to be available for both
commercial and open source development on all the platforms it supports.

Also in 2005, Trolltech opened a representative office in Beijing to provide
customers in China and the region with sales services, training, and technical
support for Qtopia.

Since Trolltech’s birth, Qt’s popularity has grown unabated and continues to
grow to this day. This success is a reflection both of the quality of Qt and of
how enjoyable it is to use. In the last decade, Qt has gone from being a product
used by a select few “in the know” to one that is used daily by thousands of cus-
tomers and tens of thousands of open source developers all around the world.

xVvii

Part 1

Basic Qt

Hello Qt
Making Connections

Laying Out Widgets

* & o o

Using the Reference Documentation

1. Getting Started

This chapter shows how to combine basic C++ with the functionality provided
by Qt to create a few small graphical user interface (GUI) applications. This
chapter also introduces two key Qt ideas: “signals and slots” and layouts. In
Chapter 2, we will go into more depth, and in Chapter 3, we will start building
a more realistic application.

If you already know Java or C# but have limited experience with C++, you
might want to start by reading the C++ introduction in Appendix B.

Hello Qt

Let’s start with a very simple Qt program. We will first study it line by line,
then we will see how to compile and run it.

1 #include <QApplication>
2 #include <QLabel>

3 int main(int argc, char =argv[])

4 A

5 QApplication app(argc, argv);

6 QLabel =label = new QLabel("Hello Qt!");
7 label->show();

8 return app.exec();

9 }

Lines 1 and 2 include the definitions of the QApplication and QLabel classes. For
every Qt class, there is a header file with the same name (and capitalization)
as the class that contains the class’s definition.

Line 5 creates a QApplication object to manage application-wide resources.
The QApplication constructor requires argc and argv because Qt supports a few
command-line arguments of its own.

Line 6 creates a QLabel widget that displays “Hello Qt!”. In Qt and Unix termi-
nology, a widget is a visual element in a user interface. The term stems from

4 1. Getting Started

“window gadget” and is the equivalent of both “control” and “container” in Win-
dows terminology. Buttons, menus, scroll bars, and frames are all examples of
widgets. Widgets can contain other widgets; for example, an application win-
dow is usually a widget that contains a QMenuBar, a few QToolBars, a QStatusBar,
and some other widgets. Most applicationsuse a QMainWindow or a QDialog as the
application window, but Qt is so flexible that any widget can be a window. In
this example, the QLabel widget is the application window.

Line 7 makes the label visible. Widgets are always created hidden, so that we
can customize them before showing them, thereby avoiding flicker.

Line 8 passes control of the application on to Qt. At this point, the program en-
ters the event loop. This is a kind of stand-by mode where the program waits
for user actions such as mouse clicks and key presses. User actions generate
events (also called “messages”) to which the program can respond, usually by
executing one or more functions. For example, when the user clicks a widget,
a “mouse press” and a “mouse release” event are generated. In this respect,
GUI applications differ drastically from conventional batch programs, which
typically process input, produce results, and terminate without human inter-
vention.

For simplicity, we don’t bother calling delete on the QLabel object at the end of
the main() function. This memory leak is harmless in such a small program,
since the memory will be reclaimed by the operating system when the program
terminates.

Hello gt!

Figure 1.1. Hello on Linux

It is now possible to try the program on your own machine. First, you will
need to install Qt 4.1.1 (or a later Qt 4 release), a process that is explained in
Appendix A. From now on, we will assume that you have a correctly installed
copy of Qt 4 and that Qt’s bin directory is in your PATH environment variable.
(On Windows, this is done automatically by the Qt installation program.) You
will also need the program’s source code in a file called hello.cpp in a directory
called hello. You can type in hello.cpp yourself, or copy it from the CD provided
with this book, where it is available as /examples/chap01/hello/hello.cpp.

From a command prompt, change the directory to hello, then type
gmake -project

to create a platform-independent project file (hello.pro), then type
gmake hello.pro

to create a platform-specific makefile from the project file.

Hello Qt 5

Type make to build the program.* Run it by typing hello on Windows, ./hello
on Unix, and open hello.app on Mac OS X. To terminate the program, click the
close button in the window’s title bar.

If you are using Windows and have installed the Qt Open Source Edition
and the MinGW compiler, you will have a shortcut to a DOS Prompt window
that has all the environment variables correctly set up for Qt. If you start
this window, you can compile Qt applications within it using gmake and make as
described above. The executables produced are put in the application’s debug
or release folder, for example, C:\qt-book\hello\release\hello.exe.

If you are using Microsoft Visual C++, you will need to run nmake instead of
make. Alternatively, you can create a Visual Studio project file from hello.pro

by typing
gmake -tp vc hello.pro

and then build the program in Visual Studio. If you are using Xcode on Mac
0OS X, you can generate an Xcode project using the command

gmake -spec macx-xcode

Hello Qt!

Figure 1.2. A label with basic HTML formatting

Before we go on to the next example, let’s have some fun: Replace the line

QLabel =label = new QLabel("Hello Qt!");
with
QLabel =label

new QLabel ("<h2><i>Hello</i> "
"Qt!</h2>");

and rebuild the application. Asthe exampleillustrates,it’s easy to brighten up
a Qt application’s user interface using some simple HTML-style formatting.

Making Connections

The second example shows how to respond to user actions. The application
consists of a button that the user can click to quit. The source code is very
similar to Hello, except that we are using a QPushButton instead of a QLabel as
our main widget, and we are connecting a user action (clicking a button) to a
piece of code.

*If you get a compiler error on the <QApplication> include, it probably means that you are using an
older version of Qt. Make sure that you are using Qt 4.1.1 or a later Qt 4 release.

6 1. Getting Started

This application’s source code is on the CD in the file /examples/chap@1/quit/
quit.cpp. Here’s the contents of the file:

1 #include <QApplication>
2 #include <QPushButton>

3 int main(int argc, char xargv[])

4 {

5 QApplication app(argc, argv);

6 QPushButton =button = new QPushButton("Quit");
7 QObject::connect (button, SIGNAL (clicked()),

8 &app, SLOT(quit()));

9 button->show () ;
0 return app.exec();
1

}

Qt’s widgets emit signals to indicate that a user action or a change of state has
occurred.* For instance, QPushButton emits a clicked() signal when the user
clicks the button. A signal can be connected to a function (called a slot in that
context), so that when the signal is emitted, the slot is automatically executed.
In our example, we connect the button’s clicked() signal to the QApplication
object’s quit () slot. The SIGNAL () and SLOT () macros are part of the syntax;they
are explained in more detail in the next chapter.

Figure 1.3. The Quit application

We will now build the application. We assume that you have created a directory
called quit containing quit.cpp. Run gmake in the quit directory to generate the
project file, then run it again to generate a makefile, as follows:

gmake -project
gmake quit.pro

Now build the application, and run it. If you click Quit, or press Space (which
presses the button), the application will terminate.

Laying Out Widgets

In this section, we will create a small example application that demonstrates
how to use layouts to manage the geometry of widgets in a window and how
to use signals and slots to synchronize two widgets. The application asks for
the user’s age, which the user can enter by manipulating either a spin box or
a slider.

*Qt signals are unrelated to Unix signals. In this book, we are only concerned with Qt signals.

Laying Out Widgets 7

The application consists of three widgets: a QSpinBox, a QSlider, and a QWidget.
The QwWidget is the application’s main window. The QSpinBox and the QSlider
are rendered inside the QWidget; they are children of the QWidget. Alternatively,
we can say that the QWidget is the parent of the QSpinBox and the QSlider. The
QWidget has no parent itself because it is being used as a top-level window. The
constructors for QWidget and all of its subclasses take a QWidget * parameter
that specifies the parent widget.

== Enter Your Age

Figure 1.4. The Age application

Here’s the source code:

#include <QApplication>
#include <QHBoxLayout>
#include <QSlider>
#include <QSpinBox>

AW N =

5 int main(int argc, char =argv[])

6 {

7 QApplication app(argc, argv);

8 QWidget *window = new QWidget;

9 window->setWindowTitle ("Enter Your Age");

10 QSpinBox *spinBox = new QSpinBox;

11 QSlider =slider = new QSlider(Qt::Horizontal);

12 spinBox->setRange (0, 130);

13 slider->setRange (0, 130);

14 QObject::connect (spinBox, SIGNAL (valueChanged(int)),
15 slider, SLOT(setValue(int)));

16 QObject::connect(slider, SIGNAL (valueChanged(int)),
17 spinBox, SLOT (setValue(int)));

18 spinBox->setValue (35);

19 QHBoxLayout =layout = new QHBoxLayout;

20 layout->addWidget (spinBox);

21 layout->addWidget (slider);

22 window->setlLayout (layout);

23 window->show () ;

24 return app.exec();

25 }

Lines 8 and 9 set up the QWidget that will serve as the application’s main
window. We call setWindowTitle() to set the text displayed in the window’s
title bar.

8 1. Getting Started

Lines 10 and 11 create a QSpinBox and a QSlider, and lines 12 and 13 set their
valid ranges. We can safely assume that the user is at most 130 years old. We
could pass window to the QSpinBox and QSlider constructors, specifying that these
widgets should have window as their parent, but it isn’t necessary here because
the layout system will figure this out by itself and automatically set the parent
of the spin box and the slider, as we will see shortly.

The two Q0bject::connect () calls shown in lines 14 to 17 ensure that the spin
box and the slider are synchronized so that they always show the same val-
ue. Whenever the value of one widget changes, its valueChanged (int) signal is
emitted, and the setValue(int) slot of the other widget is called with the new
value.

Line 18 sets the spin box value to 35. When this happens, the QSpinBox emits
the valueChanged(int) signal with an int argument of 35. This argument is
passed to the QSlider’s setValue (int) slot, which sets the slider value to 35. The
slider then emits the valueChanged (int) signal, because its own value changed,
triggering the spin box’s setValue(int) slot. But at this point, setValue (int)
doesn’t emit any signal, since the spin box value is already 35. This prevents
infinite recursion. Figure 1.5 summarizes the situation.

1. [¢

setValue(35)
2. 357 [+
vaIueCha_mged(35)
.......................... }
setValue(35)
|
3. 357 | D |
valueCha_mged(SS)
g
setValue(35)
4. 357 | D |

Figure 1.5. Changing one widget’s value changes both

In lines 19 to 22, we lay out the spin box and slider widgets using a layout
manager. A layout manager is an object that sets the size and position of the
widgets that lie under its responsibility. Qt has three main layout manager
classes:

Laying Out Widgets 9

* QHBoxLayout lays out widgets horizontally from left to right (right to left for
some cultures).

® QVBoxLayout lays out widgets vertically from top to bottom.

® Q6ridLayout lays out widgets in a grid.

The call to QWidget::setLayout () on line 22 installs the layout manager on the
window. Behind the scenes, the SpinBox and QSlider are “reparented” to be
children of the widget on which the layout is installed, and for this reason we
don’t need to specify an explicit parent when we construct a widget that will
be put in a layout.

i Window Title

QWidget 5 QSpinBox QSlider «— QHBoxLayout

Figure 1.6. The Age application’s widgets

Even though we didn’t set the position or size of any widget explicitly, the
QSpinBox and QSlider appear nicely laid out side by side. This is because QHBox-
Layout automatically assigns reasonable positions and sizes to the widgets for
which it is responsible, based on their needs. The layout managers free us from
the chore of hard-coding screen positions in our applications and ensure that
windows resize smoothly.

Qt’s approach to building user interfacesis simple to understand and very flex-
ible. The most common pattern that Qt programmers use is to instantiate the
required widgets and then set their properties as necessary. Programmers add
the widgets to layouts, which automatically take care of sizing and positioning.
User interface behavior is managed by connecting widgets together using Qt’s
signals and slots mechanism.

Using the Reference Documentation

Qt’s reference documentation is an essential tool for any Qt developer, since
it covers every class and function in Qt. This book makes use of many Qt
classes and functions, but it does not cover all of them, nor does it provide
every detail of those that are mentioned. To get the most benefit from Qt, you
should familiarize yourself with the Qt reference documentation as quickly
as possible.

The documentation is available in HTML format in Qt’s doc/html directory
and can be read using any web browser. You can also use Q¢ Assistant, the Qt
help browser, which has powerful searching and indexing features that make
it quicker and easier to use than a web browser. To launch Q¢ Assistant, click

10

1. Getting Started

Qt by Trolltech v4.x.y|Assistant in the Start menu on Windows, type assistant on the

command line on Unix, or double-click Assistant in the Mac OS X Finder.

The links in the “API Reference” section on the home page provide different
ways of navigating Qt’s classes. The “All Classes” page lists every class in Qt’s
API.The “Main Classes” page lists only the most commonly used Qt classes. As
an exercise, you might want to look up the classes and functions that we have

used in this chapter.

8606 Qt Assistant - QLayout Class Reference ="
A T D @ @ 2 || G (&

e vaDasaaNme e |

[Sidebar Ox| - - — QLayout Class... - 5]
Contents | Index | Bookmarks | Search Q Home - All Classes - Main Classes - Grouped Classes - Modules - Functions

Look For: m
Qlayout

— - QLayout Class Reference

TG medule]
Qtatin1Char

QLatin1Strin The QLayout class is the base class of geometry managers. More...

Qlayout::Auto #include <QLayout>

e esize Inherits QObiect and QLayousisem.

Gyt Setbetau 0 Inherited by QBoxLayout, QGridLayout, and QStackedLayout
QLayout: SetDefaultConstraint y QBoxLayout, 9 3

Qlayout:SetFixedSize
Qlayout: Sethaximumsize
Qlayout: SetMinAndMaxSize
Qayout::SetMinimumsize
Qlayout:SetNoConstraint
Qlayoutitem

Quibrary

o List of all members, including inherited members
©Qt 3 support members

Public Types

®enum SizeConstraint { SetDefaultConstraint,
SetNoConstraint }

Qlibraryinfo

Quibraryinfo: Binariesath Properties

Quibraryinfo: :DataPath

QLibraryinfo::DemosPath emargin : int
Qlibraryinfo::DocumentationPath o sizeConstraint : SizeConstraint
Quibraryinfo: Examplespath spacing : int

Quibraryinfo: HeadersPath .
e et 1 property inherited from QObject
Quibraryinfo: Pluginspath
Quibraryinfo: Prefixpath
Quibraryinfo: SettingsPath
Quibraryinfo: TranslationsPath

Public Functions

*Qlayout (QWidget * parent)
*Qlayout (

Qline e bool activate (

QuineEdit evirtual void additem (QLayoutitem * item) = 0

gﬂ::gg;:— Nofeho evoid addWidget (QWidget * w)

QlineEdit-Password vy evirtual int count (const = 0 b

it 3 evirtual Qt:Orientations expandingDirections () const .

P o e e] s evirtual int indexOf (OWidget * widget) const v
€ =

Figure 1.7. Qt’s documentation in Q¢ Assistant on Mac OS X

Note that inherited functions are documented in the base class; for example,

QPushButton has no show() function of its own, but it inherits one from its
ancestor QWidget. Figure 1.8 shows how the classes we have seen so far relate

to each other.

QObject

I
I I I
QCoreApplication QWidget QLayout

QApplication QBoxLayout

QAbstractButton QAbstractSpinBox QAbstractSlider QFrame QHBoxLayout

QPushButton QSpinBox QSlider QLabel

Figure 1.8. Inheritance tree for the Qt classes seen so far

Using the Reference Documentation 11

The reference documentation for the current version of Qt and for some earlier
versions is available online at http://doc.trolltech.com/. This site also has
selected articles from @t Quarterly, the Qt programmers’ newsletter sent to all
commercial licensees.

Widget Styles

The screenshots we have seen so far have been taken on Linux, but Qt
applications look native on every supported platform. Qt achieves this by
emulating the platform’s look and feel, rather than wrapping a particular
platform or toolkit’s widget set.

-w Enter Your Age -~ - 0O X -w Enter Your Age -~ - 0O X
= = — 5 [—=0
Windows Plastique
-» Enter Your Age o -Ox -» Enter ¥Your Age . - O %
[35 5| I T T [35 L]
CDE Motif

Figure 1.9. Styles available everywhere

With Qt/X11 and Qtopia Core, the default style is Plastique, which uses
gradients and anti-aliasing to provide a modern look and feel. Qt applica-
tion users can override the default style by using the -style command-line
option. For example, to launch the Age application using the Motif style on
X11, simply type

./age -style motif

on the command line.

M Enter Your Age E@ 6 © O Enter Your Age

e j 35 ; G
i
T
Windows XP Mac

Figure 1.10. Platform-specific styles

Unlike the other styles, the Windows XP and Mac styles are only available
on their native platforms, since they rely on the platforms’ theme engines.

12 1. Getting Started

This chapter has introduced the key concepts of signal—slot connections and
layouts. It has also begun to reveal Qt’s consistent and fully object-oriented ap-
proach to the construction and use of widgets. If you browse through Qt’s doc-
umentation, you will find a uniformity of approach that makes it straightfor-
ward to learn how to use new widgets, and you will also find that Qt’s carefully
chosen names for functions, parameters, enums, and so on, make programming
in Qt surprisingly pleasant and easy.

The following chapters of Part I build on the fundamentals covered here, show-
ing how to create complete GUI applications with menus, toolbars, document
windows, a status bar, and dialogs, along with the underlying functionality to
read, process, and write files.

Subclassing QDialog
Signals and Slots in Depth
Rapid Dialog Design

- 7\\\\7‘ ///_\)
\‘

Shape-Changing Dialogs
Dynamic Dialogs
Built-in Widget and Dialog Classes

* ¢ 6 ¢ o o

2. Creating Dialogs

This chapter will teach you how to create dialog boxes using Qt. Dialog boxes
present users with options and choices, and allow them to set the options
to their preferred values and to make their choices. They are called dialog
boxes, or simply “dialogs”, because they provide a means by which users and
applications can “talk to” each other.

Most GUI applications consist of a main window with a menu bar and toolbar,
along with dozens of dialogs that complement the main window. It is also
possible to create dialog applications that respond directly to the user’s choices
by performing the appropriate actions (for example, a calculator application).

We will create our first dialog purely by writing code to show how it is done.
Then we will see how to build dialogs using Q¢ Designer, Qt’s visual design tool.
Using @t Designer is a lot faster than hand-coding and makes it easy to test
different designs and to change designs later.

Subclassing QDialog

Our first example is a Find dialog written entirely in C++. We will implement
the dialog as a class in its own right. By doing so, we make it an independent,
self-contained component, with its own signals and slots.

® - Find e 2 -OX%

Find what: | Waldo Find

"] search backward

Figure 2.1. The Find dialog

13

14 2. Creating Dialogs

The source code is spread across two files: finddialog.h and finddialog.cpp. We
will start with finddialog.h.

1 #ifndef FINDDIALOG_H
2 #define FINDDIALOG_H

3 #include <QDialog>

class QCheckBox;
class QLabel;
class QLineEdit;
class QPushButton;

N o oA

Lines 1 and 2 (and 27) protect the header file against multiple inclusions.

Line 3 includes the definition of QDialog, the base class for dialogsin Qt. QDialog
inherits QWidget.

Lines 4 to 7 are forward declarations of the Qt classes that we will use to
implement the dialog. A forward declaration tells the C++ compiler that a
class exists, without giving all the detail that a class definition (usually located
in a header file of its own) provides. We will say more about this shortly.

Next, we define FindDialog as a subclass of QDialog:

8 class FindDialog : public QDialog

9 {

10 Q_OBJECT

11 public:

12 FindDialog(QWidget xparent = 0);

The 0_0BJECT macro at the beginning of the class definition is necessary for all
classes that define signals or slots.

The Finddialog constructor is typical of Qt widget classes. The parent parame-
ter specifies the parent widget. The default is a null pointer, meaning that the
dialog has no parent.

13 signals:
14 void findNext (const QString &str, Qt::CaseSensitivity cs);
15 void findPrevious(const QString &str, Qt::CaseSensitivity cs);

The signals section declares two signals that the dialog emits when the user
clicks the Find button. If the Searchbackward option is enabled, the dialog emits
findPrevious (); otherwise, it emits findNext ().

The signals keyword is actually a macro. The C++ preprocessor converts it into
standard C++ before the compiler sees it. Qt::CaseSensitivity is an enum type
that can take the values Qt::CaseSensitive and Qt::CaseInsensitive.

16 private slots:
17 void findClicked();
18 void enableFindButton(const QString &text);

19 private:

Subclassing QDialog 15

20 QLabel =label;

21 QLineEdit =lineEdit;

22 QCheckBox *caseCheckBox;

23 QCheckBox *backwardCheckBox;
24 QPushButton *findButton;

25 QPushButton *closeButton;

26 };

27 #endif

In the class’s private section, we declare two slots. To implement the slots, we
will need to access most of the dialog’s child widgets, so we keep pointers to
them as well. The slots keyword is, like signals, a macro that expands into a
construct that the C++ compiler can digest.

For the private variables, we used forward declarations of their classes. This
was possible because they are all pointers and we don’t access them in the
header file, so the compiler doesn’t need the full class definitions. We could
have included the relevant header files (<QCheckBox>, <QLabel>, etc.), but using
forward declarations when it is possible makes compiling somewhat faster.

We will now look at finddialog.cpp, which contains the implementation of the
FindDialog class.

1 #include <QtGui>
2 #include "finddialog.h"

First, we include <QtGui>, a header file that contains the definition of Qt’s GUI
classes. Qt consists of several modules, each of which lives in its own library.
The most important modules are QtCore, QtGui, QtNetwork, QtOpenGL, QtSql,
QRtSvg, and QtXml. The <qt6ui> header file contains the definition of all the
classes that are part of the Q¢Core and QtGui modules. Including this header
saves us the bother of including every class individually.

In filedialog.h, instead of including <QDialog> and using forward declarations
for QCheckBox, QLabel, QLineEdit, and QPushButton, we could simply have included
<Qt6ui>. However, it is generally bad style to include such a big header file from
another header file, especially in larger applications.

3 FindDialog::FindDialog(QWidget xparent)

4 : QDialog(parent)

5 {

6 label = new QLabel(tr("Find &what:"));

7 lineEdit = new QLineEdit;

8 label->setBuddy (1ineEdit);

9 caseCheckBox = new QCheckBox (tr ("Match &case"));
10 backwardCheckBox = new QCheckBox (tr ("Search &backward"));
11 findButton = new QPushButton(tr("&Find"));

12 findButton->setDefault (true);

13 findButton->setEnabled(false);

14 closeButton = new QPushButton(tr("Close"));

16 2. Creating Dialogs

On line 4, we pass on the parent parameter to the base class constructor. Then
we create the child widgets. The tr () function calls around the string literals
mark them for translation to other languages. The function is declared in
Q0bject and every subclass that contains the Q_0BJECT macro. It’s a good habit
to surround user-visible strings with tr (), even if you don’t have immediate
plans for translating your applications to other languages. Translating Qt
applications is covered in Chapter 17.

In the string literals, we use ampersands (‘&’) to indicate shortcut keys. For
example, line 11 creates a Find button, which the user can activate by pressing
Alt+F on platforms that support shortcut keys. Ampersands can also be used
to control focus: On line 6 we create a label with a shortcut key (Alt+W), and
on line 8 we set the label’s buddy to be the line editor. A buddy is a widget
that accepts the focus when the label’s shortcut key is pressed. So when the
user presses Alt+W (the label’s shortcut), the focus goes to the line editor (the
label’s buddy).

On line 12, we make the Find button the dialog’s default button by calling set-
Default (true). The default button is the button that is pressed when the user
hits Enter. On line 13, we disable the Find button. When a widget is disabled, it
is usually shown grayed out and will not respond to user interaction.

15 connect (lineEdit, SIGNAL (textChanged(const QString &)),
16 this, SLOT(enableFindButton(const QString &)));
17 connect (findButton, SIGNAL (clicked()),

18 this, SLOT(findClicked()));

19 connect (closeButton, SIGNAL (clicked()),

20 this, SLOT(close()));

The private slot enableFindButton(const QString &) is called whenever the text
in the line editor changes. The private slot findClicked() is called when the
user clicks the Find button. The dialog closes itself when the user clicks Close.
The close () slot is inherited from QWidget, and its default behavior is to hide
the widget from view (without deleting it). We will look at the code for the
enableFindButton() and findClicked() slots later on.

Since Q0bject is one of FindDialog’s ancestors, we can omit the QObject:: prefix
in front of the connect () calls.

21 QHBoxLayout =topLeftLayout = new QHBoxLayout;
22 topLeftlLayout->addWidget (label);

23 topLeftlLayout->addWidget (lineEdit);

24 QVBoxLayout =leftLayout = new QVBoxLayout;

25 leftlLayout->addLayout (topLeftLayout);

26 leftlLayout->addWidget (caseCheckBox);

27 leftlLayout->addWidget (backwardCheckBox) ;

28 QVBoxLayout x*rightLayout = new QVBoxLayout;
29 rightLayout->addWidget (findButton);

30 rightLayout->addWidget (closeButton);

31 rightLayout->addStretch();

Subclassing QDialog 17

32 QHBoxLayout =*mainLayout = new QHBoxLayout;
33 mainLayout->addLayout (leftLayout);

34 mainlLayout->addLayout (rightLayout);

35 setlLayout (mainLayout);

Next, we lay out the child widgets using layout managers. Layouts can contain
both widgets and other layouts. By nesting QHBoxLayouts, QVBoxLayouts, and
Q6ridLayouts in various combinations, it is possible to build very sophisticated

QCheckBox

dialogs.
Window Title
leftLayout ;:E Qlabel QLineEdit ! QPushButton <—-— rightLayout
topLeftLayout e R QPUShBuTt | 4— mainLayout
D : ushButton | | : |

QCheckBox !

1 spacer

Figure 2.2. The Find dialog’s layouts

For the Find dialog, we use two QHBoxLayouts and two QVBoxLayouts, as shown in
Figure 2.2. The outer layout is the main layout; it is installed on the FindDialog
on line 35 and is responsible for the dialog’s entire area. The other three
layouts are sub-layouts. The little “spring” at the bottom right of Figure 2.2 is
a spacer item (or “stretch”). It uses up the empty space below the Find and Close
buttons, ensuring that these buttons occupy the top of their layout.

One subtle aspect of the layout manager classes is that they are not widgets.
Instead, they inherit QLayout, which in turn inherits Q0bject. In the figure, wid-
gets are represented by solid outlines and layouts are represented by dashed
outlines to highlight the difference between them. In a running application,
layouts are invisible.

When the sub-layouts are added to the parent layout (lines 25, 33, and 34),
the sub-layouts are automatically reparented. Then, when the main layout
is installed on the dialog (line 35), it becomes a child of the dialog, and all the
widgets in the layouts are reparented to become children of the dialog. The
resulting parent—child hierarchy is depicted in Figure 2.3.

36 setWindowTitle (tr("Find"));
37 setFixedHeight (sizeHint () .height ());
38 }

Finally, we set the title to be shown in the dialog’s title bar and we set the
window to have a fixed height, since there aren’t any widgets in the dialog that

18 2. Creating Dialogs

can meaningfully occupy any extra vertical space. The QWidget::sizeHint ()
function returns a widget’s “ideal” size.

This completes the review of FindDialog’s constructor. Since we used new to
create the dialog’s widgets and layouts, it would seem that we need to write
a destructor that calls delete on each of the widgets and layouts we created.
But this isn’t necessary, since Qt automatically deletes child objects when the
parent is destroyed, and the child widgets and layouts are all descendants of
the FindDialog.

FindDialog

— QLabel (label)

—— QLinekEdit (lineEdit)

—— QCheckBox (caseCheckBox)

—— QCheckBox (backwardCheckBox)
—— QPushButton (findButton)

— QPushButton (closeButton)

L— QHBoxLayout (mainLayout)
QVBoxLayout (leftLayout)
L QH BoxLayout (topLeftLayout)
QVBoxLayout (rightLayout)

Figure 2.3. The Find dialog’s parent—child relationships

Now we will look at the dialog’s slots:

39 void FindDialog::findClicked()

40

4 QString text = lineEdit->text();

42 Qt::CaseSensitivity cs =

43 caseCheckBox->isChecked() ? Qt::CaseSensitive
44 : Qt::Caselnsensitive;
45 if (backwardCheckBox->isChecked()) {

46 emit findPrevious(text, cs);

47 } else {

48 emit findNext (text, cs);

49 }

50 }

51 void FindDialog::enableFindButton(const QString &text)
52 {

53 findButton->setEnabled(!text.isEmpty());

54 }

The findClicked() slot is called when the user clicks the Find button. It emits
the findPrevious() or the findNext () signal, depending on the Search backward
option. The emit keyword is specific to Qt; like other Qt extensions it is
converted into standard C++ by the C++ preprocessor.

Subclassing QDialog 19

The enableFindButton () slot is called whenever the user changes the text in the
line editor. It enables the button if there is some text in the editor, and disables
it otherwise.

These two slots complete the dialog. We can now create a main.cpp file to test
our FindDialog widget:

1 #include <QApplication>

n

#include "finddialog.h"

3 int main(int argc, char =argv[])

4 A

5 QApplication app(argc, argv);

6 FindDialog *dialog = new FindDialog;
7 dialog->show();

8 return app.exec();

9 }

To compile the program, run gmake as usual. Since the FindDialog class defini-
tion contains the Q_0BJECT macro, the makefile generated by gnake will include
special rules to run moc, Qt’s meta-object compiler. (Qt’s meta-object system is
covered in the next section.)

For moc to work correctly, we must put the class definition in a header file,
separate from the implementation file. The code generated by moc includes this
header file and adds some C++ magic of its own.

Classes that use the Q_0BJECT macro must have moc run on them. This isn’t a
problem because gnake automatically adds the necessary rules to the makefile.
But if you forget to regenerate your makefile using qnake and moc isn’t run, the
linker will complain that some functions are declared but not implemented.
The messages can be fairly obscure. GCC produces warnings like this one:

finddialog.o: In function ‘FindDialog::tr(char const, char const=)':
/usr/lib/qt/src/corelib/global/qglobal.h:1430: undefined reference to
‘FindDialog::staticMetaObject’

Visual C++s output starts like this:

finddialog.obj : error LNK2001: unresolved external symbol
"public:~virtual int __thiscall MyClass::gt_metacall (enum QMetaObject
::Call, int, void * *)"

If this ever happens to you, run gmake again to update the makefile, then
rebuild the application.

Now run the program. If shortcut keys are shown on your platform, verify
that the shortcut keys Alt+W, Alt+C, Alt+B, and Alt+F trigger the correct behavior.
Press Tab to navigate through the widgets with the keyboard. The default
tab order is the order in which the widgets were created. This can be changed
using QWidget: :setTabOrder ().

20 2. Creating Dialogs

Providing a sensible tab order and keyboard shortcuts ensures that users
who don’t want to (or cannot) use a mouse are able to make full use of the
application. Full keyboard control is also appreciated by fast typists.

In Chapter 3, we will use the Find dialog inside a real application, and we will
connect the findPrevious() and findNext () signals to some slots.

Signals and Slots in Depth

The signals and slots mechanism is fundamental to Qt programming. It en-
ables the application programmer to bind objects together without the objects
knowing anything about each other. We have already connected some signals
and slots together, declared our own signals and slots, implemented our own
slots, and emitted our own signals. Let’s take a moment to look at the mecha-
nism more closely.

Slots are almost identical to ordinary C++ member functions. They can be vir-
tual; they can be overloaded; they can be public; protected, or private, they can
be directly invoked like any other C++ member functions; and their parameters
can be of any types. The difference is that a slot can also be connected to a
signal, in which case it is automatically called each time the signal is emitted.

The connect () statement looks like this:

connect (sender, SIGNAL(signal), receiver, SLOT(slot));

where sender and receiver are pointers to Q0bjects and where signal and slot
are function signatures without parameter names. The SIGNAL () and SLOT ()
macros essentially convert their argument to a string.

In the examples we have seen so far, we have always connected different
signals to different slots. There are other possibilities to consider.

¢ One signal can be connected to many slots:

connect (slider, SIGNAL (valueChanged(int)),
spinBox, SLOT(setValue(int)));

connect (slider, SIGNAL (valueChanged(int)),
this, SLOT(updateStatusBarIndicator(int)));

When the signal is emitted, the slots are called one after the other, in an
unspecified order.

¢ Many signals can be connected to the same slot:

connect (1lcd, SIGNAL (overflow()),
this, SLOT(handleMathError()));
connect (calculator, SIGNAL (divisionByZero()),
this, SLOT(handleMathError()));

When either signal is emitted, the slot is called.

Signals and Slots in Depth 21

¢ A signal can be connected to another signal:

connect (lineEdit, SIGNAL (textChanged(const QString &)),
this, SIGNAL (updateRecord(const QString &)));

When the first signal is emitted, the second signal is emitted as well.
Apart from that, signal-signal connections are indistinguishable from
signal—slot connections.

¢ Connections can be removed:

disconnect (lcd, SIGNAL (overflow()),
this, SLOT(handleMathError()));

This is rarely needed, because Qt automatically removes all connections
involving an object when that object is deleted.

To successfully connect a signal to a slot (or to another signal), they must have
the same parameter types in the same order:

connect (ftp, SIGNAL (rawCommandReply (int, const QString &)),
this, SLOT(processReply(int, const QString &)));

Exceptionally, if a signal has more parameters than the slot it is connected to,
the additional parameters are simply ignored:

connect (ftp, SIGNAL (rawCommandReply (int, const QString &)),
this, SLOT(checkErrorCode(int)));

If the parameter types are incompatible, or if the signal or the slot doesn’t
exist, Qt will issue a warning at run-time if the application is built in debug
mode. Similarly, Qt will give a warning if parameter names are included in
the signal or slot signatures.

So far, we have only used signals and slots with widgets. But the mechanism
itself is implemented in QObject and isn’t limited to GUI programming. The
mechanism can be used by any Q0bject subclass:

class Employee : public QObject
{
Q_OBJECT

public:
Employee() { mySalary = 0; }

int salary() const { return mySalary; }

public slots:
void setSalary(int newSalary);

signals:
void salaryChanged(int newSalary);

private:
int mySalary;
}

22 2. Creating Dialogs

void Employee::setSalary(int newSalary)

if (newSalary != mySalary) {
mySalary = newSalary;
emit salaryChanged(mySalary);

}

Notice how the setSalary() slot is implemented. We only emit the salary-
Changed() signal if newSalary != mySalary. This ensures that cyclic connections
don’t lead to infinite loops.

Qt’s Meta-Object System

One of Qt’s major achievements has been the extension of C++ with a
mechanism for creating independent software components that can be
bound together without any component knowing anything about the other
components it is connected to.

The mechanism is called the meta-object system, and it provides two key
services: signals—slots and introspection. The introspection functionality
is necessary for implementing signals and slots, and allows application
programmers to obtain “meta-information” about Q0bject subclasses at
run-time, including the list of signals and slots supported by the object and
its class name. The mechanism also supports properties (for Q¢ Designer)
and text translation (for internationalization), and it lays the foundation
for Qt Script for Applications (QSA).

Standard C++ doesn’t provide support for the dynamic meta-information
needed by Qt’s meta-object system. Qt solves this problem by providing
a separate tool, moc, that parses Q_OBJECT class definitions and makes the
information available through C++ functions. Since moc implements all
its functionality using pure C++, Qt’s meta-object system works with any
C++ compiler.

The mechanism works as follows:

¢ The Q_0BJECT macro declares some introspection functions that must
be implemented in every QObject subclass: metaObject(), tr(), gt_
metacall (), and a few more.

* Qt’s moc tool generates implementations for the functions declared by
Q_0BJECT and for all the signals.

® Q0bject member functions such as connect () and disconnect () use the
introspection functions to do their work.

All of this is handled automatically by gmake, moc, and QObject, so you
rarely need to think about it. But if you are curious, you can check out the
QMetaoObject class documentation and have a look at the C++ source files
generated by moc to see how the implementation works.

Rapid Dialog Design 23

Rapid Dialog Design

Qt is designed to be pleasant and intuitive to hand-code, and it is not unusu-
al for programmers to develop entire Qt applications purely by writing C++
source code. Still, many programmers prefer to use a visual approach for de-
signing forms, because they find it more natural and faster than hand-coding,
and they want to be able to experiment with and change designs more quickly
and easily than is possible with hand-coded forms.

@t Designer expands the options available to programmers by providing a
visual design capability. @t Designer can be used to develop all or just some
of an application’s forms. Forms that are created using @t Designer end up
as C++ code, so @t Designer can be used with a conventional tool chain and
imposes no special requirements on the compiler.

In this section, we will use Q¢ Designer to create the Go-to-Cell dialog shown
in Figure 2.4. And whether we do it in code or in @t Designer, creating a dialog
always involves the same fundamental steps:

¢ Create and initialize the child widgets.

Put the child widgets in layouts.
Set the tab order.

Establish signal-slot connections.

* Implement the dialog’s custom slots.

[—w Go to Cell

Figure 2.4. The Go-to-Cell dialog

To launch @t Designer, click Qt by Trolltech v4.x.y|Designer in the Start menu on
Windows, type designer on the command line on Unix, or double-click Designer
in the Mac OS X Finder. When Q¢ Designer starts, it will pop up a list of tem-
plates. Click the “Widget” template, then click OK. (The “Dialog with Buttons
Bottom” template might look tempting, but for this example we will create the
OK and Cancel buttons by hand to show how it is done.) You should now have
a window called “Untitled”.

By default, Q¢ Designer’s user interface consists of several top-level windows.
If you prefer an MDI-style interface, with one top-level window and several
sub-windows, click Edit|User Interface Mode|Docked Window.

The first step is to create the child widgets and place them on the form. Create
one label, one line editor, one horizontal spacer, and two push buttons. For each

24

2. Creating Dialogs

item, drag its name or icon from Q¢ Designer’s widget box and drop the item
roughly where it should go on the form. The spacer item, which is invisible in
the final form, is shown in Q¢ Designer as a blue spring.

FEX

[% Ot Designer

THBH X[BB
P untitled E ‘E| Object Inspector a8 x

Object Cass

Propetty Editor -3
Property Value

tue
0. 0. 400, 300]
[Prefiered, Preferred, 0. 0]
115, 18]

116777215, 16777215]
0.0

0.0

*§ Tree Widget
& Table Widget

fort [Aa [MS Shel Dg. 8]
N

BB Tab Widget
& Stacked Viidget B = g9 add Fies
O Frame v o

Figure 2.5. Q¢ Designer in docked window mode on Windows

Now drag the bottom of the form up to make it shorter. This should produce
a form that is similar to Figure 2.6. Don’t spend too much time positioning the
items on the form; Qt’s layout managers will lay them out precisely later on.

B - Untitled*

Figure 2.6. The form with some widgets

Set each widget’s properties using @t Designer’s property editor:

1.

Click the text label. Make sure that its objectName property is “label” and
set the text property to “&Cell Location:”.

. Click the line editor. Make sure that the objectName property is

“lineEdit”.

. Click the first button. Set the objectName property to “okButton”, the

enabled property to “false”, the text property to “OK”, and the default
property to “true”.

. Click the second button. Set the objectName property to “cancelButton” and

the text property to “Cancel”.

. Click the form’s background to select the form itself. Set objectName to

“GoToCellDialog” and windowTitle to “Go to Cell”.

Rapid Dialog Design 25

All the widgets look fine now, except the text label, which shows &Cell Location.
Click Edit|Edit Buddies to enter a special mode that allows you to set buddies.
Next, click the label and drag the red arrow line to the line editor, then release.
The label should now show Cell Location and have the line editor as its buddy.
Click Edit|Edit Widgets to leave buddy mode.

Fl=w Untitled*

Figure 2.7. The form with properties set

The next step is to lay out the widgets on the form:
1. Click the Cell Location label and press Shift as you click the line editor next
to it so that they are both selected. Click Form|Lay Out Horizontally.

2. Click the spacer, then hold Shift as you click the form’s OK and Cancel
buttons. Click Form|Lay Out Horizontally.

3. Click the background of the form to deselect any selected items, then click
Form|Lay Out Vertically.

4. Click Form|Adjust Size to resize the form to its preferred size.

The red lines that appear on the form show the layouts that have been created.
They don’t appear when the form is run.

P Untitled*

Figure 2.8. The form with the layouts

Now click Edit|Edit Tab Order. A number in a blue rectangle will appear next to
every widget that can accept focus. Click each widget in turn in the order you
want them to accept focus, then click Edit|Edit Widgets to leave tab order mode.

FL=w Untitled*

cell Lacaiont | |
T_’: o< i cancel |

Figure 2.9. Setting the form’s tab order

26 2. Creating Dialogs

To preview the dialog, click the Form|Preview menu option. Check the tab order
by pressing Tab repeatedly. Close the dialog using the close button in the
title bar.

Save the dialog as gotocelldialog.ui in a directory called gotocell, and create
a main.cpp file in the same directory using a plain text editor:

#include <QApplication>
#include <QDialog>

#include "ui_gotocelldialog.h"

int main(int argc, char *argv[])
{
QApplication app(argc, argv);

Ui::6oToCellDialog ui;
QDialog *dialog = new QDialog;
ui.setupli(dialog);
dialog->show();

return app.exec();

}

Now run gmake to create a .pro file and a makefile (gqnake -project; gmake goto-
cell.pro). The gmake tool is smart enough to detect the user interface file goto-
celldialog.ui and to generate the appropriate makefile rules to invoke uic, Qt’s
user interface compiler. The uic tool converts gotocelldialog.ui into C++ and
puts the result in ui_gotocelldialog.h.

The generated ui_gotocelldialog.h file contains the definition of the Ui::
GoToCellDialog class, which is a C++ equivalent of the gotocelldialog.ui file.
The class declares member variables that store the form’s child widgets and
layouts, and a setupUi () function that initializes the form. The generated class
looks like this:

class Ui::GoToCellDialog

{

public:
QLabel =label;
QLineEdit =lineEdit;
QSpacerlItem xspacerItem;
QPushButton xokButton;
QPushButton x*cancelButton;

void setupli(QWidget *=widget) {

}
}

The generated class doesn’t inherit any Qt class. When we use the form in
main.cpp, we create a QDialog and pass it to setupUi ().

Rapid Dialog Design 27

If you run the program now, the dialog will work, but it doesn’t function exactly
as we want:

¢ The OK button is always disabled.
* The Cancel button does nothing.

* The line editor accepts any text, instead of only accepting valid cell
locations.

We can make the dialog function properly by writing some code. The cleanest
approach is to create a new class that inherits both QDialog and Ui::GoToCell-
Dialog and that implements the missing functionality (thus proving the adage
that any software problem can be solved simply by adding another layer of
indirection). Our naming convention is to give this new class the same name as
the uic-generated class but without the Ui:: prefix.

Using a text editor, create a file called gotocelldialog.h that contains the
following code:

#ifndef GOTOCELLDIALOG_H
#define GOTOCELLDIALOG_H

#include <QDialog>
#include "ui_gotocelldialog.h"

class GoToCellDialog : public QDialog, public Ui::GoToCellDialog
{
Q_OBJECT

public:
GoToCellDialog(QWidget *parent = 0);

private slots:
void on_lineEdit_textChanged();
}

#endif

The implementation belongs in gotocelldialog.cpp:
#include <QtGui>
#include "gotocelldialog.h"

GoToCellDialog::6oToCellDialog(QWidget =parent)
: QDialog(parent)
{

setupli (this);

QRegExp regExp ("[A-Za-z1[1-91[0-91{0, 2}");
lineEdit->setValidator (new QRegExpValidator (regExp, this));

connect (okButton, SIGNAL (clicked()), this, SLOT(accept()));
connect (cancelButton, SIGNAL (clicked()), this, SLOT(reject()));

28 2. Creating Dialogs

void GoToCellDialog::on_lineEdit_textChanged()
{

}

In the constructor, we call setupUi () to initialize the form. Thanks to multiple
inheritance, we can access Ui::GoToCellDialog’s members directly. After creat-
ing the user interface, setupUi () will also automatically connect any slots that
follow the naming convention on_objectName_signalName () to the corresponding
objectName’s signalName () signal. In our example, this means that setupUi () will
establish the following signal—slot connection:

okButton->setEnabled(lineEdit->hasAcceptablelnput());

connect (lineEdit, SIGNAL (textChanged(const QString &)),
this, SLOT(on_lineEdit_textChanged()));

Also in the constructor, we set up a validator to restrict the range of the input.
Qt provides three built-in validator classes: QIntvalidator, QDoubleValidator,
and QRegExpValidator. Here we use a QRegExpValidator with the regular expres-
sion “[A-Za-z][1-9][0-91{0,2}”, which means: Allow one uppercase or lowercase
letter, followed by one digit in the range 1 to 9, followed by zero, one, or two
digits each in the range 0 to 9. (For an introduction to regular expressions, see
the QRegExp class documentation.)

By passing this to the QRegExpValidator constructor, we make it a child of the
GoToCellDialog object. By doing so, we don’t have to worry about deleting
the QRegExpValidator later; it will be deleted automatically when its parent
is deleted.

Qt’s parent—child mechanism is implemented in Q0bject. When we create an
object (a widget, validator, or any other kind) with a parent, the parent adds
the object to the list of its children. When the parent is deleted, it walks
through its list of children and deletes each child. The children themselves
then delete all of their children, and so on recursively until none remain.

The parent—child mechanism greatly simplifies memory management,
reducing the risk of memory leaks. The only objects we must delete explicitly
are the objects we create with new and that have no parent. And if we delete
a child object before its parent, Qt will automatically remove that object from
the parent’s list of children.

For widgets, the parent has an additional meaning: Child widgets are shown
within the parent’s area. When we delete the parent widget, not only does the
child vanish from memory, it also vanishes from the screen.

At the end of the constructor, we connect the OK button to QDialog’s accept ()
slot and the Cancel button to the reject () slot. Both slots close the dialog, but
accept () sets the dialog’s result value to QDialog::Accepted (which equals 1),
and reject() sets the value to QDialog::Rejected (which equals 0). When we
use this dialog, we can use the result value to see if the user clicked OK and
act accordingly.

Rapid Dialog Design 29

The on_lineEdit_textChanged () slot enables or disables the OK button, according
to whether the line edit contains a valid cell location. QLineEdit::hasAccept-
ableInput () uses the validator we set in the constructor.

This completes the dialog. We can now rewrite main.cpp to use it:
#include <QApplication>
#include "gotocelldialog.h"

int main(int argc, char =argv[])

{
QApplication app(argc, argv);
GoToCellDialog *dialog = new GoToCellDialog;
dialog->show();
return app.exec();

}

Rebuild the application (gmake -project; gmake gotocell.pro) and run it again.
Type “A12” in the line edit, and notice that the OK button becomes enabled. Try
typing some random text to see how the validator does its job. Click Cancel to
close the dialog.

One of the beauties of using @t Designer is that it allows programmers great
freedom to modify their form designs without being forced to change their
source code. When you develop a form purely by writing C++ code, changes to
the design can be quite time-consuming. With Q¢ Designer,no time is lost since
uic simply regenerates the source code for any forms that have changed. The
dialog’s user interface is saved in a .ui file (an XML-based file format), while
custom functionality is implemented by subclassing the uic-generated class.

Shape-Changing Dialogs

We have seen how to create dialogs that always show the same widgets when-
ever they are used. In some cases, it is desirable to provide dialogs that can
change shape. The two most common kinds of shape-changing dialogs are ex-
tension dialogs and multi-page dialogs. Both types of dialog can be implement-
ed in Qt, either purely in code or using @t Designer.

Extension dialogs usually present a simple appearance but have a toggle
button that allows the user to switch between the dialog’s simple and extended
appearances. Extension dialogs are commonly used for applications that are
trying to cater for both casual and power users, hiding the advanced options
unless the user explicitly asks to see them. In this section, we will use Q¢
Designer to create the extension dialog shown in Figure 2.10.

The dialog is a Sort dialog in a spreadsheet application, where the user can
select one or several columns to sort on. The dialog’s simple appearance allows
the user to enter a single sort key, and its extended appearance provides for
two extra sort keys. A More button lets the user switch between the simple and
extended appearances.

30 2. Creating Dialogs

-m Sort B 2 - x

Primary Key oK — Primary Key ————— oK

column: column: [c

Cancel

Order: H Order: |Ascending n

More More

— Secondary Key

b Column: |None

Order: |Ascending

— Tertiary Key

Column: |Mone

Order: |Ascending n

Figure 2.10. The Sort dialog with simple and extended appearances

We will create the widget with its extended appearance in Q¢ Designer, and
hide the secondary and tertiary keys at run-time as needed. The widget looks
complicated, but it’s fairly easy to do in Q¢ Designer. The trick is to do the
primary key part first, then duplicate it twice to obtain the secondary and
tertiary keys:

1. Click File]New Form and choose the “Dialog with Buttons Right” template.

2. Create the More button and drag it into the vertical layout, below the ver-
tical spacer. Set the More button’s text property to “&More”, and its check-
able property to “true”. Set the OK button’s default property to “true”.

3. Create a group box, two labels, two comboboxes, and one horizontal spacer,
and put them anywhere on the form.

4. Drag the bottom right corner of the group box to make it larger. Then
move the other widgets into the group box and position them approximate-
ly as shown in Figure 2.11 (a).

5. Drag the right edge of the second combobox to make it about twice as wide
as the first combobox.

6. Set the group box’s title property to “&Primary Key”, the first label’s text
property to “Column:”, and the second label’s text property to “Order:”.

7. Right-click the first combobox and choose Edit ltems from the context
menu to pop up Q¢ Designer’s combobox editor. Create one item with the
text “None”.

8. Right-click the second combobox and choose Editltems. Create an
“Ascending” item and a “Descending” item.

9. Click the group box, then click Form|Lay Out in a Grid. Click the group box
again and click Form|Adjust Size. This will produce the layout shown in
Figure 2.11 (b).

Shape-Changing Dialogs 31

B~ Untitled* [B-=~| Untitled*
Brimary Key . . Primary Key 2000 ————
: oK : L ok
Column: : lwmm{ o . column: : : R
a Cancel a g - 200 Cancel
orders [ascending _[+] |:[—— || f| O [hssendng [lJ
: More | CLllliiiiiiiiiiii More
(a) Without layout (b) With layout

Figure 2.11. Laying out the group box’s children in a grid

If a layout doesn’t turn out quite right or if you make a mistake, you can
always click Edit|Undo or Form|Break Layout, then reposition the widgets and try
again.

[P =» Untitled* [F~» Untitled*

Primary Key

' ||} : Column: None [~} | |
olumn: LA,
Column: |None H | | : None 1 cancel

Primary Key

oior, e | |} orser frseendng) [
ZZZZZZZZZ;_'ZZZZZZZZZ More : E

— Secondary Key

F o Seconda Key
Column: Mone n |JJ’J’J'J’J’J’J’J’J’JJ’J’J"1 1 ry y """""

N 1 C0|umn: |JJ’J’J’J’J’J’J"’J’J’J’J’J’J"’J’J’J’J’J’J"| """""
Order: [ascending |+] || None | | pssmsmm] |70 0000

R — oo Order: [Ascending [+] i 10100

— TertiaryKey ——— |- - - - - - Ter‘tlary Koy ——

Co|ur‘nn: Mone H |,(J’J’J'J’J’fffﬂfff‘1 1. Column: Mone n |JJ’J’J’J’J’J’J"’J’J’J’J’J’J"’J’J’J’J’J’J’1 __________

Order: [ascending [+ | |0 Order: |ascending [~| |-

(a) Without layout (b) With layout

Figure 2.12. Laying out the form’s children in a grid

We will now add the Secondary Key and Tertiary Key group boxes:

1. Make the dialog window tall enough for the extra parts.

2. Hold down the Ctrl key (Alt on the Mac) and click the Primary Key group box
to create a copy of the group box (and its contents) on top of the original.
Drag the copy below the original group box, while still pressing Ctrl (or
Alt). Repeat this process to create a third group box, dragging it below the
second group box.

3. Change their title properties to “&Secondary Key” and “&Tertiary Key”.

4. Create one vertical spacer and place it between the primary key group box
and the secondary key group box.

secondaryColumnCombo

secondaryOrderCombo

32 2. Creating Dialogs

5. Arrange the widgets in the grid-like pattern shown in Figure 2.12 (a).

6. Click the form to deselect any selected widgets, then click Form|Lay Outina
Grid. The form should now match Figure 2.12 (b).

7. Set the two vertical spacer items’ sizeHint property to [20, O].

The resulting grid layout has two columns and four rows, giving a total of eight
cells. The Primary Key group box, the leftmost vertical spacer item, the Secondary
Key group box, and the Tertiary Key group box each occupy a single cell. The
vertical layout that contains the OK, Cancel, and More buttons occupies two cells.
That leaves two empty cells in the bottom-right of the dialog. If thisisn’t what
you have, undo the layout, reposition the widgets, and try again.

Rename the form “SortDialog” and change the window title to “Sort”. Set the
names of the child widgets to those shown in Figure 2.13.

[F=w Untitled* - O x
. — Primary Key 4
primaryGroupBox > oK < okButton
. Col : -
primaryColumnCombo olumn; [None |+ | pusmnsf cancel |4—— cancelButton
primaryOrderCombo Order: , [Ascending |~ ER
More <— moreButton
— Secondary Ke L
secondaryGroupBox > YRY T

CO|L.Ir‘an: None n Pffffffffffffff{
Order: _ |Ascending n

tertiaryGroupBox

— Tertiary Key

tertiaryColumnCombo

Co | um I'L: MNone n Pffffffffffffff{

tertiaryOrderCombo

onser:, [pscendng]

Figure 2.13. Naming the form’s widgets

Click Edit|Edit Tab Order. Click each combobox in turn from topmost to bot-
tommost, then click the OK, Cancel, and More buttons on the right side. Click
Edit|Edit Widgets to leave tab order mode.

Now that the form has been designed, we are ready to make it functional by
setting up some signal—slot connections. Q¢ Designer allows us to establish
connections between widgets that are part of the same form. We need to
establish two connections.

Click Edit|Edit Signals/Slots to enter Q¢ Designer’s connection mode. Connections
are represented by blue arrows between the form’s widgets. Because we chose

Shape-Changing Dialogs 33

the “Dialog with Buttons Right” template, the OK and Cancel buttons are
already connected to QDialog’s accept () and reject () slots. Connections are also
listed in @t Designer’s signal/slot editor window.

To establish a connection between two widgets, click the sender widget and
drag the red arrow line to the receiver widget, then release. This pops up a
dialog that allows you to choose the signal and the slot to connect.

F-=» fhomefjasmin/fwhitepapers/qt-boo - O x

Primary Key | L;’

Sl l Capc

Order: |Ascending ﬂ

= [

clicked()
=

accept()f

|- Secondary Key

Column: |None

B
&

Order: |Ascending

— Tertiary Key

Column: |None

Order: |Ascending

Figure 2.14. Connecting the form’s widgets

The first connection to establish is between the moreButton and the secondary-
GroupBox. Drag the red arrow line between these two widgets, then choose
toggled(bool) asthe signal and setVisible (bool) as the slot. By default, @t De-
signer doesn’t list setVisible (bool) in the list of slots, but it will appear if you
enable the Show all signals and slots option.

[F-== Configure Connection

mereButton (QPushButton) secondaryGroupBox (QGroupBox)
cl?cked() repa\l-';t() (2]
clicked(bool) setChecked(bool)
customContextMenuRequested(QPoint] setDisabled(bool)
destroyed() setEnabled(bool)
destroyed(QObject*) setFocus()
pressed() setHidden(beal)
released() setShown(bool)
toggled(bool)

setwindowModified(bool)

showl(} @
(<1 |[41*] | showFullscreen()
(% Show all signals and slots [oK l [Cancel l

Figure 2.15. Q¢ Designer’s connection editor

34 2. Creating Dialogs

The second connection is between the moreButton’s toggled (bool) signal and the
tertiaryGroupBox’s setVisible (bool) slot. Once the connections have been made,
click Edit|Edit Widgets to leave connection mode.

Save the dialog as sortdialog.ui in a directory called sort. To add code to the
form, we will use the same multiple inheritance approach that we used for the
Go-to-Cell dialog in the previous section.

First, create a sortdialog.h file with the following contents:

#ifndef SORTDIALOG_H
#define SORTDIALOG_H

#include <QDialog>
#include "ui_sortdialog.h"

class SortDialog : public QDialog, public Ui::SortDialog
{
Q_OBJECT

public:
SortDialog(QWidget xparent = 0);

void setColumnRange (QChar first, QChar last);
b

#endif

Then create sortdialog.cpp:

1 #include <QtGui>

2 #include "sortdialog.h"

3 SortDialog::SortDialog(QWidget *parent)

4 : QDialog(parent)

5 {

6 setupli(this);

7 secondaryGroupBox->hide () ;

8 tertiaryGroupBox->hide();

9 layout () ->setSizeConstraint (QLayout::SetFixedSize);
10 setColumnRange ('A", 'Z');

11}

12 void SortDialog::setColumnRange(QChar first, QChar last)
13 {

14 primaryColumnCombo->clear ();

15 secondaryColumnCombo->clear ();

16 tertiaryColumnCombo->clear();

17 secondaryColumnCombo->addItem (tr ("None"));
18 tertiaryColumnCombo->addItem(tr ("None"));
19 primaryColumnCombo->setMinimumSize (

20 secondaryColumnCombo->sizeHint ());

Shape-Changing Dialogs 35

21 QChar ch = first;

22 while (ch <= last) {

23 primaryColumnCombo->addItem(QString(ch));
24 secondaryColumnCombo->addItem (QString(ch));
25 tertiaryColumnCombo->addItem (QString(ch));
26 ch = ch.unicode() + 1;

27 }

28 }

The constructor hides the secondary and tertiary parts of the dialog. It also
sets the sizeConstraint property of the form’s layout to QLayout::SetFixedSize,
making the dialog non-resizable by the user. The layout then takes over the
responsibility for resizing, and resizes the dialog automatically when child
widgets are shown or hidden, ensuring that the dialog is always displayed at
its optimal size.

The setColumnRange () slot initializes the contents of the comboboxes based
on the selected columns in the spreadsheet. We insert a “None” item in the
comboboxes for the (optional) secondary and tertiary keys.

Lines 19 and 20 present a subtle layout idiom. The QWidget::sizeHint () func-
tion returns a widget’s “ideal” size, which the layout system tries to honor. This
explains why different kinds of widgets, or similar widgets with different con-
tents, may be assigned different sizes by the layout system. For comboboxes,
this means that the secondary and tertiary comboboxes, which contain “None”,
end up larger than the primary combobox, which contains only single-letter
entries. To avoid this inconsistency, we set the primary combobox’s minimum
size to the secondary combobox’s ideal size.

Here is a main() test function that sets the range to include columns ‘C’ to ‘F’
and then shows the dialog:

#include <QApplication>
#include "sortdialog.h"

int main(int argc, char =*argv[1])

{
QApplication app(argc, argv);
SortDialog *dialog = new SortDialog;
dialog->setColumnRange('C', 'F');
dialog->show();
return app.exec();

}

That completes the extension dialog. Asthe example illustrates, an extension
dialog isn’t much more difficult to design than a plain dialog: All we needed
was a toggle button, a few extra signal-slot connections, and a non-resizable
layout. In production applications, it is quite common for the button that
controls the extension to show the text Advanced >>> when only the basic dialog
is visible and Advanced <<< when the extension is shown. Thisis easy to achieve
in Qt by calling setText () on the QPushButton whenever it is clicked.

36 2. Creating Dialogs

The other common type of shape-changing dialogs, multi-page dialogs, are
even easier to create in Qt, either in code or using Q¢ Designer. Such dialogs
can be built in many different ways.

* A QTabWidget can be used in its own right. It provides a tab bar along the
top that controls a built-in QStackedWidget.

e A QListWidget and a QStackedWidget can be used together, with the QList-
Widget’s current item determining which page the QStackedWidget shows, by
connecting the QListWidget: :currentRowChanged () signal to the QStackedwid-
get::setCurrentIndex() slot.

* A QTreeWidget can be used with a QStackedWidget in a similar way to a
QListWidget.

The QStackedWidget class is covered in Chapter 6 (Layout Management).

Dynamic Dialogs

Dynamic dialogs are dialogs that are created from Q¢ Designer .ui files at
run-time. Instead of converting the .ui file to C++ code using uic, we can load
the file at run-time using the QUiLoader class:

QUilLoader uiloader;

QFile file("sortdialog.ui");

QWidget xsortDialog = uilLoader.load(&file);
if (sortDialog) {

}
We can access the form’s child widgets using Q0bject::findChild<T>():

QComboBox *primaryColumnCombo =
sortDialog->findChild<QComboBox *>("primaryColumnCombo");
if (primaryColumnCombo) {

}

The findChild<T>() function is a template member function that returns the
child object that matches the given name and type. Because of a compiler
limitation, it is not available for MSVC 6. If you need to use the MSVC 6
compiler, call the gFindChild<T> () global function instead, which works exactly
the same way.

The QUiLoader class is located in a separate library. To use QUiLoader from a Qt
application, we must add this line to the application’s .pro file:

CONFIG += Uitools

Dynamic dialogs make it possible to change the layout of a form without recom-
piling the application. They can also be used to create thin-client applications,
where the executable merely has a front-end form built-in and all other forms
are created as required.

Built-in Widget and Dialog Classes 37

Built-in Widget and Dialog Classes

Qt provides a complete set of built-in widgets and common dialogs that cater
for most situations. In this section, we present screenshots of almost all
of them. A few specialized widgets are deferred until later: Main window
widgets such as QMenuBar, QToolBar, and QStatusBar are covered in Chapter 3,
and layout-related widgets such as QSplitter and QScrollArea are covered in
Chapter 6. Most of the built-in widgets and dialogs are used in the examples
presented in this book. In the screenshots below, the widgets are shown using
the Plastique style.

(%] Match case) Ascending
[| search backward (@ Descending

QPushButton QToolButton QCheckBox QRadioButton

Figure 2.16. Qt’s button widgets

Qt provides four kinds of “buttons”: QPushButton, QToolButton, QCheckBox, and
QRadioButton. QPushButton and QToolButton are most commonly used to initiate
an action when they are clicked, but they can also behave like toggle buttons
(click to press down, click to restore). QCheckBox can be used for independent
on/off options, whereas QRadioButtons are normally mutually exclusive.

—Indent

According to Times magazine, "the
® Default indent style average Yaleman, Class of '24, makes

$25,111 a year."

() Me autematic indent

) Auto-indent

) Smart-indent % Rich text

QGroupBox QFrame

Figure 2.17. Qt’s single-page container widgets

Qt’s container widgets are widgets that contain other widgets. QFrame can also
be used on its own to simply draw lines and is inherited by many other widget
classes, including QToolBox and QLabel.

38 2. Creating Dialogs

m Sound
Owner: [Adminstrator |VI T Alarm
(%] Read-only i Bell
[] Hidden Keyboard
Mouse
QTabWidget QToolBox

Figure 2.18. Qt’s multi-page container widgets

QTabWidget and QToolBox are multi-page widgets. Each page is a child widget,
and the pages are numbered from 0.

K Acrobat 2 Terminal |Component |Status -
PE Wi

- ormacs % vim E libpnp_basictools.so
2 KonquerorCQXEyes B [Brushinterface
{g}r:;;:::la [Pencil oK
i Netscape [air Brush oK
) Opera P [Random Letters oK

P) shapelnterface
QListView (as list) QTreeView
A B C

AT oA w | [<

Acrobat Emacs Konqueror Mozilla 1043.23 250
1l

4&1’ E o B % 1037.39 178

NEdit Metscape U Terminal Vim

58
1008.32 @
XEyes
Y KD
QListView (asicons) QTableView

Figure 2.19. Qt’s item view widgets

The item views are optimized for handling large amounts of data and often use
scroll bars. The scroll bar mechanism is implemented in QAbstractScrollArea,
a base class for item views and other kinds of scrollable widgets.

Qt provides a few widgets that are used purely for displaying information.
QLabel is the most important of these, and it can be used for showing rich text
(using a simple HTML-like syntax) and images.

QTextBrowser is a read-only QTextEdit subclass that has basic HTML support in-
cluding lists, tables, images, and hypertext links. Q¢ Assistant usesQTextBrows-
er to present documentation to the user.

Built-in Widget and Dialog Classes 39

e il b o e |
. A . 36%
information will be lost! EEE -

QLabel (text) QLCDNumber QProgressBar
o T @ Ul & Opelduor= | Cory | Herw_ur:llcunia

e bool gperator== (cons
Static Public Mem|

* QUrl fromEncoded (co

» QUr| fromLocalFile (co

* QString fromPercentEﬂE
fiduiiiiial (1)

QLabel (image) QTextBrowser

Figure 2.20. Qt’s display widgets

Qt provides several widgets for data entry. QLineEdit can restrict its input
using an input mask or a validator. QTextEdit is a QAbstractScrollArea subclass
capable of editing large amounts of text.

[?2 pt }%l l2.54 cm l%] [Helvetica |'l
QSpinBox QDoubleSpinBox QComboBox
[10f12f06 }3{ [11:59:59 fs{ [10f12f06 11:59:59 }3{
QDateEdit QTimeEdit QDateTimeEdit
(] | () O
QScrollBar QSlider
Email is a wonderful thing to [Waldo
people whose role in life is to QLineEdit
be . But not for
me; my role is to be on the P
bottom of things. K\
AN
QTextEdit QDial

Figure 2.21. Qt’s input widgets

Qt provides the standard set of common dialogs that make it easy to ask the
user to select a color, font, or file, or to print a document.

40 2. Creating Dialogs

~Soiectconr =

Basic colors Font Font style Size

EEEEEEED [Nimbus Roman Nos L | [Bold taiic [22]
=20

Monospace Italic 18

Nimbus Mono L

Bold
Nimbus Roman Nog L [l zoid taiic

Nimbus Sans L

N

20
G|

Kochi Mincho Nermal Hls

Ongdalsam 26
OpenSymbol @ 28 %
Effect sampl
Customn colors [Strikeout
Underl
COommO0000 B ekl AaBbYyZz
EEEEOO0O0 Writing System

o 8
[oK] I Cancel l I Add to Custom Colors]

QColorDialog QFontDialog

Figure 2.22. Qt’s color dialog and font dialog

On Windows and Mac OS X, Qt uses the native dialogs rather than its own
common dialogs when possible.

-+ Setup Page ? - OXx -» Setup Printer L=

Page size: [Aa (210 x 287 mm, 8.26 x 11.7 inches)

—Print destination

@® Print to printer:

M
M

Orientation: [Partrait

Printer Host Comment
yacctrollno badegakk Aliases: yace troll.no
| ==
g p g (—Printer setting: Paper format
Ot ncolor #velable || porr g
Lookiin: B ihomefasminmise || 4 % @ [E B @® Print in grayscale [(210 x 297 mm, 8.26 x 11.7 inches) [z
) threads @ xmlini [AdText_A.sxw —Option:
[tilecodecs B xv-3.10a) AdText_A_Frer|
[tilemolester B 1509799 pdf] [art_blanchetts @ Print all @ Print first page first
) TileMolester_01a_src [] 2186_verlinkt.pdf [] beispiele_01_|
) treenodes [0) 2186_verlinkt.zip [[] blanchette tar Q Print selection) Print last page first
) utils [3827321867 tf [J] bmpLibraryjar
) viktig [3827321867 _3D.tif [] € GUI Prog w 1 () Pt g

o o D From page:

L H
Fle name: [1505799 pdf] [T] To page: [:B Number of copies:
Fles of type: [Al Files () [] [Cancel]

QFileDialog QPrintDialog

Figure 2.23. Qt’s file and print dialogs

Qt provides a versatile message box and an error dialog that remembers
which messages it has shown. The progress of time-consuming operations
can be indicated using QProgressDialog or using the QProgressBar shown earlier.
QInputDialog is very convenient when a single line of text or a single number
is required from the user.

A lot of ready-to-use functionality is provided by the built-in widgets and
common dialogs. More specialized requirements can often be satisfied by
setting widget properties, or by connecting signals to slots and implementing
custom behavior in the slots.

Built-in Widget and Dialog Classes 41
Enter your name: Loading model3d.dat. ..
s o |
o JLem
QInputDialog QProgressDialog
If you're backing up to a floppy. have a blank, @ Error 650:
formatted disk with a label ready.

backing up to the same disk.

Are you ready to continue with Backup?

Alternate between two disks instead of always

The remote access server is not respending.

[%| Show this message again

(=)=]
QMessageBox QErrorMessage

Figure 2.24. Qt’s feedback dialogs

In some situations, it may be desirable to create a custom widget from scratch.
Qt makes this straightforward, and custom widgets can access all the same
platform-independent drawing functionality as Qt’s built-in widgets. Custom
widgets can even be integrated with @¢ Designer so that they can be used
in the same way as Qt’s built-in widgets. Chapter 5 explains how to create

custom widgets.

Subclassing QMainWindow
Creating Menus and Toolbars
Setting Up the Status Bar
Implementing the File Menu
Using Dialogs

Storing Settings

Multiple Documents

L 2B R JER JER K SR R 2

Splash Screens

3. Creating Main Windows

This chapter will teach you how to create main windows using Qt. By the end,
you will be able to build an application’s entire user interface, complete with
menus, toolbars, status bar, and as many dialogs as the application requires.

¥ population.sp* - Spreadsheet \'LH'E|E|
File Edit Tools Options Help
E - = |HE P ; ny
DB XxXDB &
A B [D E ~
1
2 Year Population
3 8000B.LC 5 million
4 50AD
< Cut Ctrl+x
5 1650 AD 500mil [copy cti+c
5 1850 AD Thilior B Paste Cirl+v
7 1945 AD 2.3 billion
8 1980 AD 4 4 billion
3
10
w
< >
C4 | 200 million

Figure 3.1. Spreadsheet application

An application’s main window provides the framework upon which the appli-
cation’s user interface is built. The main window for the Spreadsheet applica-
tion shown in Figure 3.1 will form the basis of this chapter. The Spreadsheet
application makes use of the Find, Go-to-Cell, and Sort dialogs that we created
in Chapter 2.

Behind most GUI applications lies a body of code that provides the underlying
functionality—for example, code to read and write files or to process the data
presented in the user interface. In Chapter 4, we will see how to implement
such functionality, again using the Spreadsheet application as our example.

43

44 3. Creating Main Windows

Subclassing QMainWindow

An application’s main window is created by subclassing QMainWindow. Many
of the techniques we saw in Chapter 2 for creating dialogs are also relevant
for creating main windows, since both QDialog and QMainWindow inherit from
QWidget.

Main windows can be created using Q¢ Designer, but in this chapter we will
do everything in code to demonstrate how it’s done. If you prefer the more
visual approach, see the “Creating Main Windows in Q¢ Designer” chapter in
Qt Designer’s online manual.

The source code for the Spreadsheet application’s main window is spread
across mainwindow.h and mainwindow.cpp. Let’s start with the header file:

#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>

class QAction;
class QLabel;
class FindDialog;
class Spreadsheet;

class MainWindow : public QMainWindow
{
Q_OBJECT

public:
MainWindow ();

protected:
void closeEvent (QCloseEvent *event);

We define the class MainWindow as a subclass of QMainWindow. It contains the Q_
OBJECT macro since it provides its own signals and slots.

The closeEvent () function is a virtual function in QWidget that is automatically
called when the user closes the window. It is reimplemented in MainWindow
so that we can ask the user the standard question “Do you want to save your
changes?” and to save user preferences to disk.

private slots:

void newFile();
void open();
bool save();
bool saveAs();
void find();
void goToCell();
void sort();
void about ();

Some menu options, like File|[New and Help|About, are implemented as private
slots in MainWindow. Most slots have void as their return value, but save () and

Subclassing @MainWindow 45

saveAs () return a bool. The return value is ignored when a slot is executed in
response to a signal, but when we call a slot as a function the return value is
available to us just as it is when we call any ordinary C++ function.

void openRecentFile();
void updateStatusBar();
void spreadsheetModified();

private:
void createActions();
void createMenus();
void createContextMenu();
void createToolBars();
void createStatusBar();
void readSettings();
void writeSettings();
bool okToContinue();
bool loadFile(const QString &fileName);
bool saveFile(const QString &fileName);
void setCurrentFile(const QString &fileName);
void updateRecentFileActions();
QString strippedName (const QString &fullFileName);

The main window needs some more private slots and several private functions
to support the user interface.

Spreadsheet *spreadsheet;
FindDialog *findDialog;
QLabel =locationLabel;
QLabel =formulalabel;
QStringlList recentFiles;
QString curFile;

enum { MaxRecentFiles = 5 };
QAction =recentFileActions[MaxRecentFiles];
QAction xseparatorAction;

QMenu =fileMenu;
QMenu *editMenu;

QToolBar =fileToolBar;
QToolBar *editToolBar;
QAction x*newAction;
QAction xopenAction;

QAction *aboutQtAction;
};

#endif

In addition to its private slots and private functions, MainWindow also has lots of
private variables. All of these will be explained as we use them.

We will now review the implementation:

#include <QtGui>

46 3. Creating Main Windows

#include "finddialog.h"
#include "gotocelldialog.h"
#include "mainwindow.h"
#include "sortdialog.h"
#include "spreadsheet.h"

We include the <qt6ui> header file, which contains the definition of all the Qt
classesused in our subclass. We also include some custom header files, notably
finddialog.h, gotocelldialog.h, and sortdialog.h from Chapter 2.

MainWindow: :MainWindow ()

{
spreadsheet = new Spreadsheet;
setCentralWidget (spreadsheet);

createActions();
createMenus();
createContextMenu();
createToolBars();
createStatusBar ();

readSettings();
findDialog = 0;

setWindowIcon(QIcon(":/images/icon.png"));
setCurrentFile("");

}

In the constructor, we begin by creating a Spreadsheet widget and setting it to
be the main window’s central widget. The central widget occupies the middle
of the main window (see Figure 3.2). The Spreadsheet class is a QTableWidget
subclass with some spreadsheet capabilities, such as support for spreadsheet
formulas. We will implement it in Chapter 4.

We call the private functions createActions(), createMenus(), createContext-
Menu (), createToolBars(), and createStatusBar () to set up the rest of the main
window. We also call the private function readSettings() to read the applica-
tion’s stored settings.

We initialize the findDialog pointer to be a null pointer; the first time MainWin-
dow::find() is called, we will create the FindDialog object.

At the end of the constructor, we set the window’s icon to icon.png, a PNG file.
Qt supports many image formats, including BMP, GIF,* JPEG, PNG, PNM,
XBM, and XPM. Calling QWidget::setWindowIcon() sets the icon shown in the
top-left corner of the window. Unfortunately, there is no platform-independent
way of setting the application icon that appears on the desktop. Platform-spe-
cific procedures are explained at http://doc.trolltech.com/4.1/appicon.html.

*GIF support is disabled in Qt by default because the decompression algorithm used by GIF files
was patented in some countries where software patents are recognized. We believe that this patent
has now expired worldwide. To enable GIF support in Qt, pass the -qt-gif command-line option
to the configure script or set the appropriate option in the Qt installer.

Subclassing @MainWindow 47

| Window Title

Menu Bar

Toolbar Areas

Dock Window Areas

Central Widget

Status Bar

Figure 3.2. QMainWindow’s areas

GUI applications generally use many images. There are several methods for
providing images to the application. The most common are:

* Storing images in files and loading them at run-time.

¢ Including XPM files in the source code. (This works because XPM files are
also valid C++ files.)

¢ Using Qt’s resource mechanism.

Here we use Qt’s resource mechanism because it is more convenient than
loading files at run-time, and it works with any supported image file format.
We have chosen to store the images in the source tree in a subdirectory called
images.

To make use of Qt’s resource system, we must create a resource file and add a
line to the .pro file that identifies the resource file. In this example, we have
called the resource file spreadsheet.qrc, so we put the following line in the
.pro file:

RESOURCES = spreadsheet.qrc

The resource file itself uses a simple XML format. Here’s an extract from the
one we have used:

<IDOCTYPE RCC><RCC version="1.0">
<gresource>
<file>images/icon.png</file>

<file>images/gotocell.png</file>
</qgresource>
</RCC>

48 3. Creating Main Windows

Resourece files are compiled into the application’s executable, so they can’t get
lost. When we refer to resources, we use the path prefix :/ (colon slash), which
is why the icon is specified as :/images/icon.png. Resources can be any kind of
file (not just images), and we can use them in most places where Qt expects a
file name. They are covered in more detail in Chapter 12.

Creating Menus and Toolbars

Most modern GUI applications provide menus, context menus, and toolbars.
The menus enable users to explore the application and learn how to do new
things, while the context menus and toolbars provide quick access to frequently
used functionality.

File Edit ’m Dptions

hew Ctrl+N Je cut Ctrl+x Recalculate Fg (%] show Grid About
i Open... ctrl+o T Copy ctri+c ‘ Sort... ‘ [X| Auto-recalculate ‘ About Ot
[save ctri+s [paste Ctri+v

Save As.. Delete Del

1 populatien.sp Select 3 Bow

2 Report 2006.5p & Eind... Ctri+F Column

Exit cri+q » GotoCell.. F5 al ctr+a

Figure 3.3. The Spreadsheet application’s menus

Qt simplifies the programming of menus and toolbars through its action
concept. An action is an item that can be added to any number of menus and
toolbars. Creating menus and toolbars in Qt involves these steps:

¢ (Create and set up the actions.
¢ Create menus and populate them with the actions.

¢ (Create toolbars and populate them with the actions.
In the Spreadsheet application, actions are created in createActions():

void MainWindow::createActions()

{
newAction = new QAction(tr("&New"), this);
newAction->setIcon(QIcon(":/images/new.png"));
newAction->setShortcut (tr ("Ctrl+N"));
newAction->setStatusTip(tr("Create a new spreadsheet file"));
connect (newAction, SIGNAL(triggered()), this, SLOT(newFile()));

The New action has an accelerator (New), a parent (the main window), an
icon (new.png), a shortcut key (Ctrl+N), and a status tip. We connect the action’s
triggered() signal to the main window’s private newFile () slot, which we will
implement in the next section. This connection ensures that when the user
chooses the File|]New menu item, clicks the New toolbar button, or presses Cirl+N,
the newFile () slot is called.

Creating Menus and Toolbars 49

The Open, Save, and Save As actions are very similar to the New action, so we
will skip directly to the “recently opened files” part of the File menu:

for (int i = @; i < MaxRecentFiles; ++i) {
recentFileActions[i] = new QAction(this);
recentFileActions[i]->setVisible(false);
connect (recentFileActions[i], SIGNAL (triggered()),
this, SLOT (openRecentFile()));
}

We populate the recentFileActions array with actions. Each action is hidden
and connected to the openRecentFile () slot. Later on, we will see how the recent
file actions are made visible and used.

We can now skip to the Select All action:

selectAllAction = new QAction(tr("&All"), this);
selectAllAction->setShortcut (tr("Ctrl+A"));
selectAllAction->setStatusTip(tr("Select all the cells in the "
"spreadsheet"));
connect (selectAllAction, SIGNAL(triggered()),
spreadsheet, SLOT(selectAll()));

The selectAll() slot is provided by one of QTableWidget’s ancestors, QAbstract-
ItemView, so we do not have to implement it ourselves.

Let’s skip further to the Show Grid action in the Options menu:

showGridAction = new QAction(tr("&Show Grid"), this);
showGridAction->setCheckable (true);
showGridAction->setChecked (spreadsheet->show6rid());
showGridAction->setStatusTip (tr ("Show or hide the spreadsheet's "
"grid"));
connect (showGridAction, SIGNAL (toggled(bool)),
spreadsheet, SLOT(setShowGrid(bool)));

Show Grid is a checkable action. It is rendered with a checkmark in the menu
and implemented as a toggle button in the toolbar. When the action is turned
on, the Spreadsheet component displays a grid. We initialize the action with the
default for the Spreadsheet component, so that they are synchronized at start-
up. Then we connect the Show Grid action’s toggled (bool) signal to the Spread-
sheet component’s setShowérid(bool) slot, which it inherits from QTableWidget.
Once this action is added to a menu or toolbar, the user can toggle the grid on
and off.

The Show Grid and Auto-Recalculate actions are independent checkable actions.
Qt also supports mutually exclusive actions through the QAction6roup class.

aboutQtAction = new QAction(tr("About &Qt"), this);
aboutQtAction->setStatusTip(tr("Show the Qt library's About box"));

50 3. Creating Main Windows

connect (aboutQtAction, SIGNAL (triggered()), gApp, SLOT(aboutQt()));
}

For the About Qt action, we use the QApplication object’s aboutQt () slot, accessible
through the gApp global variable.

P+ About Gt B O x

@ About Qt

This program uses Qt version 4.1.1.
Qt is a C++ toolkit far cross-platfarm application development

Qt provides single-source portability across MS Windows,
Mac OS X, Linux, and all major commercial Unix variants. Qt is
also available for embedded devices as Qtopia Core.

Qtis a Trolltech product. See http://wwa. trolltech. com/qt/

far mare informatian.

Figure 3.4. About Qt

Now that we have created the actions, we can move on to building a menu
system containing them:

void MainWindow::createMenus ()

{
fileMenu = menuBar () ->addMenu(tr ("&File"));
fileMenu->addAction(newAction);
fileMenu->addAction (openAction);
fileMenu->addAction(saveAction);
fileMenu->addAction (saveAsAction);
separatorAction = fileMenu->addSeparator();
for (int 1 = 0; i1 < MaxRecentFiles; ++i)

fileMenu->addAction (recentFileActions[i]);

fileMenu->addSeparator();
fileMenu->addAction(exitAction);

In Qt, menus are instances of QMenu. The addMenu() function creates a QMenu
widget with the specified text and adds it to the menu bar. The QMainWindow: :
menuBar () function returns a pointer to a QMenuBar. The menu bar is created the
first time menuBar () is called.

We start by creating the File menu and then add the New, Open, Save, and
Save As actions to it. We insert a separator to visually group closely related
items together. We use a for loop to add the (initially hidden) actions from the
recentFileActions array, and then add the exitAction action at the end.

We have kept a pointer to one of the separators. This will allow us to hide the
separator (if there are no recent files) or to show it, since we do not want to
show two separators with nothing in between.

editMenu = menuBar () ->addMenu (tr ("&Edit"));
editMenu->addAction (cutAction);
editMenu->addAction (copyAction);

Creating Menus and Toolbars 51

editMenu->addAction (pasteAction);
editMenu->addAction(deleteAction);

selectSubMenu = editMenu->addMenu(tr ("&Select"));
selectSubMenu->addAction (selectRowAction);
selectSubMenu->addAction(selectColumnAction);
selectSubMenu->addAction (selectAllAction);

editMenu->addSeparator();
editMenu->addAction(findAction);
editMenu->addAction(goToCellAction);

Now we create the Edit menu, adding actions with QMenu::addAction() as we
did for the File menu, and adding the submenu with QMenu: :addMenu() at the
position where we want it to appear. The submenu, like the menu it belongs
to, is a QMenu.

toolsMenu = menuBar () ->addMenu (tr ("&Tools"));
toolsMenu->addAction (recalculateAction);
toolsMenu->addAction (sortAction);

optionsMenu = menuBar () ->addMenu (tr ("&0ptions"));
optionsMenu->addAction (showGridAction);
optionsMenu->addAction (autoRecalcAction);

menuBar () ->addSeparator () ;

helpMenu = menuBar () ->addMenu(tr ("&Help"));
helpMenu->addAction (aboutAction);
helpMenu->addAction (aboutQtAction);

}

We create the Tools, Options, and Help menus in a similar fashion. We insert a
separator between the Options and Help menu. In Motif and CDE styles, the
separator pushes the Help menu to the right; in other styles, the separator is
ignored.

File Edit Tools Options Help

File Edit Tools oOptions Help
Figure 3.5. Menu bar in Motif and Windows styles

void MainWindow::createContextMenu ()

{
spreadsheet->addAction (cutAction);
spreadsheet->addAction (copyAction);
spreadsheet->addAction (pasteAction);
spreadsheet->setContextMenuPolicy (Qt::ActionsContextMenu);
}

Any Qt widget can have a list of QActions associated with it. To provide a
context menu for the application, we add the desired actions to the Spreadsheet

52 3. Creating Main Windows

widget and set that widget’s context menu policy to show a context menu with
these actions. Context menus are invoked by right-clicking a widget or by
pressing a platform-specific key.

e Cut Ctri+x

Copy Ctrl+cC
Fi Paste Ctrl+w

Figure 3.6. The Spreadsheet application’s context menu

A more sophisticated way of providing context menus is to reimplement the
QWidget::contextMenuEvent () function, create a QMenu widget, populate it with
the desired actions, and call exec () on it.

void MainWindow::createToolBars()

{
fileToolBar = addToolBar (tr("&File"));
fileToolBar->addAction (newAction);
fileToolBar->addAction (openAction);
fileToolBar->addAction(saveAction);

editToolBar = addToolBar (tr ("&Edit"));
editToolBar->addAction (cutAction);
editToolBar->addAction(copyAction);
editToolBar->addAction(pasteAction);
editToolBar->addSeparator();
editToolBar->addAction(findAction);
editToolBar->addAction(goToCellAction);
}

Creating toolbars is very similar to creating menus. We create a File toolbar
and an Edit toolbar. Just like a menu, a toolbar can have separators.

DB DB &P

Figure 3.7. The Spreadsheet application’s toolbars

Setting Up the Status Bar

With the menus and toolbars complete, we are ready to tackle the Spreadsheet
application’s status bar.

In its normal state, the status bar contains two indicators: the current cell’s
location and the current cell’s formula. The status bar is also used to display
status tips and other temporary messages.

Setting Up the Status Bar 53

| B4 [=Al+A2+A3 y
Normal

Open an existing spreadsheet file 4
Status tip

File saved 4

Temporary message

Figure 3.8. The Spreadsheet application’s status bar

The MainWindow constructor calls createStatusBar () to set up the status bar:

void MainWindow::createStatusBar()

{
locationLabel = new QLabel (" W999 ");
locationLabel->setAlignment (Qt::AlignHCenter);
locationLabel->setMinimumSize (locationLabel->sizeHint ());

formulaLabel = new QLabel;
formulaLabel->setIndent (3);

statusBar () ->addWidget (locationlLabel);
statusBar () ->addWidget (formulaLabel, 1);

connect (spreadsheet, SIGNAL (currentCellChanged(int, int, int, int)),
this, SLOT (updateStatusBar()));

connect (spreadsheet, SIGNAL (modified()),
this, SLOT(spreadsheetModified()));

updateStatusBar ();
}

The QMainWindow: :statusBar () function returns a pointer to the statusbar. (The
status bar is created the first time statusBar () is called.) The status indicators
are simply QLabels whose text we change whenever necessary. We have added
an indent to the formulaLabel so that the text shown in it is offset slightly
from the left edge. When the QLabels are added to the status bar, they are
automatically reparented to make them children of the status bar.

Figure 3.8 shows that the two labels have different space requirements. The
cell location indicator requires very little space, and when the window is re-
sized, any extra space should go to the cell formula indicator on the right. This
is achieved by specifying a stretch factor of 1 in the formula label’s QStatus-
Bar::addWidget () call. The location indicator has the default stretch factor of 0,
meaning that it prefers not to be stretched.

When QStatusBar lays out indicator widgets, it tries to respect each widget’s
ideal size as given by QWidget::sizeHint () and then stretches any stretchable
widgets to fill the available space. A widget’s ideal size is itself dependent on
the widget’s contents and varies as we change the contents. To avoid constant
resizing of the location indicator, we set its minimum size to be wide enough

54 3. Creating Main Windows

to contain the largest possible text (“W999”), with a little extra space. We also
set its alignment to Qt::AlignHCenter to horizontally center the text.

Near the end of the function, we connect two of Spreadsheet’s signals to two of
MainWindow’s slots: updateStatusBar () and spreadsheetModified().

void MainWindow::updateStatusBar ()

{
locationLabel->setText (spreadsheet->currentLocation());
formulalLabel->setText (spreadsheet->currentFormula());

}

The updateStatusBar() slot updates the cell location and the cell formula
indicators. It is called whenever the user moves the cell cursor to a new cell.
The slot is also used as an ordinary function at the end of createStatusBar () to
initialize the indicators. Thisis necessary because Spreadsheet doesn’t emit the
currentCellChanged() signal at startup.

void MainWindow::spreadsheetModified()
{
setWindowModified(true);
updateStatusBar();
}

The spreadsheetModified () slot sets the windowModified property to true, updat-
ing the title bar. The function also updates the location and formula indicators
so that they reflect the current state of affairs.

Implementing the File Menu

In this section, we will implement the slots and private functions necessary to
make the File menu options work and to manage the recently opened files list.

void MainWindow::newFile ()

{
if (okToContinue()) {
spreadsheet->clear();
setCurrentFile("");
}
}

The newFile() slot is called when the user clicks the File[New menu option or
clicks the New toolbar button. The okToContinue() private function asks the
user “Do you want to save your changes?” if there are unsaved changes. It re-
turns true if the user chooses either Yes or No (saving the document on Yes), and
it returns false if the user chooses Cancel. The Spreadsheet::clear () function
clears all the spreadsheet’s cells and formulas. The setCurrentFile() private
function updates the window title to indicate that an untitled document is be-
ing edited, in addition to setting the curFile private variable and updating the
recently opened files list.

Implementing the File Menu 55

- Spreadsheet

& The document has been modified.
Do you want to save your changes?

[[me][conee

Figure 3.9. “Do you want to save your changes?”

bool MainWindow::okToContinue ()

{
if (isWindowModified()) {
int r = QMessageBox::warning(this, tr("Spreadsheet"),
tr ("The document has been modified.\n"
"Do you want to save your changes?"),
QMessageBox::Yes | QMessageBox::Default,
QMessageBox: :No,
QMessageBox::Cancel | QMessageBox::Escape);
if (r == QMessageBox::Yes) {
return save();
} else if (r == QMessageBox::Cancel) {
return false;
}
}
return true;
}

In okToContinue (), we check the state of the windowModified property. If it is
true, we display the message box shown in Figure 3.9. The message box has a
Yes, a No, and a Cancel button. The QMessageBox: :Default modifier makes Yes the
default button. The QMessageBox: :Escape modifier makes the Esc key a synonym
for Cancel.

The call to warning () may look a bit intimidating at first sight, but the general
syntax is straightforward:

QMessageBox::warning(parent, title, message, button@, buttoni, ...);

QMessageBox also provides information(), question(), and critical(), each of
which has its own particular icon.

- b4
&) 2 A\ Q
Information Question Warning Critical

Figure 3.10. Message box icons

void MainWindow::open()
{
if (okToContinue()) {

56 3. Creating Main Windows

QString fileName = QFileDialog::getOpenFileName (this,

tr ("Open Spreadsheet"), ".",
tr("Spreadsheet files (x.sp)"));
if (!fileName.isEmpty())
loadFile (fileName);

}

The open () slot corresponds to File|Open. Like newFile (), it first calls okToContin-
ue () to handle any unsaved changes. Then it uses the static convenience func-
tion QFileDialog::getOpenFileName () to obtain a new file name from the user.
The function pops up a file dialog, lets the user choose a file, and returns the file
name—or an empty string if the user clicked Cancel.

The first argument to QFileDialog: :getOpenFileName () is the parent widget. The
parent—child relationship doesn’t mean the same thing for dialogs as for other
widgets. A dialogis always a window in its own right, but if it has a parent, it is
centered on top of the parent by default. A child dialog also shares its parent’s
taskbar entry.

The second argument is the title the dialog should use. The third argument
tells it which directory it should start from, in our case the current directory.

The fourth argument specifies the file filters. A file filter consists of a descrip-
tive text and a wildcard pattern. Had we supported comma-separated values
files and Lotus 1-2-3 files in addition to Spreadsheet’s native file format, we
would have used the following filter:

tr("Spreadsheet files (*.sp)\n"
"Comma-separated values files (x.csv)\n"
"Lotus 1-2-3 files (*.wk1 *.wks)")

The loadFile() private function was called in open() to load the file. We make
it an independent function because we will need the same functionality to load
recently opened files:

bool MainWindow::loadFile(const QString &fileName)

{
if (!spreadsheet->readFile(fileName)) {
statusBar () ->showMessage (tr ("Loading canceled"), 2000);
return false;
}
setCurrentFile(fileName);
statusBar () ->showMessage (tr ("File loaded"), 2000);
return true;
}

We use Spreadsheet::readFile() to read the file from disk. If loading is suc-
cessful, we call setCurrentFile () to update the window title; otherwise, Spread-
sheet::readFile () will have already notified the user of the problem through
a message box. In general, it is good practice to let the lower-level compo-

Implementing the File Menu 57

nents issue error messages, since they can provide the precise details of what
went wrong.

In both cases, we display a message in the status bar for 2 seconds (2000 mil-
liseconds) to keep the user informed about what the application is doing.

bool MainWindow::save()

{
if (curFile.isEmpty()) {
return saveAs();
} else {
return saveFile(curFile);
}
}
bool MainWindow::saveFile(const QString &fileName)
{
if (!spreadsheet->writeFile(fileName)) {
statusBar () ->showMessage (tr ("Saving canceled"), 2000);
return false;
}
setCurrentFile(fileName);
statusBar () ->showMessage (tr ("File saved"), 2000);
return true;
}

The save () slot corresponds to File|Save. If the file already has a name because it
was opened before or has already been saved, save () calls saveFile() with that
name; otherwise, it simply calls saveAs ().

bool MainWindow::saveAs()

{
QString fileName = QFileDialog::getSaveFileName (this,
tr("Save Spreadsheet"), ".",
tr ("Spreadsheet files (*.sp)"));
if (fileName.isEmpty())
return false;
return saveFile(fileName);
}

The saveAs () slot corresponds to File|Save As. We call QFileDialog: :getSaveFile-
Name () to obtain a file name from the user. If the user clicks Cancel, we return
false, which is propagated up to its caller (save () or okToContinue()).

If the file already exists, the getSaveFileName() function will ask the user to
confirm that they want to overwrite. This behavior can be changed by passing
QFileDialog::DontConfirmOverwrite as an additional argument to getSaveFile-
Name ().

void MainWindow::closeEvent (QCloseEvent xevent)

{
if (okToContinue()) {
writeSettings();

58 3. Creating Main Windows

event->accept ();
} else {

event->ignore();
}

}

When the user clicks File|Exit or clicks the close button in the window’s title
bar, the QWidget: :close () slot is called. This sends a “close” event to the widget.
By reimplementing QWidget: :closeEvent (), we can intercept attempts to close
the main window and decide whether we want the window to actually close
or not.

If there are unsaved changes and the user chooses Cancel, we “ignore” the
event and leave the window unaffected by it. In the normal case, we accept
the event, resulting in Qt hiding the window. We also call the private function
writeSettings () to save the application’s current settings.

When the last window is closed, the application terminates. If needed, we
can disable this behavior by setting QApplication’s quitOnLastWindowClosed
property to false, in which case the application keeps running until we call
QApplication::quit().

void MainWindow::setCurrentFile(const QString &fileName)

{

curfFile = fileName;
setWindowModified(false);

QString shownName = "Untitled";

if (lcurFile.isEmpty()) {
shownName = strippedName(curFile);
recentFiles.removeAll(curFile);
recentFiles.prepend(curFile);
updateRecentFileActions();

}

setWindowTitle (tr ("%1[*] - %2") .arg(shownName)
.arg(tr ("Spreadsheet")));
}

QString MainWindow::strippedName (const QString &fullFileName)
{

}

In setCurrentFile(), we set the curFile private variable that stores the name of
the file being edited. Before we show the file name in the title bar, we remove
the file’s path with strippedName () to make it more user-friendly.

return QFileInfo(fullFileName).fileName();

Every QWwidget has a windowModified property that should be set to true if
the window’s document has unsaved changes, and to false otherwise. On
Mac OS X, unsaved documents are indicated by a dot in the close button of the
window’s title bar; on other platforms, they are indicated by an asterisk follow-
ing the file name. Qt takes care of this behavior automatically, as long as we

Implementing the File Menu 59

keep the windowModified property up-to-date and place the marker “[*]” in the
window title where we want the asterisk to appear when it is required.

The text we passed to the setWindowTitle () function was

tr("%1[*] - %2") .arg(shownName)
.arg(tr ("Spreadsheet"))

The QString::arg() function replaces the lowest-numbered “%n” parameter
with its argument and returns the resulting string. In this case, arg() is used
with two “%n” parameters. The first call to arg() replaces “%1”; the second call
replaces “%2”. If the file name is “budget.sp” and no translation file is loaded,
the resulting string would be “budget.sp[*] - Spreadsheet”. It would have been
easier to write

setWindowTitle (shownName + tr("[+#] - Spreadsheet"));
but using arg() provides more flexibility for translators.

If there is a file name, we update recentFiles, the application’s recently opened
files list. We call removeAll () to remove any occurrences of the file name in the
list, to avoid duplicates; then we call prepend () to add the file name as the first
item. After updating the list, we call the private function updateRecentFileAc-
tions() to update the entries in the File menu.

void MainWindow::updateRecentFileActions()

{
QMutableStringListIterator i(recentFiles);
while (i.hasNext()) {
if (!QFile::exists(i.next()))
i.remove();
}
for (int j = 0; j < MaxRecentFiles; ++j) {
if (j < recentFiles.count()) {
QString text = tr("&%1 %2")

.arg(j + 1)

.arg(strippedName (recentFiles[j1));
recentFileActions[j]l->setText (text);
recentFileActions[j]->setData(recentFiles[j1);
recentFileActions[jl->setVisible(true);

} else {
recentFileActions[jl->setVisible(false);
}
}
separatorAction->setVisible(!recentFiles.isEmpty());
}

We begin by removing any files that no longer exist using a Java-style iterator.
Some files might have been used in a previous session, but have since been
deleted. The recentFiles variable is of type QStringList (list of QStrings).
Chapter 11 explains container classes such as QStringlList in detail, showing
how they relate to the C++ Standard Template Library (STL), and the use of
Qt’s Java-style iterator classes.

60 3. Creating Main Windows

We then go through the list of files again, this time using array-style indexing.
For each file, we create a string consisting of an ampersand, a digit (j + 1), a
space, and the file name (without its path). We set the corresponding action to
use this text. For example, if the first file was C: \My Documents\tab04.sp, the first
action’s text would be “&1 tab04.sp”.

MNew Ctri+N
i Open... Ctri+0
) Save ctrl+s

Save As...

<«— separatorAction
recentFileActions[0] ——1tabo4.sp

recentFileActions[1] — 2 Sales 2003.5p
recentFileActions[2] —— 3 Annual Report.sp
recentFileActions[3] ——4 population.sp
recentFileActions[4] ——5 Customers.sp

Exit Ctrl+Q

Figure 3.11. File menu with recently opened files

Every action can have an associated “data” item of type Qvariant. The Qvariant
type can hold values of many C++ and Qt types; it is covered in Chapter 11.
Here, we store the full name of the file in the action’s “data” item so that we
can easily retrieve it later. We also set the action to be visible.

If there are more file actions than recent files, we simply hide the extra actions.
Finally, if there is at least one recent file, we set the separator to be visible.

void MainWindow::openRecentFile()

{
if (okToContinue()) {
QAction xaction = qobject_cast<QAction *>(sender());
if (action)
loadFile(action->data() .toString());
}
}

When the user chooses a recent file, the openRecentFile() slot is called. The
okToContinue () function is used in case there are any unsaved changes, and
providing the user did not cancel, we find out which particular action invoked
the slot using QObject::sender ().

The qobject_cast<T>() function performs a dynamic cast based on the meta-
information generated by moc, Qt’s meta-object compiler. It returns a pointer
of the requested Q0bject subclass, or 0 if the object cannot be cast to that type.
Unlike the Standard C++ dynamic_cast<T> (), Qt’s qobject_cast<T>() works cor-
rectly across dynamic library boundaries. In our example, we use qobject_
cast<T> () to cast a Q0bject pointer to a QAction pointer. If the cast is successful

Implementing the File Menu 61

(it should be), we call 1loadFile() with the full file name that we extract from
the action’s data.

Incidentally, since we know that the sender is a QAction, the program would
still work if we used static_cast<T>() or a traditional C-style cast instead.
Refer to the “Type Conversions” section of Appendix B for an overview of the
different C++ casts.

Using Dialogs

In this section, we will explain how to use dialogs in Qt—how to create and
initialize them, run them, and respond to choices made by the user interacting
with them. We will make use of the Find, Go-to-Cell, and Sort dialogs that we
created in Chapter 2. We will also create a simple About box.

Find what: | waldo Find

"] search backward

Figure 3.12. The Spreadsheet application’s Find dialog

We will begin with the Find dialog. Since we want the user to be able to switch
between the main Spreadsheet window and the Find dialog at will, the Find
dialog must be modeless. A modeless window is one that runs independently
of any other windows in the application.

When modeless dialogs are created, they normally have their signals connected
to slots that respond to the user’s interactions.

void MainWindow::find ()
{
if (!findDialog) {
findDialog = new FindDialog(this);
connect (findDialog, SIGNAL (findNext(const QString &,
Qt::CaseSensitivity)),
spreadsheet, SLOT(findNext(const QString &,
Qt::CaseSensitivity)));
connect (findDialog, SIGNAL (findPrevious(const QString &,
Qt::CaseSensitivity)),
spreadsheet, SLOT(findPrevious(const QString &,
Qt::CaseSensitivity)));
}

findDialog->show();
findDialog->activateWindow();

62 3. Creating Main Windows

The Find dialog is a window that enables the user to search for text in the
spreadsheet. The find() slot is called when the user clicks Edit|Find to pop up
the Find dialog. At that point, several scenarios are possible:

¢ This is the first time the user has invoked the Find dialog.
¢ The Find dialog was invoked before, but the user closed it.

¢ The Find dialog was invoked before and is still visible.

If the Find dialog doesn’t already exist, we create it and connect its findNext ()
and findPrevious() signals to the corresponding Spreadsheet slots. We could
also have created the dialog in the MainWindow constructor, but delaying its
creation makes startup faster. Also, if the dialog is never used, it is never
created, saving both time and memory.

Then we call show() and activateWindow() to ensure that the window is visible
and active. A call to show () alone is sufficient to make a hidden window visible
and active, but the Find dialog may be invoked when its window is already
visible, in which case show () does nothing and activateWindow () is necessary to
make the window active. An alternative would have been to write

if (findDialog->isHidden()) {
findDialog->show();

} else {
findDialog->activateWindow ();

}

which is the programming equivalent of looking both ways before crossing a
one-way street.

We will now look at the Go-to-Cell dialog. We want the user to pop it up, use it,
and close it without being able to switch to any other window in the application.
This means that the Go-to-Cell dialog must be modal. A modal window is a
window that pops up when invoked and blocks the application, preventing any
other processing or interactions from taking place until the window is closed.
The file dialogs and message boxes we used earlier were modal.

- Go to Cell

Cell Location: |A12 |

[oK H Cancel]

Figure 3.13. The Spreadsheet application’s Go-to-Cell dialog

A dialog is modeless if it’s invoked using show() (unless we call setModal ()
beforehand to make it modal); it is modal if it’s invoked using exec ().

void MainWindow::goToCell ()
{
GoToCellDialog dialog(this);

Using Dialogs 63

if (dialog.exec()) {
QString str = dialog.lineEdit->text ().toUpper();
spreadsheet->setCurrentCell (str.mid(1).toInt() - 1,
str[0].unicode() - '"A");

}

The QDialog::exec() function returns a true value (QDialog::Accepted) if the
dialog is accepted, and a false value (QDialog: :Rejected) otherwise. Recall that
when we created the Go-to-Cell dialog using Q¢ Designer in Chapter 2, we
connected OK to accept () and Cancel to reject (). If the user chooses OK, we set
the current cell to the value in the line editor.

The QTableWidget::setCurrentCell() function expects two arguments: a row
index and a column index. In the Spreadsheet application, cell Alis cell (0, 0)
and cell B27 is cell (26, 1). To obtain the row index from the QString returned
by QLineEdit::text (), we extract the row number using QString::mid() (which
returns a substring from the start position to the end of the string), convert it to
an int using QString::toInt (), and subtract 1. For the column number, we sub-
tract the numeric value of ‘A’ from the numeric value of the string’s uppercased
first character. We know that the string will have the correct format because
the QRegFxpValidator we created for the dialog only allows the OK button to be
enabled if we have a letter followed by up to three digits.

The goToCell () function differs from all the code seen so far in that it creates
a widget (a GoToCellDialog) as a variable on the stack. At the cost of one extra
line, we could just as easily have used new and delete:

void MainWindow::goToCell ()

{
GoToCellDialog *dialog = new GoToCellDialog(this);
if (dialog->exec()) {
QString str = dialog->lineEdit->text().toUpper();
spreadsheet->setCurrentCell (str.mid(1).toInt() - 1,
str[0].unicode() - "A");
}
delete dialog;
}

Creating modal dialogs (and context menus in QWidget::contextMenuEvent ()
reimplementations) on the stack is a common programming pattern since
we usually don’t need the dialog (or menu) after we have used it, and it will
automatically be destroyed at the end of the enclosing scope.

We will now turn to the Sort dialog. The Sort dialog is a modal dialog that
allows the user to sort the currently selected area by the columns they specify.
Figure 3.14 shows an example of sorting, with column B as the primary sort
key and column A as the secondary sort key (both ascending).

64 3. Creating Main Windows

L~ | & | ¢ |
1 1 John Adams 1797-1801
2 2 John Quincy Adams 1825-1829
3 3_Andrew Jackson 1829-1837
4 4 Thomas |efferson 1801-1809
5 5 |lames Madison 1809-1817
6 5_jar'nes Monroe 1817-1825
7 7 George Washington 1789-1797
8 8
(a) Before sort (b) After sort

Figure 3.14. Sorting the spreadsheet’s selected area

void MainWindow::sort ()

{
SortDialog dialog(this);
QTableWidgetSelectionRange range = spreadsheet->selectedRange();
dialog.setColumnRange('A' + range.leftColumn(),
"A' + range.rightColumn());
if (dialog.exec()) {
SpreadsheetCompare compare;
compare.keys[0] =
dialog.primaryColumnCombo->currentIndex();
compare.keys[1] =
dialog.secondaryColumnCombo->currentIndex () - 1;
compare.keys[2] =
dialog.tertiaryColumnCombo->currentIndex() - 1;
compare.ascending[0] =
(dialog.primaryOrderCombo->currentIndex() == 0);
compare.ascending[1] =
(dialog.secondaryOrderCombo->currentIndex() == 0);
compare.ascending[2] =
(dialog.tertiaryOrderCombo->currentIndex () == 0);
spreadsheet->sort (compare);
}
}

The code in sort () follows a similar pattern to that used for goToCell():
¢ We create the dialog on the stack and initialize it.
* We pop up the dialog using exec().

e If the user clicks OK, we extract the values entered by the user from the
dialog’s widgets and make use of them.

The setColumnRange () call sets the columns available for sorting to the columns
that are selected. For example, using the selection shown in Figure 3.14, range.
leftColumn() would yield 0, giving ‘A’ + 0 = ‘A’, and range.rightColumn() would
yield 2, giving ‘A’ + 2 =‘C’.

Using Dialogs 65

The compare object stores the primary, secondary, and tertiary sort keys and
their sort orders. (We will see the definition of the SpreadsheetCompare class
in the next chapter.) The object is used by Spreadsheet::sort () to compare two
rows. The keys array stores the column numbers of the keys. For example,
if the selection extends from C2 to E5, column C has position 0. The ascending
array stores the order associated with each key as a bool. QComboBox: :current-
Index () returns the index of the currently selected item, starting at 0. For the
secondary and tertiary keys, we subtract one from the current item to account
for the “None” item.

The sort () function does the job, but it is a bit fragile. It assumes that the Sort
dialog is implemented in a particular way, with comboboxes and “None” items.
This means that if we redesign the Sort dialog, we may also need to rewrite
this code. While this approach is adequate for a dialog that is only called from
one place, it opens the door to maintenance nightmares if the dialog is used in
several places.

A more robust approach is to make the SortDialog class smarter by having
it create a SpreadsheetCompare object itself, which can then be accessed by its
caller. This simplifies MainWindow::sort () significantly:

void MainWindow::sort ()

{
SortDialog dialog(this);
QTableWidgetSelectionRange range = spreadsheet->selectedRange();
dialog.setColumnRange('A' + range.leftColumn(),
'"A' + range.rightColumn());
if (dialog.exec())
spreadsheet->performSort (dialog.comparisonObject());
}

This approach leads to loosely coupled components and is almost always the
right choice for dialogs that will be called from more than one place.

A more radical approach would be to pass a pointer to the Spreadsheet object
when initializing the SortDialog object and to allow the dialog to operate direct-
ly on the Spreadsheet. This makes the SortDialog much less general, since it will
only work on a certain type of widget, but it simplifies the code even further by
eliminating the SortDialog: :setColumnRange () function. The MainWindow: :sort ()
function then becomes

void MainWindow::sort ()

{
SortDialog dialog(this);
dialog.setSpreadsheet (spreadsheet);
dialog.exec();

}

This approach mirrors the first: Instead of the caller needing intimate knowl-
edge of the dialog, the dialog needs intimate knowledge of the data structures
supplied by the caller. This approach may be useful where the dialog needs

66 3. Creating Main Windows

to apply changes live. But just as the caller code is fragile using the first ap-
proach, this third approach breaks if the data structures change.

Some developers choose just one approach to using dialogs and stick with that.
This has the benefit of familiarity and simplicity since all their dialog usages
follow the same pattern, but it also misses the benefits of the approaches that
are not used. Ideally, the approach to use should be decided on a per-dialog
basis.

We will round off this section with the About box. We could create a custom
dialog like we did for the Find or Go-to-Cell dialogs to present the information
about the application, but since most About boxes are highly stylized, Qt
provides a simpler solution.

void MainWindow: :about ()

{
QMessageBox: :about (this, tr("About Spreadsheet"),
tr ("<h2>Spreadsheet 1.1</h2>"

"<p>Copyright © 2006 Software Inc."
"<p>Spreadsheet is a small application that "
"demonstrates QAction, QMainWindow, QMenuBar, "
"QStatusBar, QTableWidget, QToolBar, and many other "
"Qt classes."));

}

The About box is obtained by calling QMessageBox: :about (), a static convenience
function. The function is very similar to QMessageBox: :warning(), except that it
uses the parent window’s icon instead of the standard “warning” icon.

[[@- About Spreadsheet B | x

B Spreadsheet 1.1

Copyright ® 2006 Saftware Inc.

Spreadsheet is a small application that demaonstrates
QAction, GMainwindow, QMenuBar, QStatusBar,
QTableWidget, QToolBar, and many other Qt classes.

Figure 3.15. About Spreadsheet

So far we have used several convenience static functions from both QMessageBox
and QFileDialog. These functions create a dialog, initialize it, and call exec ()
on it. It is also possible, although less convenient, to create a QMessageBox or
a QFileDialog widget like any other widget and explicitly call exec (), or even
show (), on it.

Storing Settings 67

Storing Settings

In the MainWindow constructor, we called readSettings () to load the application’s
stored settings. Similarly,in closeEvent (), we called writeSettings () to savethe
settings. These two functions are the last MainWindow member functions that
need to be implemented.

void MainWindow::writeSettings()

{
QSettings settings("Software Inc.", "Spreadsheet");
settings.setValue ("geometry", geometry());
settings.setValue("recentFiles", recentFiles);
settings.setValue ("showGrid", showGridAction->isChecked());
settings.setValue ("autoRecalc", autoRecalcAction->isChecked());
}

The writeSettings () function saves the main window’s geometry (position and
size), the list of recently opened files, and the Show Grid and Auto-Recalculate
options.

By default, aSettings stores the application’s settings in platform-specific
locations. On Windows, it uses the system registry; on Unix, it stores the data
in text files; on Mac OS X, it uses the Core Foundation Preferences API.

The constructor arguments specify the organization’s name and the applica-
tion’s name. This information is used in a platform-specific way to find a loca-
tion for the settings.

QSettings stores settings as key—value pairs. The key is similar to a file system
path. Subkeys can be specified using a path-like syntax (for example, findDia-
log/matchCase) or using beginGroup () and end6roup():

settings.beginGroup("findDialog");

settings.setValue ("matchCase", caseCheckBox->isChecked());
settings.setValue ("searchBackward", backwardCheckBox->isChecked());
settings.endGroup();

The value can be an int, a bool, a double, a QString, a QStringList, or any other
type supported by QVariant, including registered custom types.

void MainWindow::readSettings()
{

QSettings settings("Software Inc.", "Spreadsheet");

QRect rect = settings.value("geometry",

QRect (200, 200, 400, 400)).toRect();
move (rect.topLeft());
resize(rect.size());

recentFiles = settings.value("recentFiles").toStringlList();
updateRecentFileActions();

bool show6rid = settings.value("showGrid", true).toBool();
showGridAction->setChecked (show6rid);

68 3. Creating Main Windows

bool autoRecalc = settings.value("autoRecalc", true).toBool();
autoRecalcAction->setChecked (autoRecalc);

}

The readSettings () function loads the settings that were saved by writeSet-
tings (). The second argument to the value () function specifies a default value,
in case there are no settings available. The default values are used the first
time the application is run. Since no second argument is given for the recent
files list, it will be set to an empty list on the first run.

Qt provides a QWidget::setGeometry () function to complement QWidget: :geome-
try (), but it doesn’t always work as we would expect on X11 because of limita-
tions in many window managers. For that reason, we use move () and resize ()
instead. (See http://doc.trolltech.com/4.1/geometry.html for a detailed expla-
nation.)

The arrangement we opted for in MainWindow, with all the QSettings-related code
in readSettings () and writeSettings (), isjust one of many possible approaches.
A QSettings object can be created to query or modify some setting at any time
during the execution of the application and from anywhere in the code.

We have now completed the Spreadsheet’s MainWindow implementation. In the
following sections, we will discuss how the Spreadsheet application can be
modified to handle multiple documents and how to implement a splash screen.
We will complete its functionality, including handling formulas and sorting, in
the next chapter.

Multiple Documents

We are now ready to code the Spreadsheet application’s main() function:
#include <QApplication>
#include "mainwindow.h"

int main(int argc, char =argv[])

{
QApplication app(argc, argv);
MainWindow mainWin;
mainWin.show();
return app.exec();

}

This main () function is a little bit different from those we have written so far:
We have created the MainWindow instance as a variable on the stack instead of
using new. The MainWindow instance is then automatically destroyed when the
function terminates.

With the main() function shown above, the Spreadsheet application provides
a single main window and can only handle one document at a time. If we
want to edit multiple documents at the same time, we could start multiple
instances of the Spreadsheet application. But this isn’t as convenient for

Multiple Documents 69

users as having a single instance of the application providing multiple main
windows, just as one instance of a web browser can provide multiple browser
windows simultaneously.

We will modify the Spreadsheet application so that it can handle multiple
documents. First, we need a slightly different File menu:

* File|[New creates a new main window with an empty document, instead of
reusing the existing main window.

* File|Close closes the current main window.

* File|Exit closes all windows.

In the original version of the File menu, there was no Close option because that
would have been the same as Exit.

Mew Ctri+n
' Open.. ctrl+o
- Save ctri+s

Save As...

Close Ctrl+w

Exit Ctrl+Q

Figure 3.16. The new File menu

This is the new main () function:

int main(int argc, char =argv[])

{
QApplication app(argc, argv);
MainWindow *mainWin = new MainWindow;
mainWin->show();
return app.exec();

}

With multiple windows, it now makes sense to create MainWindow with new,
because then we can use delete on a main window when we have finished with
it to save memory.

This is the new MainWindow: :newFile () slot:

void MainWindow::newFile ()

{
MainWindow *mainWin = new MainWindow;
mainWin->show();

}

We simply create a new MainWindow instance. It may seem odd that we don’t
keep any pointer to the new window, but that isn’t a problem since Qt keeps
track of all the windows for us.

70 3. Creating Main Windows

These are the actions for Close and Exit:

void MainWindow::createActions()

{
closeAction = new QAction(tr("&Close"), this);
closeAction->setShortcut (tr ("Ctrl+W"));
closeAction->setStatusTip(tr("Close this window"));
connect (closeAction, SIGNAL (triggered()), this, SLOT(close()));
exitAction = new QAction(tr("E&xit"), this);
exitAction->setShortcut (tr("Ctrl+Q"));
exitAction->setStatusTip(tr("Exit the application"));
connect (exitAction, SIGNAL (triggered()),

gApp, SLOT(closeAllWindows()));
}

The QApplication::closeAllWindows () slot closes all of the application’s win-
dows, unless one of them rejects the close event. This is exactly the behavior
we need here. We don’t have to worry about unsaved changes because that’s
handled in MainWindow: :closeEvent () whenever a window is closed.

It looks as if we have finished making the application capable of handling
multiple windows. Unfortunately, there is a hidden problem lurking: If the
user keeps creating and closing main windows, the machine might eventually
run out of memory. This is because we keep creating MainWindow widgets in
newFile () but we never delete them. When the user closes a main window, the
default behavior is to hide it, so it still remains in memory. With many main
windows, this can be a problem.

The solution is to set the Qt::WA_DeleteOnClose attribute in the constructor:

MainWindow: :MainWindow ()

{
setAttribute(Qt::WA_DeleteOnClose);

}

This tells Qt to delete the window when it is closed. The Qt::WA_DeleteOnClose
attribute is one of many flags that can be set on a QWidget to influence its
behavior.

Memory leaking isn’t the only problem that we must deal with. Our original
application design included an implied assumption that we would only have
one main window. With multiple windows, each main window has its own
recently opened files list and its own options. Clearly, the recently opened files
list should be global to the whole application. We can achieve this quite easily
by declaring the recentFiles variable static, so that only one instance of it
exists for the whole application. But then we must ensure that wherever we
called updateRecentFileActions () to update the File menu, we must call it on all
main windows. Here’s the code to achieve this:

Multiple Documents 71

foreach (QWidget *win, QApplication::topLevelWidgets()) {
if (MainWindow *mainWin = gobject_cast<MainWindow *>(win))
mainWin->updateRecentFileActions();
}

The code uses Qt’s foreach construct (explained in Chapter 11) to iterate over
all the application’s windows and calls updateRecentFileActions () on all widgets
of type MainWindow. Similar code can be used for synchronizing the Show Grid and
Auto-Recalculate options, or to make sure that the same file isn’t loaded twice.

m - [B]x] B Spreadsheet [B=E)
Fle Edit Tools Options Help
DpBXxDB &> DB Xx0B &

104322

103192

1
2
3 1
- 2

4 100518 A 5 : 7]

5 108351 T Year Popuation 3 57059
& 83155, 2 g0008C Smillon 4 100518 T Year Population
3 5D, g 108351 2 som0B.c S il

8 4 1650AD. 500milion 3 504D

5 1850 AD. 1 billon 4 1650 AD. 500milion

6 1345AD 23blion 5 1850AD.

7 1380 AD. 44blion

8 v

83 200milion

Figure 3.17. SDI versus MDI

Applications that provide one document per main window are said to be SDI
(single document interface) applications. A common alternative on Windows
is MDI (multiple document interface), where the application has a single main
window that manages multiple document windows within its central area. Qt
can be used to create both SDI and MDI applications on all its supported plat-
forms. Figure 3.17 shows the Spreadsheet application using both approaches.
MDI is explained in Chapter 6 (Layout Management).

Splash Screens

Many applications present a splash screen at startup. Some developers use
a splash screen to disguise a slow startup, while others do it to satisfy their
marketing departments. Adding a splash screen to Qt applications is very
easy using the QSplashScreen class.

The QSplashScreen class shows an image before the main window appears. It
can also write messages on the image to inform the user about the progress
of the application’s initialization process. Typically, the splash screen code is
located in main (), before the call to QApplication::exec().

Next is an example main() function that uses QSplashScreen to present a
splash screen in an application that loads modules and establishes network
connections at startup.

72 3. Creating Main Windows

int main(int argc, char =argv[])

{

QApplication app(argc, argv);

QSplashScreen *splash = new QSplashScreen;

splash->setPixmap (QPixmap (":/images/splash.png"));

splash->show () ;

Qt::Alignment topRight = Qt::AlignRight | Qt::AlignTop;

splash->showMessage (QObject::tr ("Setting up the main window..."),
topRight, Qt::white);

MainWindow mainWin;

splash->showMessage (QObject::tr ("Loading modules..."),
topRight, Qt::white);

loadModules();

splash->showMessage (QObject::tr ("Establishing connections..."),
topRight, Qt::white);

establishConnections();

mainWin.show();

splash->finish(&mainWin);

delete splash;

return app.exec();

}

Software Inc,

S —— e

SPREADSHEET

I.1

wwwnsoftware—inc,com

Figure 3.18. A splash screen

We have now completed the Spreadsheet application’s user interface. In
the next chapter, we will complete the application by implementing the core
spreadsheet functionality.

The Central Widget
Subclassing QTableWidget
Loading and Saving
Implementing the Edit Menu
Implementing the Other Menus
Subclassing QTableWidgetltem

* ¢ 6 ¢ o o

4, Implementing Application
Functionality

In the previous two chapters, we explained how to create the Spreadsheet
application’s user interface. In this chapter, we will complete the program by
coding its underlying functionality. Among other things, we will see how to
load and save files, how to store data in memory, how to implement clipboard

operations, and how to add support for spreadsheet formulas to QTableWidget.

The Central Widget

The central area of a GMainWindow can be occupied by any kind of widget. Here’s

an overview of the possibilities:

1. Use a standard Qt widget.

A standard widget like QTableWidget or QTextEdit can be used as a central
widget. In this case, the application’s functionality, such as loading and
saving files, must be implemented elsewhere (for example, in a QMainWindow
subclass).

. Use a custom widget.

Specialized applications often need to show data in a custom widget. For
example, an icon editor program would have an IconEditor widget as its
central widget. Chapter 5 explains how to write custom widgets in Qt.

. Use a plain QWidget with a layout manager.

Sometimes the application’s central area is occupied by many widgets.
This can be done by using a QWidget as the parent of all the other widgets,
and using layout managers to size and position the child widgets.

73

74 4. Implementing Application Functionality

4. Use a splitter.

Another way of using multiple widgets together is to use a QSplitter. The
QSplitter arrangesits child widgets horizontally or vertically, with splitter
handles to give some sizing control to the user. Splitters can contain all
kinds of widgets, including other splitters.

5. Use an MDI workspace.

If the application uses MDI, the central area is occupied by a QWorkspace
widget, and each of the MDI windows is a child of that widget.

Layouts, splitters, and MDI workspaces can be combined with standard Qt
widgets or with custom widgets. Chapter 6 covers these classes in depth.

For the Spreadsheet application, a QTableWidget subclass is used as the central
widget. The QTableWidget class already provides most of the spreadsheet
capability we need, but it doesn’t support clipboard operations and doesn’t
understand spreadsheet formulas like “=A1+A2+A3”. We will implement this
missing functionality in the Spreadsheet class.

Subclassing QTableWidget

The Spreadsheet class inherits from QTableWidget. A QTableWidget is effectively
a grid that represents a two-dimensional sparse array. It displays whichever
cells the user scrolls to, within its specified dimensions. When the user enters
some text into an empty cell, QTableWidget automatically creates a QTableWid-
getItem to store the text.

Let’s start implementing Spreadsheet, beginning with the header file:

#ifndef SPREADSHEET_H
#define SPREADSHEET_H

#include <QTableWidget>

class Cell;
class SpreadsheetCompare;

The header starts with forward declarations for the Cell and SpreadsheetCom-
pare classes.

QObject

QWildget
QTabIe:Widget QTableWidgetltem
Sprealjsheet CleII

Figure 4.1. Inheritance trees for Spreadsheet and Cell

Subclassing QTableWidget 75

The attributes of a QTableWidget cell, such as its text and its alignment, are
stored in a QTableWidgetItem. Unlike QTableWidget, QTableWidgetItemisn’t a wid-
get class; it is a pure data class. The Cell class inherits QTableWidgetItem and is
explained when its implementation is shown in this chapter’s last section.

class Spreadsheet : public QTableWidget

{
Q_OBJECT

public:
Spreadsheet (QWidget =parent = 0);

bool autoRecalculate() const { return autoRecalc; }
QString currentLocation() const;

QString currentFormula() const;
QTableWidgetSelectionRange selectedRange() const;
void clear();

bool readFile(const QString &fileName);

bool writeFile(const QString &fileName);

void sort(const SpreadsheetCompare &compare);

The autoRecalculate() function is implemented inline since it just returns
whether or not auto-recalculation is in force.

In Chapter 3, we relied on some public functions in Spreadsheet when we
implemented MainWindow. For example, we called clear() from MainWindow::
newFile () toreset the spreadsheet. We also used some functions inherited from
QTableWidget, notably setCurrentCell () and setShow6rid().

public slots:
void cut();
void copy();
void paste();
void del();
void selectCurrentRow();
void selectCurrentColumn();
void recalculate();
void setAutoRecalculate(bool recalc);
void findNext(const QString &str, Qt::CaseSensitivity cs);
void findPrevious(const QString &str, Qt::CaseSensitivity cs);

signals:
void modified();

Spreadsheet provides many slots that implement actions from the Edit, Tools, and
Options menus, and it provides one signal, modified(), to announce any change
that has occurred.

private slots:
void somethingChanged();

We define one private slot used internally by the Spreadsheet class.

private:
enum { MagicNumber = @x7F51C883, RowCount = 999, ColumnCount = 26 };

76 4. Implementing Application Functionality

Cell xcell(int row, int column) const;

QString text(int row, int column) const;

QString formula(int row, int column) const;

void setFormula(int row, int column, const QString &formula);

bool autoRecalc;
};

In the class’s private section, we declare three constants, four functions, and
one variable.

class SpreadsheetCompare

{
public:
bool operator () (const QStringlList &rowl,
const QStringlList &row2) const;
enum { KeyCount = 3 };
int keys[KeyCount];
bool ascending[KeyCount];
¥
#endif

The header file ends with the SpreadsheetCompare class definition. We will
explain this when we review Spreadsheet::sort ().

We will now look at the implementation:
#include <Qt6ui>

#include "cell.h"
#include "spreadsheet.h"

Spreadsheet::Spreadsheet (QWidget =parent)
: QTableWidget (parent)
{

autoRecalc = true;

setItemPrototype(new Cell);
setSelectionMode (ContiguousSelection);

connect (this, SIGNAL (itemChanged(QTableWidgetItem =)),
this, SLOT(somethingChanged()));

clear();

}

Normally, when the user enters some text on an empty cell, the QTableWidget
will automatically create a QTableWidgetItem to hold the text. In our spread-
sheet, we want Cell items to be created instead. This is achieved by the set-
ItemPrototype () call in the constructor. Internally, QTableWidget clones the item
passed as a prototype every time a new item is required.

Also in the constructor, we set the selection mode to QAbstractItemView::Con-
tiguousSelection to allow a single rectangular selection. We connect the table
widget’s itemChanged() signal to the private somethingChanged() slot; this en-

Subclassing QTableWidget 77

sures that when the user edits a cell, the somethingChanged() slot is called. Fi-
nally, we call clear () to resize the table and to set the column headings.

void Spreadsheet::clear ()

{
setRowCount (0);
setColumnCount (0);
setRowCount (RowCount);
setColumnCount (ColumnCount);

for (int i = 0; 1 < ColumnCount; ++i) {
QTableWidgetItem xitem = new QTableWidgetItem;
item->setText (QString(QChar ('A' + 1)));
setHorizontalHeaderItem (i, item);

}

setCurrentCell (0, 0);
}

The clear () function is called from the Spreadsheet constructor to initialize the
spreadsheet. It is also called from MainWindow: :newFile ().

We could have used QTableWidget::clear () to clear all the items and any selec-
tions, but that would have left the headers at their current size. Instead, we
resize the table down to 0 x 0. This clears the entire spreadsheet, including the
headers. We then resize the table to ColumnCount x RowCount (26 x 999) and popu-
late the horizontal header with QTableWidgetItems containing the column names
“A” “B”, ..., “Z”. We don’t need to set the vertical header labels, because these
default to “1”,“2”, ..., “999”. At the end, we move the cell cursor to cell Al.

horizontalHeader()

viewport()

verticalHeader()
verticalScrollBar()

horizontalScrollBar()

Figure 4.2. QTableWidget’s constituent widgets

A QTableWidget is composed of several child widgets. It has a horizontal QHead-
erView at the top, a vertical QHeaderView on the left, and two QScrollBars. The
area in the middle is occupied by a special widget called the viewport, on which
QTableWidget draws the cells. The different child widgets are accessible through
functions inherited from QTableView and QAbstractScrollArea (see Figure 4.2).
QAbstractScrollArea provides a scrollable viewport and two scroll bars, which
can be turned on and off. Its QScrollArea subclassis covered in Chapter 6.

78 4. Implementing Application Functionality

Storing Data as Items

In the Spreadsheet application, every non-empty cell is stored in memory
as an individual QTableWidgetItem object. Storing data as items is an
approach that is also used by QListWidget and QTreeWidget, which operate on
QListWidgetItems and QTreeWidgetItems.

Qt’s item classes can be used out of the box as data holders. For example,
a QTableWidgetItem already stores a few attributes, including a string, font,
color, and icon, and a pointer back to the QTableWidget. The items can also
hold data (avariants), including registered custom types, and by subclassing
the item class we can provide additional functionality.

Other toolkits provide a void pointer in their item classes to store custom
data. In Qt, the more natural approach is to use setData() with a Qvariant,
but if a void pointer is required, it can be trivially achieved by subclassing
an item class and adding a void pointer member variable.

For more challenging data handling requirements, such as large data
sets, complex data items, database integration, and multiple data views,
Qt provides a set of model/view classes that separate the data from their
visual representation. These are covered in Chapter 10.

Cell xSpreadsheet::cell(int row, int column) const
{

}

The cell () private function returns the Cell object for a given row and column.
It is almost the same as QTableWidget::item(), except that it returns a Cell
pointer instead of a QTableWidgetItem pointer.

return static_cast<Cell *>(item(row, column));

QString Spreadsheet::text(int row, int column) const

Cell *c = cell(row, column);

if () {

return c->text();
} else {

return "";
}

}

The text () private function returns the text for a given cell. If cell() returns
a null pointer, the cell is empty, so we return an empty string.

QString Spreadsheet::formula(int row, int column) const

{

Cell *c = cell(row, column);

if (c) {
return c->formula();
} else {

return "";

Subclassing QTableWidget 79

}
}

The formula() function returns the cell’s formula. In many cases, the formula
and the text are the same; for example, the formula “Hello” evaluates to the
string “Hello”, so if the user types “Hello” into a cell and presses Enter, that cell
will show the text “Hello”. But there are a few exceptions:

¢ If the formula is a number, it is interpreted as such. For example, the
formula “1.50” evaluates to the double value 1.5, which is rendered as a
right-aligned “1.5” in the spreadsheet.

¢ If the formula starts with a single quote, the rest of the formula is in-
terpreted as text. For example, the formula “’12345” evaluates to the
string “12345”.

¢ If the formula starts with an equals sign (‘="), the formula is interpreted
as an arithmetic formula. For example, if cell Al contains “12” and cell A2
contains “6”, the formula “=A1+A2” evaluates to 18.

The task of converting a formula into a value is performed by the Cell class.
For the moment, the thing to bear in mind is that the text shown in the cell is
the result of evaluating the formula, not the formula itself.

void Spreadsheet::setFormula(int row, int column,
const QString &formula)

{
Cell *c = cell(row, column);
if (o) {
C = new Cell;
setltem(row, column, c);
}
c->setFormula(formula);
}

The setFormula() private function sets the formula for a given cell. If the cell
already has a Cell object, we reuse it. Otherwise, we create a new Cell object
and call QTableWidget::setItem() to insert it into the table. At the end, we call
the cell’s own setFormula () function, which will cause the cell to be repainted if
it’s shown on screen. We don’t need to worry about deleting the Cell object later
on; QTableWidget takes ownership of the cell and will delete it automatically at
the right time.

QString Spreadsheet::currentLocation() const

return QChar ("A' + currentColumn())
+ QString::number (currentRow() + 1);

}

The currentLocation() function returns the current cell’s location in the usual
spreadsheet format of column letter followed by row number. MainWindow::
updateStatusBar () uses it to show the location in the status bar.

80 4. Implementing Application Functionality

QString Spreadsheet::currentFormula() const

return formula(currentRow(), currentColumn());

}

The currentFormula() function returns the current cell’s formula. It is called
from MainWindow: :updateStatusBar ().

void Spreadsheet::somethingChanged()

{
if (autoRecalc)
recalculate();
emit modified();
}

The somethingChanged() private slot recalculates the whole spreadsheet if
“auto-recalculate” is enabled. It also emits the modified() signal.

Loading and Saving

We will now implement the loading and saving of Spreadsheet files using
a custom binary format. We will do this using QFile and QDataStream, which
together provide platform-independent binary I/O.

We will start with writing a Spreadsheet file:

bool Spreadsheet::writeFile(const QString &fileName)
{
QFile file(fileName);
if (!file.open(QIODevice::WriteOnly)) {
QMessageBox: :warning(this, tr("Spreadsheet"),
tr("Cannot write file %1:\n%2.")
.arg(file.fileName())
.arg(file.errorString()));
return false;

}

QDataStream out(&file);
out.setVersion(QDataStream::Qt_4_1);

out << quint32(MagicNumber);

QApplication::setOverrideCursor (Qt::WaitCursor);
for (int row = 0; row < RowCount; ++row) {
for (int column = @; column < ColumnCount; ++column) {
QString str = formula(row, column);
if (!str.isEmpty())
out << quinti16(row) << quinti16(column) << str;
}
}
QApplication::restoreOverrideCursor ();
return true;

Loading and Saving 81

The writeFile () function is called from MainWindow: :saveFile () to write the file
to disk. It returns true on success, false on error.

We create a QFile object with the given file name and call open () to open the file
for writing. We also create a QDataStream object that operates on the QFile and
use it to write out the data.

Just before we write the data, we change the application’s cursor to the stan-
dard wait cursor (usually an hourglass) and restore the normal cursor once all
the data is written. At the end of the function, the file is automatically closed
by QFile’s destructor.

QDataStream supports basic C++ types as well as many of Qt’s types. The syntax
is modeled after the Standard C++ <iostream> classes. For example,

out <K x KKy KL z;
writes the variables x, y, and z to a stream, and
in> x>y >z

reads them from a stream. Because the C++ basic types char, short, int, long,
and long long may have different sizes on different platforms, it is safest to cast
these values to one of qint8, quint8, qint16, quint16, qint32, quint32, qint64, and
quint64, which are guaranteed to be of the size they advertise (in bits).

The Spreadsheet application’s file format is fairly simple. A Spreadsheet file
starts with a 32-bit number that identifies the file format (MagicNumber, defined
as 0x7F51C883 in spreadsheet.h, an arbitrary random number.) Then comes a
series of blocks, each of which contains a single cell’s row, column, and formula.
To save space, we don’t write out empty cells.

0x7F510883\ |123|| 5| |123H GHFrancium\

Figure 4.3. The Spreadsheet file format

The precise binary representation of the data types is determined by QData-
Stream. For example, a quint16 is stored as two bytes in big-endian order, and a
QString as the string’s length followed by the Unicode characters.

The binary representation of Qt types has evolved quite a lot since Qt 1.0. It is
likely to continue evolving in future Qt releases to keep pace with the evolution
of existing types and to allow for new Qt types. By default,QDataStream uses the
most recent version of the binary format (version 7 in Qt 4.1), but it can be set
to read older versions. To avoid any compatibility problems if the application
is recompiled later using a newer Qt release, we explicitly tell QDataStream
to use version 7 irrespective of the version of Qt we are compiling against.
(QDataStream::Qt_4_1 is a convenience constant that equals 7.)

82 4. Implementing Application Functionality

QDataStream is very versatile. It can be used on a QFile, and also on a QBuffer, a
QProcess, a QTcpSocket, or a QUdpSocket. Qt also offers a QTextStream class that can
be used instead of QDataStrean for reading and writing text files. Chapter 12
explains these classes in depth, and also describes various approaches to
handling different QDataStream versions.

bool Spreadsheet::readfFile(const QString &fileName)

{
QFile file(fileName);
if (!file.open(QIODevice::ReadOnly)) {
QMessageBox: :warning(this, tr("Spreadsheet"),
tr("Cannot read file %1:\n%2.")
.arg(file.fileName())
.arg(file.errorString()));
return false;
}
QDataStream in(&file);
in.setVersion(QDataStream::Qt_4_1);
quint32 magic;
in >> magic;
if (magic !'= MagicNumber) {
QMessageBox: :warning(this, tr("Spreadsheet"),
tr("The file is not a Spreadsheet file."));
return false;
}
clear ();
quint16 row;
quint16 column;
QString str;
QApplication::setOverrideCursor (Qt::WaitCursor);
while (lin.atEnd()) {
in >> row >> column >> str;
setFormula(row, column, str);
}
QApplication::restoreOverrideCursor();
return true;
}

The readFile() function is very similar to writeFile (). We use QFile to read in
the file, but this time using the QI0Device: :ReadOnly flag rather than QIODevice::
WriteOnly. Then we set the QDataStream version to 7. The format for reading
must always be the same as for writing.

If the file has the correct magic number at the beginning, we call clear () to
blank out all the cells in the spreadsheet, and we read in the cell data. Since
the file only contains the data for non-empty cells, and it is very unlikely that
every cell in the spreadsheet will be set, we must ensure that all cells are
cleared before reading.

Implementing the Edit Menu 83

Implementing the Edit Menu

We are now ready to implement the slots that correspond to the application’s
Edit menu.

void Spreadsheet::cut()
{

copy ();

del();
}

The cut () slot corresponds to Edit|Cut. The implementation is simple since Cut
is the same as Copy followed by Delete.

Im
[«
=

o< Cut Ctri+X
1 Copy ctrl+c
B paste Ctrl4v
Delete Del
Select ’ Row
& Find... Ctrl+F Column
5 Gotocell... F5 All ctri+A

Figure 4.4. The Spreadsheet application’s Edit menu

void Spreadsheet::copy ()

{
QTableWidgetSelectionRange range = selectedRange ();
QString str;

for (int i = 0; i < range.rowCount(); ++i) {

if (1 >0
str += "\n";
for (int j = 0; j < range.columnCount(); ++j) {
if (j >0
str += "\t";

str += formula(range.topRow() + i, range.leftColumn() + j);
}
}
QApplication::clipboard () ->setText (str);

The copy () slot corresponds to Edit|Copy. It iterates over the current selection
(which is simply the current cell if there is no explicit selection). Each selected
cell’s formula is added to a QString, with rows separated by newline characters
and columns separated by tab characters.

The system clipboard is available in Qt through the QApplication::clipboard()
static function. By calling QClipboard::setText (), we make the text available

84 4. Implementing Application Functionality

on the clipboard, both to this application and to other applications that support
plain text. Our format with tab and newline characters as separators is
understood by a variety of applications, including Microsoft Excel.

"Red\t Green\t Blue \n Cyan\t Magenta \t Yellow"

Figure 4.5. Copying a selection onto the clipboard

The QTableWidget: :selectedRanges () function returns a list of selection ranges.
We know there cannot be more than one because we set the selection mode
to QAbstractItemView::ContiguousSelection in the constructor. For our conve-
nience, we define a selectedRange () function that returns the selection range:

QTableWidgetSelectionRange Spreadsheet::selectedRange() const
{
QList<QTableWidgetSelectionRange> ranges = selectedRanges();
if (ranges.isEmpty())
return QTableWidgetSelectionRange();
return ranges.first();
}

If there is a selection at all, we simply return the first (and only) one. The case
where there is no selection should never happen since the ContiguousSelection
mode treats the current cell as being selected. But to protect against the
possibility of a bug in our program that makes no cell current, we handle
this case.

void Spreadsheet::paste()

{
QTableWidgetSelectionRange range = selectedRange();
QString str = QApplication::clipboard()->text();
QStringList rows = str.split('\n');
int numRows = rows.count();
int numColumns = rows.first().count('\t') + 1;

if (range.rowCount() = range.columnCount() != 1
&8 (range.rowCount () I= numRows
|| range.columnCount() != numColumns)) {

QMessageBox::information(this, tr("Spreadsheet"),
tr("The information cannot be pasted because the copy "
"and paste areas aren't the same size."));
return;

}

for (int i = 0; i < numRows; ++i) {
QStringlList columns = rows[i].split('\t");
for (int j = 0; j < numColumns; ++j) {

Implementing the Edit Menu 85

int row = range.topRow() + 1i;
int column = range.leftColumn() + j;
if (row < RowCount && column < ColumnCount)
setFormula(row, column, columns[jl);
}
}
somethingChanged();
}

The paste () slot corresponds to Edit|Paste. We fetch the text on the clipboard and
call the static function QString::split () to break the string into a QStringlList.
Each row becomes one string in the list.

Next, we determine the dimension of the copy area. The number of rows is the
number of strings in the QStringList; the number of columns is the number of
tab charactersin the first row, plus 1. If only one cell is selected, we use that cell
as the top-left corner of the paste area; otherwise, we use the current selection
as the paste area.

To perform the paste, we iterate over the rows and split each of them into
cells by using QString::split () again, but this time using tab as the separator.
Figure 4.6 illustrates the steps.

"Red\t Green\t Blue \n Cyan\t Magenta\t Yellow"

N
["Red\t Green\t Blue", "Cyan\t Magenta\t Yellow"]

.
["Red", "Green", "B'Ue"]

["Cyan", "Magenta", "Yellow"]
N

e [[3 |

27 |Red Green Blue

Cyan Magenta vellow

Figure 4.6. Pasting clipboard text into the spreadsheet

void Spreadsheet::del()
{
foreach (QTableWidgetItem xitem, selectedItems())
delete item;

}

The del() slot corresponds to Edit|Delete. It is sufficient to use delete on each
of the Cell objects in the selection to clear the cells. The QTableWidget notices
when its QTableWidgetItems are deleted and automatically repaints itself if any
of the items were visible. If we call cell() with the location of a deleted cell,
it will return a null pointer.

86 4. Implementing Application Functionality

void Spreadsheet::selectCurrentRow ()

{
selectRow (currentRow());
}
void Spreadsheet::selectCurrentColumn()
{
selectColumn(currentColumn());
}

The selectCurrentRow() and selectCurrentColumn() functions correspond to the
Edit/Select|Row and Edit|Select|Column menu options. The implementations rely
on QTableWidget’s selectRow() and selectColumn() functions. We do not need
to implement the functionality behind Edit/Select|All, since that is provided by
QTableWidget’s inherited function QAbstractItemView: :selectAll ().

void Spreadsheet::findNext (const QString &str, Qt::CaseSensitivity cs)
{

int row = currentRow();

int column = currentColumn() + 1;

while (row < RowCount) {
while (column < ColumnCount) {
if (text(row, column).contains(str, cs)) {
clearSelection();
setCurrentCell(row, column);

activateWindow();
return;
}
++column;
}
column = 0;
++rOW;

}
QApplication::beep();
}

The findNext () slot iterates through the cells starting from the cell to the right
of the cursor and moving right until the last column is reached, then continues
from the first column in the row below, and so on until the text is found or until
the very last cell is reached. For example, if the current cell is cell C24, we
search D24, E24, ..., Z24, then A25, B25, C25, ..., Z25, and so on until Z999. If
we find a match, we clear the current selection, move the cell cursor to the cell
that matched, and make the window that contains the Spreadsheet active. If
no match is found, we make the application beep to indicate that the search
finished unsuccessfully.

void Spreadsheet::findPrevious(const QString &str,
Qt::CaseSensitivity cs)
{

int row = currentRow();
int column = currentColumn() - 1;

while (row >= 0) {

Implementing the Edit Menu 87

while (column >= 0) {
if (text(row, column).contains(str, cs)) {
clearSelection();
setCurrentCell(row, column);
activateWindow();

return;
}
--column;
}
column = ColumnCount - 1;
——row;

}
QApplication::beep();

The findPrevious () slotis similar to findNext (), except that it iterates backward
and stops at cell Al.

Implementing the Other Menus

We will now implement the slots for the Tools and Options menus.

Tools Qptions

‘ Becalculate Fo ‘ % Show Grid

% Auto-recalculate

Sort...

Figure 4.7. The Spreadsheet application’s Tools and Options menus

void Spreadsheet::recalculate()

{
for (int row = 0; row < RowCount; ++row) {
for (int column = 0; column < ColumnCount; ++column) {
if (cell(row, column))
cell (row, column)->setDirty();
}
}
viewport () ->update();
}

The recalculate () slot corresponds to Tools|Recalculate. It is also called automat-
ically by Spreadsheet when necessary.

We iterate over all the cells and call setDirty () on every cell to mark each one
as requiring recalculation. The next time QTableWidget calls text () on a Cell to
obtain the value to show in the spreadsheet, the value will be recalculated.

Then we call update () on the viewport to repaint the whole spreadsheet. The
repaint code in QTableWidget then calls text () on each visible cell to obtain the
value to display. Because we called setDirty () on every cell, the calls to text ()
will use a freshly calculated value. The calculation may require non-visible
cells to be recalculated, cascading the calculation until every cell that needs

88 4. Implementing Application Functionality

to be recalculated to display the correct text in the viewport has been freshly
calculated. The calculation is performed by the Cell class.

void Spreadsheet::setAutoRecalculate(bool recalc)

{
autoRecalc = recalc;
if (autoRecalc)
recalculate();
}

The setAutoRecalculate () slot corresponds to Options|Auto-Recalculate. If the fea-
ture is being turned on, we recalculate the whole spreadsheet immediately to
make sure that it’s up to date; afterward, recalculate () is called automatically
from somethingChanged ().

We don’t need to implement anything for Options|Show Grid because QTableWid-
get already has a setShow6rid () slot, which it inherits from its base class QTable-
View. All that remains is Spreadsheet: :sort (), which is called from MainWindow: :
sort():

void Spreadsheet::sort(const SpreadsheetCompare &compare)
{
QList<QStringList> rows;
QTableWidgetSelectionRange range = selectedRange();
int 1i;
for (i = 0; i < range.rowCount(); ++i) {
QStringList row;
for (int j = 0; j < range.columnCount(); ++j)
row.append (formula(range.topRow() + i,
range.leftColumn() + j));
rows.append (row);
}

gStableSort (rows.begin(), rows.end(), compare);

for (i = 0; i < range.rowCount(); ++i) {
for (int j = 0; j < range.columnCount(); ++j)
setFormula(range.topRow() + i, range.leftColumn() + j,
rows[i1[jD);
}

clearSelection();
somethingChanged () ;
}

Sorting operates on the current selection and reorders the rows according to
the sort keys and sort orders stored in the compare object. We represent each
row of data with a QStringList and store the selection as a list of rows. We use
Qt’s gStableSort () algorithm, and for simplicity sort by formula rather than by
value. Qt’s standard algorithms and data structures are covered in Chapter 11
(Container Classes).

Implementing the Other Menus 89

index value
1930-05-11 0 | ['Edsger’, "Dijkstra","1930-05-11"]
Hoare ' 1| ["Tony", "Hoare", "1934-01-11"]
2 | ['NiKiaus", "Wirth", "1934-02-15"]
3 | ["Donald”, "Knuth","1938-01-10"]

Figure 4.8. Storing the selection as a list of rows

The gStableSort() function accepts a begin iterator, an end iterator, and a
comparison function. The comparison function is a function that takes two
arguments (two QStringLists) and that returns true if the first argument is
“less than” the second argument, false otherwise. The compare object we pass
as the comparison function isn’t really a function, but it can be used as one, as
we will see shortly.

index value | o | E
0 ["Donald", "Knuth", "1938-01-10"] Knuth 1938-01-10
1 ["Edsger", "Dijkstra", "1930-05-11"] Dijkstra 1930-05-11
2 ["Niklaus", "Wirth", "1934-02-15"] Wirth 1934-02-15
3 ["Tony", "Hoare", "1934-01-11"] Hoare 1934-01-11

Figure 4.9. Putting the data back into the table after sorting

After performing the gStableSort (), we move the data back into the table, clear
the selection, and call somethingChanged ().

In spreadsheet.h, the SpreadsheetCompare class was defined like this:

class SpreadsheetCompare

{
public:
bool operator () (const QStringlList &rowl,
const QStringlList &row2) const;
enum { KeyCount = 3 };
int keys[KeyCount];
bool ascending[KeyCountl;
}

The SpreadsheetCompare class is special because it implements a () operator.
This allows us to use the class as if it were a function. Such classes are called
function objects, or functors. To understand how functors work, we will start
with a simple example:

class Square
{
public:
int operator () (int x) const { return x * x; }
}

90 4. Implementing Application Functionality

The square class provides one function, operator () (int), that returns the square
of its parameter. By naming the function operator () (int) rather than, say,
compute (int), we gain the capability of using an object of type Square as if it
were a function:

Square square;
int y = square(5);

Now let’s see an example involving SpreadsheetCompare:

QStringList rowl, row2;
QSpreadsheetCompare compare;

if (compare(rowl, row2)) {
// rowl is less than row2
}

The compare object can be used just as if it had been a plain compare () function.
Additionally, its implementation can access all the sort keys and sort orders,
which are stored as member variables.

An alternative to this scheme would have been to store the sort keys and sort
orders in global variables and use a plain compare () function. However, com-
municating through global variables is inelegant and can lead to subtle bugs.
Functors are a more powerful idiom for interfacing with template functions
such as gStableSort ().

Here is the implementation of the function that is used to compare two
spreadsheet rows:

bool SpreadsheetCompare::operator() (const QStringlList &rowl,
const QStringlList &row2) const

{
for (int i = 0; i < KeyCount; ++i) {
int column = keys[il];
if (column != -1) {
if (rowl[column] != row2[column]) {
if (ascending[il) {
return rowl1[column] < row2[column];
} else {
return rowl1[column] > row2[column];
}
}
}
}
return false;
}

The operator returns true if the first row is less than the second row; otherwise,
it returns false. The qStableSort () function uses the result of this function to
perform the sort.

Implementing the Other Menus 91

The SpreadsheetCompare object’s keys and ascending arrays are populated in the
MainWindow::sort() function (shown in Chapter 2). Each key holds a column
index, or -1 (“None”).

We compare the corresponding cell entries in the two rows for each key in order.
As soon as we find a difference, we return an appropriate true or false value.
If all the comparisons turn out to be equal, we return false. The gStableSort ()
function uses the order before the sort to resolve tie situations; if row1 preced-
ed row2 originally and neither compares as “less than” the other, row1 will still
precede row2 in the result. This is what distinguishes gStableSort () from its
unstable cousin gSort ().

We have now completed the Spreadsheet class. In the next section, we will
review the Cell class. This class is used to hold cell formulas and provides a
reimplementation of the QTableWidgetItem::data() function that Spreadsheet
calls indirectly, through the QTableWidgetItem::text() function, to display the
result of calculating a cell’s formula.

Subclassing QTableWidgetItem

The Cell classinherits from QTableWidgetItem. The classis designed to work well
with Spreadsheet, but it has no specific dependencies on that class and could in
theory be used in any QTableWidget. Here’s the header file:

#ifndef CELL_H
#define CELL_H

#include <QTableWidgetItem>

class Cell : public QTableWidgetItem
{
public:

Cell();

QTableWidgetItem xclone() const;

void setData(int role, const QVariant &value);
QVariant data(int role) const;

void setFormula(const QString &formula);
QString formula() const;

void setDirty();

private:
QVariant value() const;
QVariant evalExpression(const QString &str, int &pos) const;
QVariant evalTerm(const QString &str, int &pos) const;
QVariant evalFactor(const QString &str, int &pos) const;

mutable QVariant cachedValue;
mutable bool cachelsDirty;
};

#endif

92 4. Implementing Application Functionality

The cell class extends QTableWidgetItem by adding two private variables:

® cachedValue caches the cell’s value as a QVariant.

® cachelsDirty is true if the cached value isn’t up to date.

We use Qvariant because some cells have a double value, while others have a
QString value.

The cachedvalue and cachelsDirty variables are declared with the C++ mutable
keyword. This allows us to modify these variables in const functions. Alterna-
tively, we could recalculate the value each time text () is called, but that would
be needlessly inefficient.

Notice that there is no Q_0BJECT macro in the class definition. Cell is a plain
C++ class, with no signals or slots. In fact, because QTableWidgetItem doesn’t
inherit from QObject, we cannot have signals and slots in Cell as it stands. Qt’s
item classes don’t inherit from QObject to keep their overhead to the barest
minimum. If signals and slots are needed, they can be implemented in the
widget that contains the items or, exceptionally, using multiple inheritance
with QObject.

Here’s the start of cell.cpp:
#include <QtGui>
#include "cell.h"

Cell::Cell()
{

}

In the constructor, we only need to set the cache as dirty. There is no need to
pass a parent; when the cell is inserted into a QTableWidget with setItem(), the
QTableWidget will automatically take ownership of it.

setDirty ();

Every QTableWidgetItem can hold some data, up to one Qvariant for each data
“role”. The most commonly used roles are Qt::EditRole and Qt::DisplayRole.
The edit role is used for data that is to be edited, and the display role is for data
that is to be displayed. Often the data for both is the same, but in Cell the edit
role corresponds to the cell’s formula and the display role corresponds to the
cell’s value (the result of evaluating the formula).

QTableWidgetItem xCell::clone() const
{

}

The clone() function is called by QTableWidget when it needs to create a new
cell—for example, when the user starts typing into an empty cell that has not
been used before. The instance passed to QTableWidget::setItemPrototype() is
the item that is cloned. Since member-wise copying is sufficient for Cell, we are

return new Cell (*this);

Subclassing QTableWidgetltem 93

relying on the default copy constructor automatically created by C++ to create
new Cell instances in the clone () function.

void Cell::setFormula(const QString &formula)

{
}

The setFormula() function sets the cell’s formula. It is simply a convenience
function for calling setData() with the edit role. It is called from Spreadsheet: :
setFormula().

setData(Qt::EditRole, formula);

QString Cell::formula() const
{

}

The formula() function is called from Spreadsheet::formula(). Like setFormula()
it is a convenience function, this time retrieving the item’s EditRole data.

return data(Qt::EditRole).toString();

void Cell::setData(int role, const QVariant &value)

{
QTableWidgetItem::setData(role, value);
if (role == Qt::EditRole)
setdirty ();
}

If we have a new formula, we set cacheIsDirty to true to ensure that the cell is
recalculated the next time text () is called.

There is no text () function defined in Cell, although we call text () on Cell in-
stances in Spreadsheet::text (). The text () function is a convenience function
provided by QTableWidgetItem; it is the equivalent of calling data(Qt::Display-
Role) .toString().

void Cell::setDirty()
{

}

The setDirty () function is called to force a recalculation of the cell’s value. It
simply sets cacheIsDirty to true, meaning that cachedvalue is no longer up to
date. The recalculation isn’t performed until it is necessary.

cachelsDirty = true;

QVariant Cell::data(int role) const
{
if (role == Qt::DisplayRole) {
if (value().isValid()) {
return value() .toString(;
} else {
return "####";
}

} else if (role == Qt::TextAlignmentRole) {
if (value().type() == QVvariant::String) {
return int(Qt::AlignLeft | Qt::AlignVCenter);

94 4. Implementing Application Functionality

} else {
return int(Qt::AlignRight | Qt::AlignVCenter);
}
} else {

return QTableWidgetItem::data(role);
}
}

The data() function is reimplemented from QTableWidgetItem. It returns the
text that should be shown in the spreadsheet if called with Qt::DisplayRole,
and the formula if called with Qt::EditRole. It returns a suitable alignment if
called with Qt::TextAlignmentRole. In the DisplayRole case, it relies on value () to
compute the cell’s value. If the value isinvalid (because the formula is wrong),
we return “H####”.

The Cell::value() function used in data() returns a Qvariant. A Qvariant can
store values of different types, such as double and QString, and provides func-
tions to convert the variant to other types. For example, calling toString() on a
variant that holds a double value produces a string representation of the double.
A Qqvariant constructed using the default constructor is an “invalid” variant.

const QVariant Invalid;

QVariant Cell::value() const
{
if (cachelsDirty) {
cachelsDirty = false;

QString formulaStr = formula();
if (formulaStr.startsWith('\'")) {
cachedValue = formulaStr.mid(1);
} else if (formulaStr.startsWith('="')) {
cachedValue = Invalid;
QString expr = formulaStr.mid(1);
" " llll).

expr.replace(" ", ;
expr.append (QChar::Null);

int pos = 0;

cachedValue = evalExpression(expr, pos);

if (exprlpos] != QChar::Null)
cachedValue = Invalid;

} else {
bool ok;
double d = formulaStr.toDouble (&0Kk);
if (ok) {
cachedValue = d;
} else {
cachedValue = formulaStr;
}
}

}

return cachedValue;

Subclassing QTableWidgetltem 95

The value () private function returns the cell’s value. If cachelsDirty is true, we
need to recalculate the value.

If the formula starts with a single quote (for example, “’12345”), the sin-
gle quote occupies position 0 and the value is the string from position 1 to
the end.

If the formula starts with an equals sign (‘=’), we take the string from position 1
and remove any spaces it may contain. Then we call evalExpression() to
compute the value of the expression. The pos argument is passed by reference;
it indicates the position of the character where parsing should begin. After the
call to evalExpression(), the character at position pos should be the QChar: :Null
character we appended, if it was successfully parsed. If the parse failed before
the end, we set cachedValue to be Invalid.

If the formula doesn’t begin with a single quote or an equals sign, we attempt
to convert it to a floating-point value using tobDouble (). If the conversion works,
we set cachedValue to be the resulting number; otherwise, we set cachedvalue
to be the formula string. For example, a formula of “1.50” causes toDouble ()
to set ok to true and return 1.5, while a formula of “World Population” causes
toDouble () to set ok to false and return 0.0.

By giving toDouble () a pointer to a bool, we are able to distinguish between the
conversion of a string that represents the numeric value 0.0 and a conversion
error (where 0.0 is also returned but the bool is set to false). Sometimes the
returning of a zero value on conversion failure is exactly what we need, in
which case we do not bother passing a pointer to a bool. For performance
and portability reasons, Qt never uses C++ exceptions to report failure. This
doesn’t prevent you from using them in Qt programs, providing your compiler
supports them.

The value() function is declared const. We had to declare cachedvalue and
cachelsValid as mutable variables so that the compiler will allow us to modify
them in const functions. It might be tempting to make value () non-const and
remove the mutable keywords, but that would not compile because we call
value () from data(), a const function.

We have now completed the Spreadsheet application, apart from parsing for-
mulas. Therest of this section covers evalExpression () and the two helper func-
tions evalTerm() and evalFactor (). The code is a bit complicated, but it is includ-
ed here to make the application complete. Since the code is not related to GUI
programming, you can safely skip it and continue reading from Chapter 5.

The evalExpression() function returns the value of a spreadsheet expression.
An expression is defined as one or more terms separated by ‘+’ or ‘-’ operators.
The terms themselves are defined as one or more factors separated by “ or /’
operators. By breaking down expressionsinto terms and terms into factors, we
ensure that the operators are applied with the correct precedence.

96 4. Implementing Application Functionality

For example, “2+C5+D6” is an expression with “2+C5” as its first term and “D6”
as its second term. The term “2+C5” has “2” as its first factor and “C5” as its
second factor, and the term “D6” consists of the single factor “D6”. A factor
can be a number (“2”), a cell location (“C5”), or an expression in parentheses,
optionally preceded by a unary minus.

Expression Term Factor

[Term—~ - Number
+—] G
- (D~— O—{Expression}~())-

Figure 4.10. Syntax diagram for spreadsheet expressions

The syntax of spreadsheet expressions is defined in Figure 4.10. For each sym-
bol in the grammar (Expression, Term, and Factor), there is a corresponding
member function that parses it and whose structure closely follows the gram-
mar. Parsers written this way are called recursive-descent parsers.

Let’s start with evalExpression (), the function that parses an Expression:

QVariant Cell::evalExpression(const QString &str, int &pos) const
{
QVariant result = evalTerm(str, pos);
while (strlpos] != QChar::Null) {
QChar op = strlposl;

if (op != '"+' && op = '-")
return result;
++poSs;

Qvariant term = evalTerm(str, pos);
if (result.type() == QVariant::Double
8& term.type() == QVariant::Double) {
if (op == "+") {
result = result.toDouble() + term.toDouble();
} else {
result = result.toDouble() - term.toDouble();
}

} else {
result = Invalid;
}

}
return result;

}

First, we call evalTerm() to get the value of the first term. If the following char-
acter is ‘+’ or ‘-’, we continue by calling evalTerm() a second time; otherwise, the
expression consists of a single term, and we return its value as the value of the
whole expression. After we have the value of the first two terms, we compute
the result of the operation, depending on the operator. If both terms evaluated

Subclassing QTableWidgetltem 97

to a double, we compute the result as a double; otherwise, we set the result to be
Invalid.

We continue like this until there are no more terms. This works correctly
because addition and subtraction are left-associative; that is, “1-2-3” means
“(1-2)-3”, not “1-(2-3)”.

QVariant Cell::evalTerm(const QString &str, int &pos) const

{
QVariant result = evalFactor(str, pos);
while (str[pos] != QChar::Null) {
QChar op = strlposl;
if (op 1= "' && op = '/")
return result;
++poSs;

QVariant factor = evalFactor(str, pos);
if (result.type() == QVariant::Double
8& factor.type() == Qvariant::Double) {
if (op == "*") {
result = result.toDouble() = factor.toDouble();
} else {
if (factor.toDouble() == 0.0) {
result = Invalid;
} else {
result = result.toDouble() / factor.toDouble();
}

}
} else {

result = Invalid;
}

}
return result;

}

The evalTern() function is very similar to evalExpression (), except that it deals
with multiplication and division. The only subtlety in evalTerm() is that we
must avoid division by zero, since it is an error on some processors. While it
is generally inadvisable to test floating-point values for equality because of
rounding errors, it is safe to test for equality against 0.0 to prevent division
by zero.

QVariant Cell::evalFactor (const QString &str, int &pos) const
{

QVariant result;

bool negative = false;

if (strlpos] == '-") {
negative = true;
++p0S;

}

if (strlpos] == '(") {
++p0S;

result = evalExpression(str, pos);

98 4. Implementing Application Functionality

if (strlpos] '= ")")
result = Invalid;
++pOS;
} else {
QRegExp regExp("[A-Za-z1[1-91[0-91{0, 2}");
QString token;

while (str[pos].isLetterOrNumber() || strlpos] == '.") {
token += strlpos];
++DOS;

}

if (regExp.exactMatch(token)) {
int column = token[0@].toUpper () .unicode() - 'A';

int row = token.mid(1).toInt() - 1;

Cell =c = static_cast<Cell *>(
tableWidget () ->item(row, column));
if (c) {
result
} else {
result
}

} else {
bool ok;
result = token.toDouble (&ok);
if (lok)
result = Invalid;

c->value();

0.0;

}

if (negative) {
if (result.type() == QVariant::Double) {
result = -result.toDouble();
} else {
result
}

Invalid;

}
return result;

}

The evalFactor () function is a bit more complicated than evalExpression() and
evalTerm(). We start by noting whether the factor is negated. We then see
if it begins with an open parenthesis. If it does, we evaluate the contents of
the parentheses as an expression by calling evalExpression (). When parsing a
parenthesized expression, evalExpression() calls evalTerm(), which calls eval-
Factor (), which calls evalExpression () again. This is where recursion occurs in
the parser.

If the factor isn’t a nested expression, we extract the next token, which should
be a cell location or a number. If the token matches the QRegExp, we take it to
be a cell reference and we call value() on the cell at the given location. The
cell could be anywhere in the spreadsheet, and it could have dependencies
on other cells. The dependencies are not a problem; they will simply trigger

Subclassing QTableWidgetltem 929

more value() calls and (for “dirty” cells) more parsing until all the dependent
cell values are calculated. If the token isn’t a cell location, we take it to be
a number.

What happens if cell Al contains the formula “=A1”? Or if cell Al contains
“=A2” and cell A2 contains “=A1”? Although we have not written any special
code to detect circular dependencies, the parser handles these cases gracefully
by returning an invalid Qvariant. This works because we set cachelsDirty to
false and cachedValue to Invalid in value() before we call evalExpression(). If
evalExpression() recursively calls value () on the same cell, it returns Invalid
immediately, and the whole expression then evaluates to Invalid.

We have now completed the formula parser. It would be straightforward to
extend it to handle predefined spreadsheet functions, like “sum()” and “avg()”,
by extending the grammatical definition of Factor. Another easy extension
is to implement the ‘+’ operator with string operands (as concatenation); this
requires no changes to the grammar.

R . ¢ Customizing Qt Widgets
" ¢ Subclassing QWidget

¢ [Integrating Custom Widgets with Qt
Designer

) ¢ Double Buffering

5. Creating Custom Widgets

This chapter explains how to develop custom widgets using Qt. Custom wid-
gets can be created by subclassing an existing Qt widget or by subclassing QWid-
get directly. We will demonstrate both approaches, and we will also see how
to integrate a custom widget with Q¢ Designer so that it can be used just like a
built-in Qt widget. We will round off the chapter by presenting a custom wid-
get that uses double buffering, a powerful technique for high-speed drawing.

Customizing Qt Widgets

In some cases, we find that a Qt widget requires more customization than is
possible by setting its properties in @t Designer or by calling its functions. A
simple and direct solution is to subclass the relevant widget class and adapt it

to suit our needs.
.
1FF 3,_,

Figure 5.1. The HexSpinBox widget

In this section, we will develop a hexadecimal spin box to show how this works.
QSpinBox only supports decimal integers, but by subclassing it’s quite easy to
make it accept and display hexadecimal values.

#ifndef HEXSPINBOX_H
#define HEXSPINBOX_H

#include <QSpinBox>
class QRegExpValidator;

class HexSpinBox : public QSpinBox

{
Q_OBJECT

101

102 5. Creating Custom Widgets

public:
HexSpinBox (QWidget =parent = 0);

protected:
QValidator::State validate(QString &text, int &pos) const;
int valueFromText (const QString &text) const;
QString textFromValue(int value) const;

private:
QRegExpValidator xvalidator;
#endif

The HexSpinBox inherits most of its functionality from QSpinBox. It provides a
typical constructor and reimplements three virtual functions from QSpinBox.

#include <QtGui>
#include "hexspinbox.h"

HexSpinBox: :HexSpinBox (QWidget =parent)

: QSpinBox (parent)
{

setRange (0, 255);

validator = new QRegExpValidator (QRegExp ("[0-9A-Fa-f1{1,8}"), this);
}

We set the default range to be 0 to 255 (0x00 to 0xFF), which is more appropriate
for a hexadecimal spin box than QSpinBox’s default of 0 to 99.

The user can modify a spin box’s current value either by clicking its up and
down arrows or by typing a value into the spin box’s line editor. In the latter
case, we want to restrict the user’s input to legitimate hexadecimal numbers.
To achieve this, we use a QRegExpValidator that accepts between one and eight
characters, each of which must be in one of the sets, ‘0’ to ‘9’, ‘A’ to ‘F’, and ‘a’
to .

QValidator::State HexSpinBox::validate(QString &text, int &pos) const

{

}

This function is called by QSpinBox to see if the text entered so far is valid.
There are three possible results: Invalid (the text doesn’t match the regular ex-
pression), Intermediate (the text is a plausible part of a valid value), and Accept-
able (the text is valid). The QRegExpValidator has a suitable validate () function,
so we simply return the result of calling it. In theory, we should return Invalid
or Intermediate for values that lie outside the spin box’s range, but QSpinBox is
smart enough to detect that condition without any help.

return validator->validate (text, pos);

QString HexSpinBox::textFromValue(int value) const
{

}

return QString::number (value, 16).toUpper();

Customizing Qt Widgets 103

The textFromvalue () function converts an integer value to a string. QSpinBox
calls it to update the editor part of the spin box when the user presses the spin
box’s up or down arrows. We use the static function QString: :number () with a
second argument of 16 to convert the value to lowercase hexadecimal, and call
QString::toUpper () on the result to make it uppercase.

int HexSpinBox::valueFromText (const QString &text) const

{

bool ok;

return text.toInt(&ok, 16);
}

The valueFromText () function performs the reverse conversion, from a string
to an integer value. It is called by QSpinBox when the user types a value into
the editor part of the spin box and presses Enter. We use the QString::toInt ()
function to attempt to convert the current text to an integer value, again using
base 16. If the string is not valid hexadecimal, ok is set to false and toInt()
returns 0. Here, we don’t have to consider this possibility because the validator
only permits valid hexadecimal strings to be entered. Instead of passing the
address of a dummy variable (ok), we could instead pass a null pointer as the
first argument to toInt().

We have now finished the hexadecimal spin box. Customizing other Qt
widgets follows the same pattern: Pick a suitable Qt widget, subclass it, and
reimplement some virtual functions to change its behavior.

Subclassing QWidget

Many custom widgets are simply a combination of existing widgets, whether
they are built-in Qt widgets or other custom widgets such as HexSpinBox.
Custom widgets that are built by composing existing widgets can usually be
developed in @t Designer:

* Create a new form using the “Widget” template.
¢ Add the necessary widgets to the form, and lay them out.
* Set up the signals and slots connections.

¢ If behavior beyond what can be achieved through signals and slots is
required, write the necessary code in a class that inherits both QWidget and
the uic-generated class.

Naturally, combining existing widgets can also be done entirely in code.
Whichever approach is taken, the resulting class inherits directly from QWid-
get.

If the widget has no signals and slots of its own and doesn’t reimplement
any virtual functions, it is even possible to simply assemble the widget by
combining existing widgets without a subclass. That’s the approach we used
in Chapter 1 to create the Age application, with a QWidget, a QSpinBox, and a

104 5. Creating Custom Widgets

QSlider. Even so, we could just as easily have subclassed QWidget and created
the QSpinBox and QSlider in the subclass’s constructor.

When none of Qt’s widgets are suitable for the task at hand, and when there’s
no way to combine or adapt existing widgets to obtain the desired result, we
can still create the widget we want. This is achieved by subclassing QWidget
and reimplementing a few event handlers to paint the widget and to respond
to mouse clicks. This approach gives us complete freedom to define and control
both the appearance and the behavior of our widget. Qt’s built-in widgets, like
QLabel, QPushButton, and QTableWidget, are implemented this way. If they didn’t
exist in Qt, it would still be possible to create them ourselves using the public
functions provided by QWidget in a completely platform-independent manner.

To demonstrate how to write a custom widget using this approach, we will
create the IconEditor widget shown in Figure 5.2. The IconEditor is a widget
that could be used in an icon editing program.

Figure 5.2. The IconEditor widget

Let’s begin by reviewing the header file.

#ifndef ICONEDITOR_H
#define ICONEDITOR_H

#include <QColor>
#include <QImage>
#include <QWidget>

class IconkEditor : public QWidget

{
Q_OBJECT
Q_PROPERTY (QColor penColor READ penColor WRITE setPenColor)
Q_PROPERTY (QImage iconImage READ iconImage WRITE setIconImage)
Q_PROPERTY (int zoomFactor READ zoomFactor WRITE setZoomFactor)
public:

IconEditor (QWidget xparent = 0);

void setPenColor (const QColor &newColor);
QColor penColor() const { return curColor; }

Subclassing QWidget 105

void setZoomFactor (int newZoom);

int zoomFactor() const { return zoom; }
void setIconImage(const QImage &newImage);
QImage iconImage() const { return image; }
QSize sizeHint() const;

The IconEditor class uses the Q_PROPERTY() macro to declare three custom
properties: penColor, iconImage, and zoomFactor. Each property has a data type,
a “read” function, and an optional “write” function. For example, the penColor
property is of type QColor and can be read and written using the penColor () and
setPenColor () functions.

When we make use of the widget in @¢ Designer, custom properties appear
in @t Designer’s property editor below the properties inherited from QWidget.
Properties may be of any type supported by Qvariant. The Q_0BJECT macro is
necessary for classes that define properties.

protected:
void mousePressEvent (QMouseEvent *event);
void mouseMoveEvent (QMouseEvent xevent);
void paintEvent (QPaintEvent =event);

private:
void setImagePixel (const QPoint &pos, bool opaque);
QRect pixelRect(int i, int j) const;

QColor curColor;
QImage image;
int zoom;

};
#endif

IconEditor reimplements three protected functions from QWidget and has a few
private functions and variables. The three private variables hold the values of
the three properties.

The implementation file begins with the IconEditor’s constructor:
#include <QtGui>
#include "iconeditor.h"

IconEditor::IconEditor (QWidget *parent)
: QWidget (parent)
{

setAttribute (Qt::WA_StaticContents);
setSizePolicy (QSizePolicy::Minimum, QSizePolicy::Minimum);

curColor = Qt::black;
zoom = §;

image = QImage(16, 16, QImage::Format_ARGB32);
image.fill(gRgba(@, 0, 0, 0));

106 5. Creating Custom Widgets

The constructor has some subtle aspects such as the Qt::WA_StaticContents
attribute and the setSizePolicy () call. We will discuss them shortly.

The pen color is set to black. The zoom factor is set to 8, meaning that each
pixel in the icon will be rendered as an 8 x 8 square.

The icon data is stored in the image member variable and can be accessed
through the seticonImage () and iconImage () functions. An icon editor program
would typically call setIconImage () when the user opens an icon file and icon-
Image () to retrieve the icon when the user wants to save it. The image variable
is of type QImage. We initialize it to 16 x 16 pixels and 32-bit ARGB format, a
format that supports semi-transparency. We clear the image data by filling it
with a transparent color.

The QImage class stores an image in a hardware-independent fashion. It can be
set to use a 1-bit, 8-bit, or 32-bit depth. An image with 32-bit depth uses 8 bits
for each of the red, green, and blue components of a pixel. The remaining 8 bits
store the pixel’s alpha component (opacity). For example, a pure red color’sred,
green, blue, and alpha components have the values 255, 0, 0, and 255. In Qt,
this color can be specified as

QRgb red = gRgba(255, @, 0, 255);
or, since the color is opaque, as
QRgb red = gRgb (255, 0, 0);

QRgb is simply a typedef for unsigned int, and qrRgb() and gRgba() are inline
functions that combine their argumentsinto one 32-bit integer value. It is also
possible to write

QRgb red = OXFFFF0000;

where the first FF corresponds to the alpha component and the second FF to
the red component. In the IconEditor constructor, we fill the QImage with a
transparent color by using 0 as the alpha component.

Qt provides two types for storing colors: QRgb and QColor. While QRgb is only a
typedef used in QImage to store 32-bit pixel data, QColor is a class with many
useful functions and is widely used in Qt to store colors. In the IconEditor wid-
get, we only use QRgb when dealing with the QImage; we use QColor for everything
else, including the penColor property.

QSize IconEditor::sizeHint() const

{
QSize size = zoom * image.size();
if (zoom >= 3)
size += QSize(1, 1);
return size;
}

The sizeHint () function is reimplemented from QWidget and returns the ideal
size of a widget. Here, we take the image size multiplied by the zoom factor,

Subclassing QWidget 107

with one extra pixel in each direction to accommodate a grid if the zoom factor
is 3 or more. (We don’t show a grid if the zoom factor is 2 or 1, because the grid
would then hardly leave any room for the icon’s pixels.)

A widget’s size hint is mostly useful in conjunction with layouts. Qt’s layout
managers try as much as possible to respect a widget’s size hint when they lay
out a form’s child widgets. For IconEditor to be a good layout citizen, it must
report a credible size hint.

In addition to the size hint, widgets have a size policy that tells the layout sys-
tem whether they like to be stretched and shrunk. By calling setSizePolicy()
in the constructor with QSizePolicy: :Minimum as horizontal and vertical policies,
we tell any layout manager that is responsible for this widget that the widget’s
size hint isreally its minimum size. In other words, the widget can be stretched
if required, but it should never shrink below the size hint. This can be overrid-
den in Q¢ Designer by setting the widget’s sizePolicy property. The meaning of
the various size policies is explained in Chapter 6 (Layout Management).

void IconEditor::setPenColor(const QColor &newColor)

{
}

The setPenColor () function sets the current pen color. The color will be used for
newly drawn pixels.

curColor = newColor;

void IconEditor::setIconImage(const QImage &newImage)

{
if (newImage != image) {
image = newImage.convertToFormat (QImage::Format_ARGB32);
update ();
updateGeometry () ;
}
}

The setIconImage () function sets the image to edit. We call convertToFormat ()
to make the image 32-bit with an alpha buffer, if it isn’t already. Elsewhere in
the code, we will assume that the image data is stored as 32-bit ARGB values.

After setting the image variable, we call QWidget: :update () to force a repainting
of the widget using the new image. Next, we call QWidget: :updateGeometry () to
tell any layout that contains the widget that the widget’s size hint has changed.
The layout will then automatically adapt to the new size hint.

void IconEditor::setZoomFactor (int newZoom)
{
if (newZoom < 1)
newZoom = 1;

if (newZoom != zoom) {
Zoom = newZoom;
update ();
updateGeometry ();

108 5. Creating Custom Widgets

}

The setzoonFactor () function sets the zoom factor for the image. To prevent di-
vision by zero elsewhere, we correct any value below 1. Again, we call update ()
and updateGeometry () to repaint the widget and to notify any managing layout
about the size hint change.

The pencColor (), iconImage (), and zoomFactor () functions are implemented as
inline functions in the header file.

We will now review the code for the paintEvent () function. This function is
IconEditor’s most important function. It is called whenever the widget needs
repainting. The default implementation in QWidget does nothing, leaving the
widget blank.

Just like closeEvent (), which we met in Chapter 3, paintEvent() is an event
handler. Qt has many other event handlers, each of which corresponds to a
different type of event. Chapter 7 covers event processing in depth.

There are many situations when a paint event is generated and paintEvent ()
is called:

¢ When a widget is shown for the first time, the system automatically
generates a paint event to force the widget to paint itself.

* When a widget is resized, the system generates a paint event.

¢ If the widget is obscured by another window and then revealed again, a
paint event is generated for the area that was hidden (unless the window
system stored the area).

We can also force a paint event by calling QWidget::update () or QWidget::re-
paint (). The difference between these two functions is that repaint () forces an
immediate repaint, whereas update () simply schedules a paint event for when
Qt next processes events. (Both functions do nothing if the widget isn’t visible
on screen.) If update () is called multiple times, Qt compresses the consecutive
paint events into a single paint event to avoid flicker. In IconEditor, we always
use update().

Here’s the code:

void IconEditor::paintEvent (QPaintEvent x*event)

{

QPainter painter(this);

if (zoom >= 3) {
painter.setPen(palette() .foreground().color());
for (int i = 0; i <= image.width(); ++1i)
painter.drawLine(zoom * i, 0,
zoom * i, zoom * image.height());
for (int j = 0; j <= image.height(); ++j)
painter.drawLine (@, zoom = j,
zoom * image.width(), zoom * j);

Subclassing QWidget 109

for (int i = 0; 1 < image.width(); ++1i) {
for (int j = 0; j < image.height(); ++j) {
QRect rect = pixelRect(i, j);
if (levent->region().intersect(rect).isEmpty ()) {
QColor color = QColor::fromRgba(image.pixel(i, j));
painter.fillRect(rect, color);

}

We start by constructing a QPainter object on the widget. If the zoom factor is
3 or more, we draw the horizontal and vertical lines that form the grid using
the QPainter::drawLine () function.

A call to QPainter::drawLine () has the following syntax:
painter.drawLine (x1, y1, x2, y2);

where (x1, y1) is the position of one end of the line and (x2, y2) is the position of
the other end. There is also an overloaded version of the function that takes
two QPoints instead of four ints.

The top-left pixel of a Qt widget is located at position (0, 0), and the bottom-
right pixel is located at (width() - 1,height () - 1). This is similar to the conven-
tional Cartesian coordinate system, but upside down. We can change QPainter’s
coordinate system by using transformations, such as translation, scaling, rota-
tion, and shearing. This is covered in Chapter 8 (2D and 3D Graphics).

(0,0)

D)

(X2’ y2)

(width() - 1, height() - 1)

Figure 5.3. Drawing a line using QPainter

Before we call drawLine () on the QPainter, we set the line’s color using setPen ().
We could hard-code a color, like black or gray, but a better approach is to use
the widget’s palette.

Every widget is equipped with a palette that specifies which colors should be
used for what. For example, there is a palette entry for the background color
of widgets (usually light gray) and one for the color of text on that background
(usually black). By default, a widget’s palette adopts the window system’s color
scheme. By using colors from the palette, we ensure that IconEditor respects
the user’s preferences.

110 5. Creating Custom Widgets

A widget’s palette consists of three color groups: active, inactive, and disabled.
Which color group should be used depends on the widget’s current state:

* The Active group is used for widgets in the currently active window.
* The Inactive group is used for widgets in the other windows.

* The Disabled group is used for disabled widgets in any window.

The Qwidget::palette() function returns the widget’s palette as a QPalette
object. Color groups are specified as enums of type QPalette::ColorGroup.

When we want to get an appropriate brush or color for drawing, the correct
approach is to use the current palette, obtained from QWidget::palette(), and
the required role, for example, QPalette::foreground(). Each role function
returns a brush, which is normally what we want, but if we just need the color
we can extract it from the brush, as we did in the paintEvent (). By default, the
brushes returned are those appropriate to the widget’s state, so we do not need
to specify a color group.

The paintEvent () function finishes by drawing the image itself. The call to
IconEditor::pixelRect () returns a QRect that defines the region to repaint. As
an easy optimization, we don’t redraw pixels that fall outside this region.

(0,0)

(x,y)

w

(width() - 1, height() - 1)
Figure 5.4. Drawing a rectangle using QPainter
We call QPainter::fillRect() to draw a zoomed pixel. QPainter::fillRect ()

takes a QRect and a QBrush. By passing a QColor as the brush, we obtain a solid
fill pattern.

QRect IconEditor::pixelRect(int i, int j) const

{
if (zoom >= 3) {
return QRect(zoom * i + 1, zoom * j + 1, zoom - 1, zoom - 1);
} else {
return QRect(zoom * i, zoom = j, zoom, zoom);
}
}

The pixelRect () function returns a QRect suitable for QPainter::fillRect (). The
i and j parameters are pixel coordinates in the QImage—not in the widget. If
the zoom factor is 1, the two coordinate systems coincide exactly.

Subclassing QWidget 111

The QRect constructor has the syntax QRect(x, y, width, height), where (x, y)
is the position of the top-left corner of the rectangle and width x height is the
size of the rectangle. If the zoom factor is 3 or more, we reduce the size of the
rectangle by one pixel horizontally and vertically so that the fill does not draw
over the grid lines.

void IconEditor::mousePressEvent (QMouseEvent *event)

{
if (event->button() == Qt::LeftButton) {
setImagePixel (event->pos(), true);
} else if (event->button() == Qt::RightButton) {
setImagePixel (event->pos(), false);
}
}

When the user presses a mouse button, the system generates a “mouse press”
event. By reimplementing QWidget: :mousePressEvent (), we can respond to this
event and set or clear the image pixel under the mouse cursor.

If the user pressed the left mouse button, we call the private function setIm-
agePixel () with true as the second argument, telling it to set the pixel to the
current pen color. If the user pressed the right mouse button, we also call set-
ImagePixel (), but pass false to clear the pixel.

void IconEditor::mouseMoveEvent (QMouseEvent *event)

{
if (event->buttons() & Qt::LeftButton) {
setImagePixel (event->pos(), true);
} else if (event->buttons() & Qt::RightButton) {
setImagePixel (event->pos(), false);
}
}

The mouseMoveEvent () handles “mouse move” events. By default, these events
are only generated when the user is holding down a button. It is possible to
change this behavior by calling QWidget: :setMouseTracking (), but we don’t need
to do so for this example.

Just as pressing the left or right mouse button sets or clears a pixel, keeping it
pressed and hovering over a pixel is also enough to set or clear a pixel. Since
it’s possible to hold more than one button pressed down at a time, the value
returned by QMouseEvent: :buttons() is a bitwise OR of the mouse buttons. We
test whether a certain button is pressed down using the & operator, and if this
is the case we call setImagePixel ().

void IconEditor::setImagePixel(const QPoint &pos, bool opaque)
{
int i
int j

pos.x() / zoom;
pos.y() / zoom;

if (image.rect().contains(i, j)) {
if (opaque) {
image.setPixel (i, j, penColor().rgba());

112 5. Creating Custom Widgets

} else {
image.setPixel(i, j, qRgba(@, 0, 0, 0));
}

update (pixelRect (i, j));
}

The setImagePixel () function is called from mousePresstvent () and mouseMove-
Event () to set or clear a pixel. The pos parameter is the position of the mouse
on the widget.

The first step is to convert the mouse position from widget coordinates to
image coordinates. This is done by dividing the x () and y () components of the
mouse position by the zoom factor. Next, we check whether the point is within
the correct range. The check is easily made using QImage::rect() and QRect::
contains (); this effectively checks that i is between 0 and image.width() - 1 and
that j is between 0 and image.height () - 1.

Depending on the opaque parameter, we set or clear the pixel in the image.
Clearing a pixel is really setting it to be transparent. We must convert the pen
QColor to an 32-bit ARGB value for the QImage::setPixel() call. At the end, we
call update () with a QRect of the area that needs to be repainted.

Now that we have reviewed the member functions, we will return to the at::
WA_StaticContents attribute that we used in the constructor. This attribute
tells Qt that the widget’s content doesn’t change when the widget is resized
and that the content stays rooted to the widget’s top-left corner. Qt uses this
information to avoid needlessly repainting areas that are already shown when
resizing the widget.

Normally, when a widget is resized, Qt generates a paint event for the widget’s
entire visible area. But if the widget is created with the Qt::WA_StaticContents
attribute, the paint event’s region is restricted to the pixels that were not
previously shown. This implies that if the widget is resized to a smaller size,
no paint event is generated at all.

Figure 5.5. Resizing a Qt::WA_StaticContents widget

The IconEditor widget is now complete. Using the information and examples
from earlier chapters, we could write code that uses the IconEditor as a window
in its own right, as a central widget in a QMainWindow, as a child widget inside a
layout, or as a child widget inside a QScrollArea (p. 148). In the next section, we
will see how to integrate it with @¢ Designer.

Integrating Custom Widgets with @t Designer 113

Integrating Custom Widgets with Qt Designer

Before we can use custom widgets in Q¢ Designer, we must make Q¢ Designer
aware of them. There are two techniques for doing this: the “promotion”
approach and the plugin approach.

The promotion approach is the quickest and easiest. It consists of choosing a
built-in Qt widget that has a similar API to the one we want our custom widget
to have and completing a dialog box in @¢ Designer with some information
about the custom widget. The widget can then be used in forms developed
with @t Designer, although it will be represented by the associated built-in Qt
widget while the form is edited or previewed.

Here’s how to insert a HexSpinBox widget into a form using this approach:
1. Create a QSpinBox by dragging it from Q¢ Designer’s widget box onto

the form.

2. Right-click the spin box and choose Promote to Custom Widget from the
context menu.

3. Fill in the dialog that pops up with “HexSpinBox” as the class name and
“hexspinbox.h” as the header file.

Voila! The code generated by uic will include hexspinbox.hinstead of <QSpinBox>
and instantiate a HexSpinBox. In Q¢ Designer, the HexSpinBox widget will be
represented by a QSpinBox, allowing us to set all the properties of a QSpinBox (for
example, the range and the current value).

CHENG) Promote to Custom Widget

Base class name: QspinBox

Custom class name: HexSpinBox :]

Header file: hexspinbox.h

S ————

P

Figure 5.6. Qt Designer’s custom widget dialog

The drawbacks of the promotion approach are that properties that are spe-
cific to the custom widget aren’t accessible in Q¢ Designer and that the widget
isn’t rendered as itself. Both these problems can be solved by using the plugin
approach.

The plugin approach requires the creation of a plugin library that Q¢ Designer
can load at run-time and use to create instances of the widget. The real widget
is then used by Q¢ Designer when editing the form and for previewing, and
thanks to Qt’s meta-object system, Q¢ Designer can dynamically obtain the list
of its properties. To show how this works, we will integrate the IconEditor from
the previous section as a plugin.

114 5. Creating Custom Widgets

First, we must subclass QDesignerCustomWidgetInterface and reimplement some
virtual functions. We will assume that the plugin source code is located in a
directory called iconeditorplugin and that the IconEditor source code is located
in a parallel directory called iconeditor.

Here’s the class definition:
#include <QDesignerCustomWidgetInterface>

class IconkEditorPlugin : public QObject,
public QDesignerCustomWidgetInterface
{

Q_OBJECT
Q_INTERFACES (QDesignerCustomWidgetInterface)

public:
IconEditorPlugin(QObject =parent = 0);

QString name() const;

QString includeFile() const;

QString group() const;

QIcon icon() const;

QString toolTip() const;

QString whatsThis() const;

bool isContainer() const;

QWidget xcreateWidget(QWidget xparent);
}

The IconEditorPlugin subclass is a factory class that encapsulates the IconEd-
itor widget. It inherits both Q0bject and QDesignerCustomWidgetIterface and
uses the Q_INTERFACES () macro to tell moc that the second base class is a plugin
interface. The functions are used by @t Designer to create instances of the class
and to obtain information about it.

IconEditorPlugin::IconEditorPlugin(QObject =parent)
: QObject (parent)
{

}
The constructor is trivial.

QString IconEditorPlugin::name() const
{

}
The name () function returns the name of the widget provided by the plugin.

return "IconEditor";

QString IconEditorPlugin::includeFile() const
{

}

The includeFile () function returns the name of the header file for the specified
widget encapsulated by the plugin. The header file is included in the code
generated by the uic tool.

return "iconeditor.h";

Integrating Custom Widgets with @t Designer 115

QString IconEditorPlugin::group() const
{

}

The group () function returns the name of the widget box group this custom
widget should belong to. If the name isn’t already in use, Q¢ Designer will
create a new group for the widget.

return tr("Image Manipulation Widgets");

QIcon IconEditorPlugin::icon() const
{

}

The icon() function returns the icon to use to represent the custom widget in
Qt Designer’s widget box. Here, we assume that the IconEditorPlugin has an
associated Qt resource file with a suitable entry for the icon editor image.

return QIcon(":/images/iconeditor.png");

QString IconEditorPlugin::toolTip() const
{

}

The toolTip () function returns the tooltip to show when the mouse hovers over
the custom widget in Q¢ Designer’s widget box.

return tr("An icon editor widget");

QString IconEditorPlugin::whatsThis() const

{
return tr("This widget is presented in Chapter 5 of <i>C++ GULI "
"Programming with Qt 4</i> as an example of a custom Qt"
"widget.");
}

The whatsThis() function returns the “What’s This?” text for Q¢ Designer to
display.

bool IconEditorPlugin::isContainer() const

{
}

The isContainer () function returns true if the widget can contain other wid-
gets; otherwise, it returns false. For example, QFrame is a widget that can con-
tain other widgets. In general, any Qt widget can contain other widgets, but
Qt Designer disallows this when isContainer () returns false.

return false;

QWidget xIconEditorPlugin::createWidget (QWidget =parent)
{

}

The create () function is called by @t Designer to create an instance of a widget
class with the given parent.

return new IconEditor (parent);

Q_EXPORT_PLUGINZ (iconeditorplugin, IconEditorPlugin)

116 5. Creating Custom Widgets

At the end of the source file that implements the plugin class, we must use the
Q_EXPORT_PLUGIN2 () macro to make the plugin available to @t Designer. The first
argument is the name we want to give the plugin; the second argument is the
name of the class that implements it.

The .pro file for building the plugin looks like this:

TEMPLATE = lib

CONFIG += designer plugin release

HEADERS = ../iconeditor/iconeditor.h \
iconeditorplugin.h

SOURCES = ../iconeditor/iconeditor.cpp \
iconeditorplugin.cpp

RESOURCES = iconeditorplugin.qgrc

DESTDIR = $(QTDIR) /plugins/designer

The .pro file assumes that the QTDIR environment variable is set to the directory
where Qt is installed. When you type make or nmake to build the plugin, it will
automatically install itself in Q¢ Designer’s plugins directory. Once the plugin
is built, the IconEditor widget can be used in Q¢ Designer in the same way as
any of Qt’s built-in widgets.

If you want to integrate several custom widgets with Q¢ Designer, you can
either create one plugin for each one of them or combine them into a single
plugin by deriving from QDesignerCustomWidgetCollectionInterface.

Double Buffering

Double buffering is a GUI programming technique that consists of rendering a
widget to an off-screen pixmap and copying the pixmap onto the display. With
earlier versions of Qt, this technique was frequently used to eliminate flicker
and to provide a snappier user interface.

In Qt 4, Qwidget handles this automatically, so we rarely need to worry about
widgets flickering. Still, explicit double buffering remains beneficial if the wid-
get’s rendering is complex and needed repeatedly. We can then store a pixmap
permanently with the widget, always ready for the next paint event, and copy
the pixmap to the widget whenever we receive a paint event. It is especial-
ly helpful when we want to do small modifications, such as drawing a rubber
band, without recomputing the whole widget’s rendering over and over.

We will round off this chapter by reviewing the Plotter custom widget. This
widget uses double buffering and also demonstrates some other aspects of
Qt programming, including keyboard event handling, manual layout, and
coordinate systems.

The Plotter widget displays one or more curves specified as vectors of coor-
dinates. The user can draw a rubber band on the image, and the Plotter will
zoom in on the area enclosed by the rubber band. The user draws the rubber
band by clicking a point on the graph, dragging the mouse to another position
with the left mouse button held down, and releasing the mouse button.

Double Buffering 117

Figure 5.7. Zooming in on the Plotter widget

The user can zoom in repeatedly by drawing a rubber band multiple times,
zooming out using the Zoom Out button, and then zooming back in using the
Zoom In button. The Zoom In and Zoom Out buttons appear the first time they
become available, so that they don’t clutter the display if the user doesn’t zoom
the graph.

The Plotter widget can hold the data for any number of curves. It also main-
tains a stack of PlotSettings objects, each of which corresponds to a particular
zoom level.

Let’s review the class, starting with plotter.h:

#ifndef PLOTTER_H
#define PLOTTER_H

#include <QMap>

#include <QPixmap>
#include <QVector>
#include <QWidget>

class QToolButton;
class PlotSettings;

class Plotter : public QWidget
{
Q_OBJECT

public:
Plotter (QWidget =parent = 0);

void setPlotSettings(const PlotSettings &settings);
void setCurveData(int id, const QVector<QPointF> &data);
void clearCurve(int id);

QSize minimumSizeHint() const;

QSize sizeHint() const;

public slots:
void zoomIn();
void zoomOut ();

118 5. Creating Custom Widgets

We start by including the header files for the Qt classes that are used in the
plotter file’s header, and forward declaring the classes that have pointers or
references in the header.

In the Plotter class, we provide three public functions for setting up the plot,
and two public slots for zooming in and out. We also reimplement minimum-
SizeHint () and sizeHint() from QWidget. We store a curve’s points as a QVec-
tor<QPointF>, where QPointF is a floating-point version of QPoint.

protected:
void paintEvent (QPaintEvent =event);
void resizeEvent (QResizeEvent xevent);
void mousePressEvent (QMouseEvent xevent);
void mouseMoveEvent (QMouseEvent xevent);
void mouseReleaseEvent (QMouseEvent *event);
void keyPressEvent (QKeyEvent =event);
void wheelEvent (QWheelEvent =event);

In the protected section of the class, we declare all the QWidget event handlers
that we want to reimplement.

private:
void updateRubberBandRegion();
void refreshPixmap();
void drawGrid(QPainter xpainter);
void drawCurves(QPainter =painter);

enum { Margin = 50 };

QToolButton *zoomInButton;

QToolButton *zoomOutButton;

QMap<int, QVector<QPointF> > curveMap;
QVector<PlotSettings> zoomStack;

int curZoom;

bool rubberBandIsShown;

QRect rubberBandRect;

QPixmap pixmap;

}

In the private section of the class, we declare a few functions for painting the
widget, a constant, and several member variables. The Margin constant is used
to provide some spacing around the graph.

Among the member variables is pixmap of type QPixmap. This variable holds
a copy of the whole widget’s rendering, identical to what is shown on screen.
The plot is always drawn onto this off-screen pixmap first; then the pixmap is
copied onto the widget.

class PlotSettings

{

public:
PlotSettings();

void scroll(int dx, int dy);
void adjust();

Double Buffering 119

double spanX() const { return maxX - minX; }
double spanY() const { return maxY - minY; }

double minX;
double maxX;
int numXTicks;
double minY;
double maxy;
int numYTicks;

private:
static void adjustAxis(double &min, double &max, int &numTicks);
};

#endif

The PlotSettings class specifies the range of the x and y axes and the number
of ticks for these axes. Figure 5.8 shows the correspondence between a
PlotSettings object and a Plotter widget.

By convention, numXTicks and numYTicks are off by one;if numXTicks is 5, Plotter
will actually draw 6 tick marks on the x axis. This simplifies the calculations
later on.

maxy
e)
e
1 /
o—
A
1=z
= §
3
Jde i
. AﬂleCkS
- : T I I
minX e

Figure 5.8. PlotSettings’s member variables

Now let’s review the implementation file:

#include <QtGui>
#include <cmath>

#include "plotter.h"

We include the expected header files and import all the std namespace’s
symbols into the global namespace. This allows us to access the functions that
are declared in <cmath> without prefixing them with std: : (for example, f1oor ()
instead of std::floor ()).

Plotter::Plotter (QWidget xparent)
: QWidget (parent)
{

setBackgroundRole (QPalette::Dark);

120 5. Creating Custom Widgets

setAutoFillBackground(true);
setSizePolicy(QSizePolicy::Expanding, QSizePolicy::Expanding);
setFocusPolicy (Qt::StrongFocus);

rubberBandIsShown = false;

zoomInButton = new QToolButton(this);
zoomInButton->setIcon(QIcon(":/images/zoomin.png"));
zoomInButton->adjustSize();

connect (zoomInButton, SIGNAL (clicked()), this, SLOT(zoomIn()));

zoomOutButton = new QToolButton(this);
zoomOutButton->setIcon(QIcon(":/images/zoomout.png"));
zoomOutButton->adjustSize();

connect (zoomOutButton, SIGNAL (clicked()), this, SLOT(zoomOut()));

setPlotSettings(PlotSettings());
}

The setBackgroundRole () call tells QWidget to use the “dark” component of the
palette as the color for erasing the widget, instead of the “window” component.
This gives Qt a default color that it can use to fill any newly revealed pixels
when the widget is resized to a larger size, before paintEvent () even has the
chance to paint the new pixels. We also need to call setAutoFillBackground(
true) to enable this mechanism. (By default, child widgets inherit the back-
ground from their parent widget.)

The setSizePolicy () call sets the widget’s size policy to QSizePolicy: :Expanding
in both directions. This tells any layout manager that is responsible for the
widget that the widget is especially willing to grow, but can also shrink. This
setting is typical for widgets that can take up a lot of screen space. The default
is QSizePolicy::Preferred in both directions, which means that the widget
prefers to be the size of its size hint, but it can be shrunk down to its minimum
size hint or expanded indefinitely if necessary.

The setFocusPolicy (Qt::StrongFocus) call makes the widget accept focus by
clicking or by pressing Tab. When the Plotter has focus, it will receive events
for key presses. The Plotter widget understands a few keys: + to zoom in; - to
zoom out; and the arrow keys to scroll up, down, left, and right.

T ﬂ\ﬂ.ﬁp

1
I

Figure 5.9. Scrolling the Plotter widget

Double Buffering 121

Still in the constructor, we create two QToolButtons, each with an icon. These
buttons allow the user to zoom in and out. The button’s icons are stored in
a resource file, so any application that uses the Plotter widget will need this
entry in its .pro file:

RESOURCES = plotter.qgrc

The resource file is similar to the one we have used for the Spreadsheet appli-
cation:

<IDOCTYPE RCC><RCC version="1.0">

<{gresource>
<file>images/zoomin.png</file>
<file>images/zoomout.png</file>

</gresource>

</RCC>

The adjustSize() calls on the buttons set their sizes to be that of their size
hints. The buttons are not put in a layout; instead, we will position them man-
ually in the Plotter’s resize event. Since we are not using any layouts, we must
specify the buttons’ parent explicitly by passing this to the QPushButton con-
structor.

The call to setPlotSettings () at the end completes the initialization.

void Plotter::setPlotSettings(const PlotSettings &settings)
{

zoomStack.clear ();

zoomStack .append (settings);

curZoom = 0;

zoomInButton->hide ();

zoomOutButton->hide ();

refreshPixmap();

}

The setPlotSettings() function is used to specify the PlotSettings to use for
displaying the plot. It is called by the Plotter constructor and can be called by
users of the class. The plotter starts out at its default zoom level. Each time
the user zoomsin, a new PlotSettings instanceis created and put onto the zoom
stack. The zoom stack is represented by two member variables:

* zoomStack holds the different zoom settings as a Qvector<PlotSettings>.

¢ curzoom holds the current PlotSettings’s index in the zoomStack.

After the call to setPlotSettings (), the zoom stack contains only one entry, and
the Zoom In and Zoom Out buttons are hidden. These buttons will not be shown
until we call show() on them in the zoomIn() and zoomoOut () slots. (Normally, it
is sufficient to call show () on the top-level widget to show all the children. But
when we explicitly call hide () on a child widget, it is hidden until we call show ()
on it.)

The call to refreshPixmap() is necessary to update the display. Usually, we
would call update(), but here we do things slightly differently because we

122 5. Creating Custom Widgets

want to keep a QPixmap up to date at all times. After regenerating the pixmap,
refreshPixmap () calls update () to copy the pixmap onto the widget.

void Plotter::zoomOut ()
{
if (curzoom > 0) {

—--curzZoom;
zoomOutButton->setEnabled (curZoom > 0);
zoomInButton->setEnabled (true);
zoomInButton->show () ;
refreshPixmap();

}

The zoomOut () slot zooms out if the graph is zoomed in. It decrements the
current zoom level and enables the Zoom Out button depending on whether the
graph can be zoomed out any more or not. The Zoom In button is enabled and
shown, and the display is updated with a call to refreshPixmap().

void Plotter::zoomIn()

{
if (curZoom < zoomStack.count() - 1) {
++CcurzZoom;
zoomInButton->setEnabled(curZoom < zoomStack.count() - 1);
zoomOutButton->setEnabled (true);
zoomOutButton->show () ;
refreshPixmap();
}
}

If the user has previously zoomed in and then out again, the PlotSettings for
the next zoom level will be in the zoom stack, and we can zoom in. (Otherwise,
it is still possible to zoom in using a rubber band.)

The slot increments curZoon to move one level deeper into the zoom stack, sets
the Zoom In button enabled or disabled depending on whether it’s possible to
zoom in any further, and enables and shows the Zoom Out button. Again, we
call refreshPixmap () to make the plotter use the latest zoom settings.

void Plotter::setCurveData(int id, const QVector<QPointF> &data)
{

curveMap[id] = data;

refreshPixmap();

}

The setCurveData() function sets the curve data for a given curve ID. If a
curve with the same ID already exists in curveMap, it is replaced with the new
curve data; otherwise, the new curve is simply inserted. The curveMap member
variable is of type QMap<int, QVector<QPointF>>.

void Plotter::clearCurve(int id)

{

curveMap.remove (id);

Double Buffering 123

refreshPixmap();

}

The clearCurve () function removes the specified curve from the curve map.

QSize Plotter::minimumSizeHint () const

{
}

The minimumSizeHint () function is similar to sizeHint (); just as sizeHint () spec-
ifies a widget’s ideal size, minimumSizeHint () specifies a widget’s ideal minimum
size. A layout never resizes a widget below its minimum size hint.

return QSize(6 * Margin, 4 * Margin);

The value we return is 300 x 200 (since Margin equals 50) to allow for the margin
on all four sides and some space for the plot itself. Below that size, the plot
would be too small to be useful.

QSize Plotter::sizeHint() const

{
}

InsizeHint (), we return an “ideal” size in proportion to the Margin constant and
with the same pleasing 3:2 aspect ratio we used for the minimumSizeHint ().

return QSize(12 * Margin, 8 * Margin);

This finishes the review of the Plotter’s public functions and slots. Now let’s
review the protected event handlers.

void Plotter::paintEvent(QPaintEvent = /x event */)

{
QStylePainter painter(this);
painter.drawPixmap (0, 0, pixmap);
if (rubberBandIsShown) {
painter.setPen(palette().light().color());
painter.drawRect (rubberBandRect.normalized ()
.adjusted(o, 0, -1, -1));
}
if (hasFocus()) {
QStyleOptionFocusRect option;
option.initFrom(this);
option.backgroundColor = palette().dark().color();
painter.drawPrimitive (QStyle::PE_FrameFocusRect, option);
}
}

Normally,paintEvent () is the place where we perform all the drawing. But here
all the plot drawing is done beforehand in refreshPixmap (), so we can render the
entire plot simply by copying the pixmap onto the widget at position (0, 0).

If the rubber band is visible, we draw it on top of the plot. We use the “light”
component from the widget’s current color group as the pen color to ensure
good contrast with the “dark” background. Notice that we draw directly on the
widget, leaving the off-screen pixmap untouched. Using QRect::normalized()

124 5. Creating Custom Widgets

ensures that the rubber band rectangle has positive width and height (swap-
ping coordinates if necessary), and adjusted () reduces the size of the rectangle
by one pixel to allow for its own 1-pixel-wide outline.

If the Plotter has focus, a focus rectangle is drawn using the widget style’s draw-
Primitive () function with QStyle::PE_FrameFocusRect as its first argument and
a QStyleOptionFocusRect object as its second argument. The focus rectangle’s
drawing options are inherited from the Plotter widget (by the initFrom() call).
The background color must be specified explicitly.

When we want to paint using the current style, we can either call a QStyle
function directly, for example,

style()->drawPrimitive (QStyle::PE_FrameFocusRect, &option, &painter,
this);

or we can use a QStylePainter instead of a normal QPainter, as we have done in
Plotter, and paint more conveniently using that.

The Qwidget::style() function returns the style that should be used to draw
the widget. In Qt, a widget style is a subclass of QStyle. The built-in styles
include QWindowsStyle, QWindowsXPStyle, QMotifStyle, QCDEStyle, QMacStyle, and
QPlastiqueStyle. Each of these styles reimplements the virtual functions in
QStyle to perform the drawing in the correct way for the platform the style is
emulating. QStylePainter’s drawPrimitive() function calls the QStyle function
of the same name, which can be used for drawing “primitive elements” like
panels, buttons, and focus rectangles. The widget style is usually the same for
all widgets in an application (QApplication::style()), but it can be overridden
on a per-widget basis using QWidget::setStyle().

By subclassing QStyle, it is possible to define a custom style. This can be done
to give a distinctive look to an application or a suite of applications. While it is
generally advisable to use the target platform’s native look and feel, Qt offers
a lot of flexibility if you want to be adventurous.

Qt’s built-in widgets rely almost exclusively on QStyle to paint themselves.
This is why they look like native widgets on all platforms supported by Qt.
Custom widgets can be made style-aware either by using QStyle to paint them-
selves or by using built-in Qt widgets as child widgets. For Plotter, we use a
combination of both approaches: The focusrectangleis drawn using QStyle (via
a QStylePainter), and the Zoom In and Zoom Out buttons are built-in Qt widgets.

void Plotter::resizeEvent (QResizeEvent = /% event */)
{
int x = width() - (zoomInButton->width()
+ zoomOutButton->width() + 10);
zoomInButton->move (x, 5);
zoomOutButton->move (x + zoomInButton->width() + 5, 5);
refreshPixmap();

Double Buffering 125

Whenever the Plotter widget is resized, Qt generates a “resize” event. Here, we
reimplement resizeEvent () to place the Zoom In and Zoom Out buttons at the top
right of the Plotter widget.

We move the Zoom In button and the Zoom Out button to be side by side, sepa-
rated by a 5-pixel gap and with a 5-pixel offset from the top and right edges of
the parent widget.

If we wanted the buttons to stay rooted to the top-left corner, whose coordinates
are (0, 0), we would simply have moved them there in the Plotter constructor.
But we want to track the top-right corner, whose coordinates depend on the size
of the widget. Because of this, it’s necessary to reimplement resizeEvent () and
to set the buttons’ position there.

We didn’t set any positions for the buttonsin the Plotter constructor. Thisisn’t
a problem, since Qt always generates a resize event before a widget is shown
for the first time.

An alternative to reimplementing resizeEvent () and laying out the child wid-
gets manually would have been to use a layout manager (for example, Q6ridLay-
out). Using a layout would have been a little more complicated and would have
consumed more resources; on the other hand, it would gracefully handle right-
to-left layouts, necessary for languages such as Arabic and Hebrew.

At the end, we call refreshPixmap () to redraw the pixmap at the new size.

void Plotter::mousePressEvent (QMouseEvent *event)

{
QRect rect(Margin, Margin,
width() - 2 % Margin, height() - 2 = Margin);

if (event->button() == Qt::LeftButton) {
if (rect.contains(event->pos())) {
rubberBandIsShown = true;
rubberBandRect.setTopLeft (event->pos());
rubberBandRect.setBottomRight (event->pos());
updateRubberBandRegion();
setCursor (Qt::CrossCursor);

}

When the user presses the left mouse button, we start displaying a rubber
band. This involves setting rubberBandIsShown to true, initializing the rubber-
BandRect member variable with the current mouse pointer position, scheduling
a paint event to paint the rubber band, and changing the mouse cursor to have
a crosshair shape.

The rubberBandRect variable is of type QRect. A QRect can be defined either as an
(x,y, width, height) quadruple—where (x, y) is the position of the top-left corner
and width x height is the size of the rectangle—or as a top-left and a bottom-
right coordinate pair. Here, we have used the coordinate pair representation.
We set the point where the user clicked as both the top-left corner and as the

126 5. Creating Custom Widgets

bottom-right corner. Then we call updateRubberBandRegion () to force a repaint
of the (tiny) area covered by the rubber band.

Qt provides two mechanisms for controlling the mouse cursor’s shape:

® QWidget::setCursor() sets the cursor shape to use when the mouse hovers
over a particular widget. If no cursor is set for a widget, the parent wid-
get’s cursor is used. The default for top-level widgets is an arrow cursor.

® QApplication::setOverrideCursor () sets the cursor shape for the entire ap-
plication, overriding the cursors set by individual widgets until restore-
OverrideCursor () is called.

In Chapter 4, we called QApplication::setOverrideCursor () with Qt::WaitCursor
to change the application’s cursor to the standard wait cursor.

void Plotter::mouseMoveEvent (QMouseEvent xevent)

{
if (rubberBandIsShown) {
updateRubberBandRegion();
rubberBandRect.setBottomRight (event->pos());
updateRubberBandRegion();
}
}

When the user moves the mouse cursor while holding the left button, we first
call updateRubberBandRegion() to schedule a paint event to repaint the area
where the rubber band was, then we recompute rubberBandRect to account for
the mouse move, and finally we call updateRubberBandRegion () a second time to
repaint the area where the rubber band has moved to. This effectively erases
the rubber band and redraws it at the new coordinates.

If the user moves the mouse upward or leftward, it’s likely that rubberBand-
Rect’s nominal bottom-right corner will end up above or to the left of its top-left
corner. If this occurs, the QRect will have a negative width or height. We used
QRect::normalized() in paintEvent () to ensure that the top-left and bottom-right
coordinates are adjusted to obtain a nonnegative width and height.

void Plotter::mouseReleaseEvent (QMouseEvent *event)
{
if ((event->button() == Qt::LeftButton) && rubberBandIsShown) {
rubberBandIsShown = false;
updateRubberBandRegion();
unsetCursor();

QRect rect = rubberBandRect.normalized();

if (rect.width() < 4 || rect.height() < 4)
return;

rect.translate(-Margin, -Margin);

PlotSettings prevSettings = zoomStack[curZoom];
PlotSettings settings;

double dx = prevSettings.spanX() / (width() - 2 * Margin);
double dy = prevSettings.spanY() / (height() - 2 = Margin);

Double Buffering 127

settings.minX = prevSettings.minX + dx * rect.left();
settings.maxX = prevSettings.minX + dx = rect.right();
settings.minY = prevSettings.maxY - dy * rect.bottom();
settings.maxY = prevSettings.maxY - dy * rect.top();

settings.adjust();

zoomStack.resize(curZoom + 1);
zoomStack .append(settings);
zoomIn();

}

When the user releases the left mouse button, we erase the rubber band and
restore the standard arrow cursor. If the rubber band is at least 4 x 4, we
perform the zoom. If the rubber band is smaller than that, it’s likely that the
user clicked the widget by mistake or to give it focus, so we do nothing.

The code to perform the zoom is a bit complicated. This is because we deal with
widget coordinates and plotter coordinates at the same time. Most of the work
we perform here is to convert the rubberBandRect from widget coordinates to
plotter coordinates. Once we have done the conversion, we call PlotSettings::
adjust) to round the numbers and find a sensible number of ticks for each
axis. Figures 5.10 and 5.11 depict the situation.

(0,0)
- 10 2.4 6.8
8 (94,73) 87
6] : ’ 6] : 6.5
68
4 - \/\/ 4 - \/\/
«— 3.2
2 135 2
0 T T T T 0 T T T T
0 2 4 6 8 10 0 2 4 6 8 10

Figure 5.10. Converting the rubber band from widget to plotter coordinates

o 20 7.0 .
8_
7.0 2
6 ' 5
NI VAN
3.0
2- 47
0 T T T 3 T T T T
0O 2 4 6 8 10 2 3 4 5 6 7

Figure 5.11. Adjusting plotter coordinates and zooming in on the rubber band

128 5. Creating Custom Widgets

Then we perform the zoom. The zoom is achieved by pushing the new PlotSet-
tings that we have just calculated on top of the zoom stack and calling zoomIn ()
to do the job.

void Plotter::keyPressEvent (QKeyEvent =event)
{

switch (event->key()) {

case Qt::Key_Plus:
zoomIn();
break;

case Qt::Key_Minus:
zoomOut () ;
break;

case Qt::Key_Left:
zoomStack[curZoom].scroll (-1, 0);
refreshPixmap();
break;

case Qt::Key_Right:
zoomStack[curZoom].scroll(+1, 0);
refreshPixmap();
break;

case Qt::Key_Down:
zoomStack[curZoom].scroll (0, -1);
refreshPixmap();
break;

case Qt::Key_Up:
zoomStack[curZoom].scroll (0, +1);
refreshPixmap();
break;

default:
QWidget::keyPressEvent (event);

}

}

When the user presses a key and the Plotter widget has focus, the keyPress-
Event () function is called. We reimplement it here to respond to six keys: +, -,
Up, Down, Left, and Right. If the user pressed a key that we are not handling, we
call the base class implementation. For simplicity, we ignore the Shift, Ctrl, and
Alt modifier keys, which are available through QKeyEvent::modifiers().

void Plotter::wheelEvent (QWheelEvent =event)
{

int numDegrees = event->delta() / 8;

int numTicks = numDegrees / 15;

if (event->orientation() == Qt::Horizontal) {
zoomStack[curZoom].scroll (numTicks, 0);
} else {

zoomStack[curZoom].scroll (@, numTicks);
}
refreshPixmap();

Double Buffering 129

Wheel events occur when a mouse wheel is turned. Most mice only provide
a vertical wheel, but some also have a horizontal wheel. Qt supports both
kinds of wheel. Wheel events go to the widget that has the focus. The delta()
function returns the distance the wheel was rotated in eighths of a degree.
Mice typically work in steps of 15 degrees. Here, we scroll by the requested
number of ticks by modifying the topmost item on the zoom stack and update
the display using refreshPixmap ().

The most common use of the wheel mouse is to scroll a scroll bar. When we use
QScrollArea (covered in Chapter 6) to provide scroll bars, QScrollArea handles
the wheel mouse events automatically, so we don’t need to reimplement
wheelEvent () ourselves.

This finishes the implementation of the event handlers. Now let’s review the
private functions.

void Plotter::updateRubberBandRegion ()

{
QRect rect = rubberBandRect.normalized();
update (rect.left(), rect.top(), rect.width(), 1);
update (rect.left(), rect.top(), 1, rect.height());
update (rect.left (), rect.bottom(), rect.width(), 1);
update (rect.right (), rect.top(), 1, rect.height());
}

The updateRubberBand() function is called from mousePressEvent (), mouseMove-
Event (), and mouseReleaseEvent () to erase or redraw the rubber band. It consists
of four calls to update () that schedule a paint event for the four small rectangu-
lar areas that are covered by the rubber band (two vertical and two horizontal
lines). Qt provides the QRubberBand class for drawing rubber bands, but here,
hand-coding provided finer control.

void Plotter::refreshPixmap ()
{
pixmap = QPixmap(size());
pixmap.fill(this, 0, 0);

QPainter painter (&pixmap);
painter.initFrom(this);
drawGrid(&painter);
drawCurves (&painter);
update ();

}

The refreshPixmap () function redraws the plot onto the off-screen pixmap and
updates the display. We resize the pixmap to have the same size as the widget
and fill it with the widget’s erase color. This color is the “dark” component of
the palette, because of the call to setBackgroundRole () inthe Plotter constructor.
If the background is a non-solid brush, QPixmap: :fill () needs to know the offset
in the widget where the pixmap will end up to align the brush pattern correctly.
Here, the pixmap corresponds to the entire widget, so we specify position
(0, 0).

130 5. Creating Custom Widgets

Then we create a QPainter to draw on the pixmap. The initFrom() call sets the
painter’s pen, background, and font to the same ones as the Plotter widget.
Next we call draw6rid() and drawCurves () to perform the drawing. At the end,
we call update () to schedule a paint event for the whole widget. The pixmap is
copied to the widget in the paintEvent () function (p. 123).

void Plotter::drawGrid(QPainter =painter)
{
QRect rect(Margin, Margin,
width() - 2 = Margin, height() - 2 * Margin);
if (lrect.isValid())
return;

PlotSettings settings = zoomStack[curZoom];
QPen quiteDark = palette().dark().color().light();
QPen light = palette().light().color();

for (int i = 0; i <= settings.numXTicks; ++i) {
int x = rect.left() + (i * (rect.width() - 1)
/ settings.numXTicks);
double label = settings.minX + (i * settings.spanX()
/ settings.numXTicks);
painter->setPen(quiteDark);
painter->drawLine(x, rect.top(), x, rect.bottom());
painter->setPen(light);
painter->drawLine(x, rect.bottom(), x, rect.bottom() + 5);
painter->drawText(x - 50, rect.bottom() + 5, 100, 15,
Qt::AlignHCenter | Qt::AlignTop,
QString::number (label));

for (int j = 0; j <= settings.numYTicks; ++j) {
int y = rect.bottom() - (j * (rect.height() - 1)
/ settings.numYTicks);
double label = settings.minY + (j * settings.spanY()

/ settings.numYTicks);
painter->setPen(quiteDark);
painter->drawLine(rect.left(), y, rect.right(), y);
painter->setPen(light);
painter->drawLine(rect.left() - 5, y, rect.left(), y);
painter->drawText (rect.left() - Margin, y - 10, Margin - 5, 20,

Qt::AlignRight | Qt::AlignVCenter,
QString::number (label));
}
painter->drawRect (rect.adjusted(0, 0, -1, -1));
}

The drawGrid() function draws the grid behind the curves and the axes. The
area on which we draw the grid is specified by rect. If the widget isn’t large
enough to accommodate the graph, we return immediately.

The first for loop draws the grid’s vertical lines and the ticks along the x axis.
The second for loop draws the grid’s horizontal lines and the ticks along the
y axis. At the end, we draw a rectangle along the margins. The drawText ()

Double Buffering 131

function is used to draw the numbers corresponding to the tick marks on
both axes.

The calls to drawText () have the following syntax:
painter->drawText(x, y, width, height, alignment, text);

where (x, y, width, height) define a rectangle, alignment the position of the text
within that rectangle, and text the text to draw.

void Plotter::drawCurves(QPainter =painter)

{
static const QColor colorForlds[6] = {
Qt::red, Qt::green, Qt::blue, Qt::cyan, Qt::magenta, Qt::yellow
};
PlotSettings settings = zoomStack[curZoom];
QRect rect(Margin, Margin,
width() - 2 % Margin, height() - 2 = Margin);
if ('rect.isValid())
return;
painter->setClipRect (rect.adjusted(+1, +1, -1, -1));
QMapIterator<int, QVector<QPointF> > 1i(curveMap);
while (i.hasNext()) {
i.next();
int id = i.key();
const QVector<QPointF> &data = i.value();
QPolygonF polyline(data.count());
for (int j = 0; j < data.count(); ++j) {
double dx = dataljl.x() - settings.minX;
double dy = dataljl.y() - settings.minY;
double x = rect.left() + (dx * (rect.width() - 1)
/ settings.spanX());
double y = rect.bottom() - (dy * (rect.height() - 1)
/ settings.spanY());
polyline[j] = QPointF(x, y);
painter->setPen(colorForIds[uint (id) % 61);
painter->drawPolyline(polyline);
}
}

The drawCurves() function draws the curves on top of the grid. We start by
calling setClipRect() to set the QPainter’s clip region to the rectangle that
contains the curves (excluding the margins and the frame around the graph).
QPainter will then ignore drawing operations on pixels outside the area.

Next, we iterate over all the curves using a Java-style iterator, and for each
curve, we iterate over its constituent QPointFs. The key () function gives the
curve’s ID, and the value() function gives the corresponding curve data as a
Qvector<QPointF>. The inner for loop converts each QPointF from plotter coordi-
nates to widget coordinates and stores them in the polyline variable.

132 5. Creating Custom Widgets

Once we have converted all the points of a curve to widget coordinates, we
set the pen color for the curve (using one of a set of predefined colors) and call
drawPolyline () to draw a line that goes through all the curve’s points.

This is the complete Plotter class. All that remains are a few functions in
PlotSettings.

PlotSettings::PlotSettings()

{
minX = 0.0;
maxX = 10.0;
numXTicks = 5;
minY = 0.0;
maxY = 10.0;
numYTicks = 5;

}

The PlotSettings constructor initializes both axes to the range 0 to 10 with
5 tick marks.

void PlotSettings::scroll(int dx, int dy)
{
double stepX = spanX() / numXTicks;
minX += dx * stepX;
maxX += dx * stepX;

double stepY = spanY() / numYTicks;
minY += dy * stepY;
maxY += dy * stepy;

}

The scroll () function increments (or decrements) minX, maxX, minY, and maxyY by
the interval between two ticks times a given number. This function is used to
implement scrolling in Plotter: :keyPressEvent ().

void PlotSettings::adjust()
{
adjustAxis(minX, maxX, numXTicks);
adjustAxis(minY, maxY, numYTicks);
}

The adjust () function is called from mouseReleaseEvent () to round the minX, maxX,
minY, and maxY values to “nice” values and to determine the number of ticks
appropriate for each axis. The private function adjustAxis() does its work one
axis at a time.

void PlotSettings::adjustAxis(double &min, double &max,
int &numTicks)
{

const int MinTicks = 4;
double grossStep = (max - min) / MinTicks;
double step = pow(10.0, floor(logl10@(grossStep)));

if (5 = step < grossStep) {
step *= 5;

Double Buffering 133

} else if (2 = step < grossStep) {
step *= 2;
}

numTicks = int(ceil(max / step) - floor(min / step));
if (numTicks < MinTicks)
numTicks = MinTicks;
floor(min / step) = step;
ceil(max / step) = step;

min
max

}

The adjustAxis() function converts its min and max parameters into “nice”
numbers and sets its nunTicks parameter to the number of ticks it calculates
to be appropriate for the given [min, max] range. Because adjustAxis() needs to
modify the actual variables (minX, maxX, numXTicks, etc.) and not just copies, its
parameters are non-const references.

Most of the code in adjustAxis() simply attempts to determine an appropriate
value for the interval between two ticks (the “step”). To obtain nice numbers
along the axis, we must select the step with care. For example, a step value of
3.8 would lead to an axis with multiples of 3.8, which is difficult for people to
relate to. For axes labeled in decimal notation, “nice” step values are numbers
of the form 10”,2-10", or 5-10".

We start by computing the “gross step”, a kind of maximum for the step value.
Then we find the corresponding number of the form 10" that is smaller than
or equal to the gross step. We do this by taking the decimal logarithm of the
gross step, rounding that value down to a whole number, then raising 10 to
the power of this rounded number. For example, if the gross step is 236, we
compute log 236 = 2.37291...; then we round it down to 2 and obtain 10% = 100
as the candidate step value of the form 10".

Once we have the first candidate step value, we can use it to calculate the
other two candidates: 2-10" and 5-10". For the example above, the two other
candidates are 200 and 500. The 500 candidate is larger than the gross step, so
we can’t use it. But 200 is smaller than 236, so we use 200 for the step size in
this example.

It’s fairly easy to derive numTicks, min, and max from the step value. The new min
value is obtained by rounding the original min down to the nearest multiple
of the step, and the new max value is obtained by rounding up to the nearest
multiple of the step. The new numTicks is the number of intervals between the
rounded min and max values. For example, if min is 240 and max is 1184 upon
entering the function, the new range becomes [200, 1200], with 5 tick marks.

This algorithm will give suboptimal resultsin some cases. A more sophisticated
algorithm is described in Paul S. Heckbert’s article “Nice Numbers for Graph
Labels” published in Graphics Gems (ISBN 0-12-286166-3).

This chapter has brought us to the end of Part I. It has explained how to
customize an existing Qt widget and how to build a widget from the ground up
using QWidget as the base class. We have already seen how to compose a widget

134 5. Creating Custom Widgets

from existing widgets in Chapter 2, and we will explore the theme further in
Chapter 6.

At this point, we know enough to write complete GUI applications using Qt. In
Parts IT and III, we will explore Qt in greater depth so that we can make full
use of Qt’s power.

Part 11

Intermediate Qt

Laying Out Widgets on a Form
Stacked Layouts

Splitters

Scrolling Areas

Dock Widgets and Toolbars
Multiple Document Interface

* ¢ 6 ¢ o o

6. Layout Management

Every widget that is placed on a form must be given an appropriate size and po-
sition. Qt provides several classes that lay out widgets on a form: QHBoxLayout,
QVBoxLayout, Q6ridLayout, and QStackLayout. These classes are so convenient and
easy to use that almost every Qt developer uses them, either directly in source
code or through @t Designer.

Another reason to use Qt’s layout classes is that they ensure that forms adapt
automatically to different fonts, languages, and platforms. If the user changes
the system’s font settings, the application’s forms will respond immediately,
resizing themselves if necessary. And if you translate the application’s user
interface to other languages, the layout classes take into consideration the
widgets’ translated contents to avoid text truncation.

Other classes that perform layout management include QSplitter, QScrollArea,
QMainWindow, and QWorkspace. What these classes have in common is that they
provide a flexible layout that the user can manipulate. For example, QSplitter
provides a splitter bar that the user can drag to resize widgets, and QWorkspace
provides support for MDI (multiple document interface), a means of showing
many documents simultaneously within an application’s main window.
Because they are often used as alternatives to the layout classes proper, they
are covered in this chapter.

Laying Out Widgets on a Form

There are three basic ways of managing the layout of child widgets on a form:
absolute positioning, manual layout, and layout managers. We will look at each
of these approaches in turn, using the Find File dialog shown in Figure 6.1 as
our example.

137

138

6. Layout Management

asn Find Files or Folders

Named: beach.png Find)
Look in: [Users/Mike oy
- Stop)
lInclude subfolders = =
[Close)
Namea " In Folder ” Siz e’

[& A a/r
0 files found (_ Help)

Figure 6.1. The Find File dialog

Absolute positioning is the crudest way of laying out widgets. It is achieved by
assigning hard-coded sizes and positions to the form’s child widgets and a fixed
size to the form. Here’s what the FindFileDialog constructor looks like using
absolute positioning:

FindFileDialog::FindFileDialog(QWidget xparent)
: QDialog(parent)
{

namedLabel->setGeometry (9, 9, 50, 25);
namedLineEdit->setGeometry (65, 9, 200, 25);
lookInLabel->setGeometry (9, 40, 50, 25);

lookInLineEdit->setGeometry (65, 40, 200, 25);

subfoldersCheckBox->setGeometry (9, 71, 256, 23);

tableWidget->setGeometry (9, 100, 256, 100);
messagelLabel->setGeometry (9, 206, 256, 25);
findButton->setGeometry (271, 9, 85, 32);
stopButton->setGeometry (271, 47, 85, 32);
closeButton->setGeometry (271, 84, 85, 32);
helpButton->setGeometry (271, 199, 85, 32);

setWindowTitle(tr("Find Files or Folders"));
setFixedSize (365, 240);
}

Absolute positioning has many disadvantages:

The user cannot resize the window.

Some text may be truncated if the user chooses an unusually large font or
if the application is translated into another language.

The widgets might have inappropriate sizes for some styles.

The positions and sizes must be calculated manually. This is tedious and

error-prone, and makes maintenance painful.

Laying Out Widgets on a Form 139

An alternative to absolute positioning is manual layout. With manual layout,
the widgets are still given absolute positions, but their sizes are made propor-
tional to the size of the window rather than being entirely hard-coded. This
can be achieved by reimplementing the form’s resizeEvent () function to set its
child widgets’ geometries:

FindFileDialog::FindFileDialog(QWidget x*parent)

: QDialog(parent)

{
setMinimumSize (265, 190);
resize (365, 240);

}

void FindFileDialog::resizeEvent (QResizeEvent * /x event x/)
{

int extraWidth = width() - minimumWidth();

int extraHeight = height() - minimumHeight();

namedLabel->setGeometry (9, 9, 50, 25);
namedLineEdit->setGeometry (65, 9, 100 + extraWidth, 25);
lookInLabel->setGeometry (9, 40, 50, 25);
lookInLineEdit->setGeometry (65, 40, 100 + extraWidth, 25);
subfoldersCheckBox->setGeometry (9, 71, 156 + extraWidth, 23);

tableWidget->setGeometry (9, 100, 156 + extraWidth,
50 + extraHeight);
messagelLabel->setGeometry (9, 156 + extraHeight, 156 + extraWidth,
25);
findButton->setGeometry (171 + extraWidth, 9, 85, 32);
stopButton->setGeometry (171 + extraWidth, 47, 85, 32);
closeButton->setGeometry (171 + extraWidth, 84, 85, 32);
helpButton->setGeometry (171 + extraWidth, 149 + extraHeight, 85,
32);
}

In the FindFileDialog constructor, we set the form’s minimum size to 265 x 190
and the initial size to 365 x 240. In the resizeEvent () handler, we give any extra
space to the widgets that we want to grow. This ensures that the form scales
smoothly when the user resizes it.

@ O @ Find Files or Folders [XaN3) Find Files or Folders
Named: beach.png & Find—) Named: beach.png C Find)
S —
Look in: | /Users/Mike "’T\" Look in: | /Users/Mike /T_
Jinclude subfolders Jinclude subfolders
PR T closee) [Name | mroder || s || Modied %€)
[) y<T>
0 files found Hslp
€ e KRS B =
0 files found e

Figure 6.2. Resizing a resizable dialog

140 6. Layout Management

Just like absolute positioning, manual layout requires a lot of hard-coded con-
stants to be calculated by the programmer. Writing code like this is tiresome,
especially if the design changes. And there is still the risk of text truncation.
We can avoid this risk by taking account of the child widgets’ size hints, but
that would complicate the code even further.

The most convenient solution for laying out widgets on a form is to use Qt’s
layout managers. The layout managers provide sensible defaults for every
type of widget and take into account each widget’s size hint, which in turn
typically depends on the widget’s font, style, and contents. Layout managers
also respect minimum and maximum sizes, and automatically adjust the
layout in response to font changes, content changes, and window resizing.

The three most important layout managers are QHBoxLayout, QVBoxLayout, and
Q6ridLayout. These classes inherit QLayout, which provides the basic framework
for layouts. All three classes are fully supported by Q¢ Designer and can also
be used directly in code.

Here’s the FindFileDialog code using layout managers:

FindFileDialog::FindFileDialog(QWidget xparent)

: QDialog(parent)

{
QGridLayout x*leftLayout = new QGridLayout;
leftlLayout->addWidget (namedLabel, 0, 0);
leftLayout->addWidget (namedLineEdit, 0, 1);
leftlLayout->addWidget (lookInLabel, 1, 0);
leftLayout->addWidget (lookInLineEdit, 1, 1);
leftlLayout->addWidget (subfoldersCheckBox, 2, 0, 1, 2);
leftlLayout->addWidget (tableWidget, 3, 0, 1, 2);
leftLayout->addWidget (messagelLabel, 4, 0, 1, 2);
QVBoxLayout *rightLayout = new QVBoxLayout;
rightLayout->addWidget (findButton);
rightLayout->addWidget (stopButton);
rightLayout->addWidget (closeButton);
rightLayout->addStretch();
rightLayout->addWidget (helpButton);
QHBoxLayout *mainLayout = new QHBoxLayout;
mainLayout->addLayout (leftLayout);
mainLayout->addLayout (rightLayout);
setLayout (mainLayout);
setWindowTitle (tr("Find Files or Folders"));

}

The layout is handled by one QHBoxLayout, one Q6ridLayout, and one QVBoxLayout.
The Q6ridLayout on the left and the QvBoxLayout on the right are placed side by
side by the outer QHBoxLayout. The margin around the dialog and the spacing
between the child widgets are set to default values based on the current
widget style; they can be changed using QLayout::setMargin() and QLayout::
setSpacing().

Laying Out Widgets on a Form 141

The same dialog could be created visually in @¢ Designer by placing the child
widgets in their approximate positions; selecting those that need to be laid
out together; and clicking Form|Lay Out Horizontally, Form|Lay Out Vertically, or
Form|Lay Out in a Grid. We used this approach in Chapter 2 for creating the
Spreadsheet application’s Go-to-Cell and Sort dialogs.

Window Title

‘| QLabel QLineEdit || || QPushButton | |
1| QLabel QLineEdit | | | QPushButton | |} |
¥ QCheckBox || QPushButton

«— rightLayout

b QTreeWidget . ¥

i QLabel || QPushButton | !

Figure 6.3. The Find File dialog’s layout

Using QHBoxLayout and QVBoxLayout is fairly straightforward, but using Q6rid-
Layout is a bit more involved. Q6ridLayout works on a two-dimensional grid of
cells. The QLabel in the top-left corner of the layout is at position (0, 0), and the
corresponding QLineEdit is at position (0, 1). The QCheckBox spans two columns;
it occupies the cells in positions (2, 0) and (2, 1). The QTreeWidget and the QLabel
beneath it also span two columns. The calls to addWidget () have the following
syntax:

layout->addWidget (widget, row, column, rowSpan, columnSpan);

Here, widget is the child widget to insert into the layout, (row, column) is the
top-left cell occupied by the widget, rowSpan is the number of rows occupied by
the widget, and columnSpan is the number of columns occupied by the widget.
If omitted, the rowSpan and columnSpan parameters default to 1.

The addStretch() call tells the layout manager to consume space at that point
in the layout. By adding a stretch item, we have told the layout manager to put
any excess space between the Close button and the Help button. In Q¢ Designer,
we can achieve the same effect by inserting a spacer. Spacers appear in Q¢
Designer as blue “springs”.

142 6. Layout Management

Using layout managers provides additional benefits to those we have discussed
so far. If we add a widget to a layout or remove a widget from a layout, the
layout will automatically adapt to the new situation. The same applies if we
call hide () or show() on a child widget. If a child widget’s size hint changes,
the layout will be automatically redone, taking into account the new size hint.
Also, layout managers automatically set a minimum size for the form as a
whole, based on the form’s child widgets’ minimum sizes and size hints.

In the examples presented so far, we have simply put widgets into layouts and
used spacer items (stretches) to consume any excess space. In some cases,
this isn’t sufficient to make the layout look exactly the way we want. In these
situations, we can adjust the layout by changing the size policies and size hints
of the widgets being laid out.

A widget’s size policy tells the layout system how it should stretch or shrink.
Qt provides sensible default size policies for all its built-in widgets, but since
no single default can account for every possible layout, it is still common for
developers to change the size policies for one or two widgets on a form. A
0SizePolicy hasboth a horizontal and a vertical component. Here are the most
useful values:

* Fixed means that the widget cannot grow or shrink. The widget always
stays at the size of its size hint.

* Minimum means that the widget’s size hint is its minimum size. The widget
cannot shrink below the size hint, but it can grow to fill available space
if necessary.

* Maximum means that the widget’s size hint is its maximum size. The widget
can be shrunk down to its minimum size hint.

¢ pPreferred means that the widget’s size hint is its preferred size, but that
the widget can still shrink or grow if necessary.

* Expanding means that the widget can shrink or grow and that it is especial-
ly willing to grow.

Figure 6.4 summarizes the meaning of the different size policies, using a
OLabel showing the text “Some Text” as an example.

min size hint size hint
fe——1

Minimum «— |Some Text |
Preferred — +«— |Some Text |
Expanding “«— “«— |Some Text ‘

Figure 6.4. The meaning of the different size policies

Laying Out Widgets on a Form 143

In the figure, Preferred and Expanding are depicted the same way. So what is the
difference? When a form that contains both Preferred and Expanding widgets
is resized, extra space is given to the Expanding widgets, while the Preferred
widgets stay at their size hint.

There are two other size policies: MinimumExpanding and Ignored. The former was
necessary in a few rare cases in older versions of Qt, but it isn’t useful anymore;
the preferred approach is to use Expanding and reimplement minimumSizeHint ()
appropriately. The latter is similar to Expanding, except that it ignores the wid-
get’s size hint and minimum size hint.

In addition to the size policy’s horizontal and vertical components, the QSizePol-
icy class stores a horizontal and a vertical stretch factor. These stretch factors
can be used to indicate that different child widgets should grow at different
rates when the form expands. For example, if we have a QTreeWidget above a
QTextEdit and we want the QTextEdit to be twice as tall as the QTreeWidget, we
can set the QTextEdit’s vertical stretch factor to 2 and the QTreeWidget’s vertical
stretch factor to 1.

Yet another way of influencing a layout is to set a minimum size, a maximum
size, or a fixed size on the child widgets. The layout manager will respect
these constraints when laying out the widgets. And if this isn’t sufficient, we
can always derive from the child widget’s class and reimplement sizeHint () to
obtain the size hint we need.

Stacked Layouts

The QStackedLayout class lays out a set of child widgets, or “pages”, and shows
only one at a time, hiding the others from the user. The QStackedLayout itself
is invisible and provides no intrinsic means for the user to change page. The
small arrows and the dark gray frame in Figure 6.5 are provided by @t Design-
er to make the layout easier to design with. For convenience, Qt also includes
QStackedWidget, which provides a QWidget with a built-in QStackedLayout.

'
Owner: |Administrator |«

(% Read-only
[] Hidden

Figure 6.5. QStackedLayout

The pages are numbered from 0. To make a specific child widget visible, we can
call setCurrentIndex () with a page number. The page number for a child widget
is available using index0f ().

144

6. Layout Management

Open at startup ppearan —Display on statup———————————————————
web Browser
Mail & News) web browser Mail & News © Blank page
Advanced 5 Mail editor Advanced @ Blank page
[_] Newsgroups () Last page visited
Showtoolbars as Heome Pag
@ Pictures and text ’/Lucalmn: lhttp‘//\/\mmtm\\tech.mm/]
) Pictures enly -
—select the buttons you want in the teolbar
O Text only
[Bookmnarks] Search
[%| Show tooltips OGo %] Print
[Show web site icons % Horne
[] Resize large images to fit in the window

Figure 6.6. Two pages of the Preferences dialog

The Preferences dialog shown in Figure 6.6 is an example that uses QStacked-
Layout. The dialog consists of a QListWidget on the left and a QStackedLayout on
the right. Each item in the QListWidget corresponds to a different page in the
QStackedLayout. Here’s the relevant code from the dialog’s constructor:

PreferenceDialog::PreferenceDialog(QWidget =parent)
: QDialog(parent)

{

listWidget

listWidget-
listWidget-
listWidget-
listWidget-

= new QListWidget;

>addItem (tr ("Appearance"));
>addItem(tr ("Web Browser"));
>addItem(tr("Mail & News"));
>addItem(tr ("Advanced"));

stackedLayout = new QStackedLayout;

stackedLayout->addWidget (appearancePage);

stackedLayout->addWidget (webBrowserPage) ;

stackedLayout->addWidget (mailAndNewsPage);

stackedLayout->addWidget (advancedPage);

connect (listWidget, SIGNAL (currentRowChanged(int)),
stackedLayout, SLOT(setCurrentIndex(int)));

listWidget->setCurrentRow (0);

}

We create a QListWidget and populate it with the page names. Then we create a
QStackedLayout and call addWidget () for each page. We connect the list widget’s
currentRowChanged (int) signal to the stacked layout’s setCurrentIndex(int) to
implement the page switching and call setCurrentRow () on the list widget at the
end of the constructor to start on page 0.

Forms like this are also very easy to create using @t Designer:

1. Create a new form based on the “Dialog” or the “Widget” template.

2. Add a QListWidget and a QStackedWidget to the form.

3. Fill each page with child widgets and layouts.

Stacked Layouts 145

(To create a new page, right-click and choose Insert Page; to switch pages,
click the tiny left or right arrow located at the top-right of the QStackedwid-
get.)

4. Lay the widgets out side by side using a horizontal layout.

5. Connect the list widget’s currentRowChanged(int) signal to the stacked
widget’s setCurrentIndex (int) slot.

6. Set the value of the list widget’s currentRow property to 0.

Since we have implemented page switching using predefined signals and slots,
the dialog will exhibit the correct behavior when previewed in Q¢ Designer.

Splitters

A qsSplitter is a widget that contains other widgets. The widgets in a splitter
are separated by splitter handles. Users can change the sizes of a splitter’s
child widgets by dragging the handles. Splitters can often be used as an
alternative to layout managers, to give more control to the user.

== Splitter

Men enfant, ma soeur, My child, my sister, Mein Kind, meine Schwester,
Songe a la douceur think of the denke an den Traum

D'aller l&-bas vivre ensemble, || of going there to live together! dort hinfunter) zu gehen um zusammen
Aimer & loisir, To love at leisure, zu leben und in aller Ruhe zu lieben,
Aimer et mourir to love and to die Zu lieben und zu sterben

Au pays qui te ressemble. in a country that is the image of you! | |in dem Land, das dir gleicht.

Figure 6.7. The Splitter application

The child widgets of a QSplitter are automatically placed side by side (or
one below the other) in the order in which they are created, with splitter bars
between adjacent widgets. Here’s the code for creating the window depicted in
Figure 6.7:

int main(int argc, char =argv[])

{
QApplication app(argc, argv);

QTextEdit *editor1
QTextEdit =editor2
QTextEdit *editor3

new QTextEdit;
new QTextEdit;
new QTextEdit;

QSplitter splitter(Qt::Horizontal);
splitter.addWidget (editor1);
splitter.addWidget (editor2);
splitter.addWidget (editor3);

splitter.show();
return app.exec();

6. Layout Management

The example consists of three QTextEdits laid out horizontally by a QSplitter
widget. Unlike layout managers, which simply lay out a form’s child widgets
and have no visual representation, QSplitter inherits from QWidget and can be
used like any other widget.

™ Window Title

QSplitter

QTextEdit QTextEdit QTextEdit

Figure 6.8. The Splitter application’s widgets

Complex layouts can be achieved by nesting horizontal and vertical QSplitters.
For example, the Mail Client application shown in Figure 6.9 consists of a
horizontal QSplitter that contains a vertical QSplitter on its right side.

©_=w Mail Client
File Edit View Folder Message Settings Help

Folders | Subject
= Mail " Happy New Year! ‘Grace K. <grace@software-inc.com> 2006-12-31 |
@ Inbox Radically new concept! Grace K. <grace@software-inc.coms 2006-12-22
) Outbox Accounts pascale@nospam.com 2006-12-31
[sent Expenses Joe Bloggs <joe@bloggs.coms 2006-12-25
[) Trash Re: Expenses Andy <andy@nospam.com> 2007-01-02
Re: Accaounts Joe Bloggs <joe@bloggs.coms 2007-01-03
Subject:Happy New Year!
Date:Sun, 31 Dec 2006
From:Grace K. <grace@software-inc.com:=
To: all@software-inc.com
| want to seize this occasion to thank everybody for the year that has gone, and
want to wish you the best for next year. It has been a pleasure to work with you
all on the Hawk project, and I'm sure we'll get concrete results shortly.
Happy New Year!
--Grace
Mo new messages on server 4

Figure 6.9. The Mail Client application on Mac OS X

Here’s the code in the constructor of the Mail Client application’s QMainWindow
subclass:

MailClient::MailClient ()
{

Splitters 147

rightSplitter = new QSplitter(Qt::Vertical);
rightSplitter->addWidget (messagesTreeWidget);
rightSplitter->addWidget (textEdit);
rightSplitter->setStretchFactor (1, 1);

mainSplitter = new QSplitter(Qt::Horizontal);
mainSplitter->addWidget (foldersTreeWidget);
mainSplitter->addWidget (rightSplitter);
mainSplitter->setStretchFactor (1, 1);
setCentralWidget (mainSplitter);

setWindowTitle(tr("Mail Client"));
readSettings();
}

After creating the three widgets that we want to display, we create a vertical
splitter, rightSplitter, and add the two widgets we want on the right. Then
we create a horizontal splitter, mainSplitter, and add the widget we want it
to display on the left and rightSplitter whose widgets we want shown on the
right. We make mainSplitter the QMainWindow’s central widget.

When the user resizes a window, QSplitter normally distributes the space so
that the relative sizes of the child widgets stay the same. In the Mail Client
example, we don’t want this behavior; instead, we want the QTreeWidget and
the QTableWidget to keep their sizes and we want to give any extra space to
the QTextEdit. This is achieved by the two setStretchFactor () calls. The first
argument is the 0-based index of the splitter’s child widget, and the second
argument is the stretch factor we want to set; the default is 0.

mainSplitter

0 1

©

=y messagesTableWidget| ¢
E rightSplitter
=

%)

G textEdit 1
o

—

o

Y

Figure 6.10. The Mail Client’s splitter indexing

The first setStretchFactor () call is on rightSplitter, and it sets the widget at
position 1 (textEdit) to have a stretch factor of 1. The second setStretchFactor ()
call is on mainSplitter, and it sets the widget at position 1 (rightSplitter) to
have a stretch factor of 1. This ensures that the textEdit will get any additional
space that is available.

When the application is started, QSplitter gives the child widgets appropriate
sizes based on their initial sizes (or based on their size hint if no initial size
is specified). We can move the splitter handles programmatically by calling
QSplitter::setSizes(). The QSplitter class also provides a means of saving and

148 6. Layout Management

restoring its state the next time the application is run. Here’s the writeSet-
tings () function that saves the Mail Client’s settings:

void MailClient::writeSettings()

{
QSettings settings("Software Inc.", "Mail Client");
settings.beginGroup ("mainWindow");
settings.setValue("size", size());
settings.setValue("mainSplitter", mainSplitter->saveState());
settings.setValue("rightSplitter"”, rightSplitter->saveState());
settings.endGroup();

}

Here’s the corresponding readSettings () function:

void MailClient::readSettings()

{
QSettings settings("Software Inc.", "Mail Client");
settings.beginGroup ("mainWindow");
resize(settings.value("size", QSize (480, 360)).toSize());
mainSplitter->restoreState(
settings.value("mainSplitter").toByteArray());
rightSplitter->restoreState(
settings.value("rightSplitter").toByteArray());
settings.endGroup();
}

asplitter is fully supported by @t Designer. To put widgets into a splitter, place
the child widgets approximately in their desired positions, select them, and
click Form|Lay Out Horizontally in Splitter or Form|Lay Out Vertically in Splitter.

Scrolling Areas

The QScrollArea class provides a scrollable viewport and two scroll bars. If we
want to add scroll bars to a widget, it is much simpler to use a QScrollArea than
to instantiate our own QScrollBars and implement the scrolling functionality
ourselves.

viewport()

verticalScrollBar()

horizontalScrollBar()

Figure 6.11. QScrollArea’s constituent widgets

Scrolling Areas 149

The way to use QScrollArea is to call setWidget () with the widget we want to
add scroll bars to. QScrollArea automatically reparents the widget to make it
a child of the viewport (accessible through QScrollArea::viewport()) if it isn’t
already. For example, if we want scroll bars around the IconEditor widget we
developed in Chapter 5, we can write this:

int main(int argc, char =argv[])

{
QApplication app(argc, argv);
IconEditor *iconEditor = new IconEditor;
iconEditor->setIconImage (QImage (":/images/mouse.png"));
QScrollArea scrollArea;
scrollArea.setWidget (iconEditor);
scrollArea.viewport () ->setBackgroundRole (QPalette::Dark);
scrollArea.viewport () ->setAutoFillBackground(true);
scrollArea.setWindowTitle (QObject::tr("Icon Editor"));
scrollArea.show();
return app.exec();

}

The QScrollArea presents the widget at its current size or uses the size hint if
the widget hasn’t been resized yet. By calling setWidgetResizable (true), we can
tell aScrollArea to automatically resize the widget to take advantage of any
extra space beyond its size hint.

By default, the scroll bars are only displayed when the viewport is smaller than
the child widget. We can force the scroll bars to always be shown by setting
scroll bar policies:

scrollArea.setHorizontalScrollBarPolicy (Qt::ScrollBarAlwaysOn);
scrollArea.setVerticalScrollBarPolicy (Qt::ScrollBarAlwayson);

-» Icon Editor "

Figure 6.12. Resizing a 0ScrollArea

150 6. Layout Management

QScrollAreainherits much of its functionality from QAbstractScrollArea. Classes
like QTextEdit and QAbstractItemView (the base class of Qt’s item view classes)
derive from QAbstractScrollArea, so we don’t need to wrap them in a QScrollArea
to get scroll bars.

Dock Widgets and Toolbars

Dock widgets are widgets that can be docked inside a QMainWindow or floated
as independent windows. QMainWindow provides four dock widget areas: one
above, one below, one to the left, and one to the right of the central widget.
Applications like Microsoft Visual Studio and Q¢ Linguist make extensive use
of dock windows to provide a very flexible user interface. In Qt, dock widgets
are instances of QDockWidget.

-» Icon Editor L -Ox

Fle Edit “ew Tools Preferences Help

[Helvetica [+][10 £ E E H

Shapes
! E Rectangles
i Square
u - | GeneralRectangle ||
E Ellipses

Cirele

H H General Ellipse
mE Miscellaneous

Ready

Figure 6.13. A QMainWindow with a dock widget

Every dock widget has its own title bar, even when it is docked. Users can move
dock windows from one dock area to another by dragging the title bar. They
can also detach a dock window from an area and let the dock window float as an
independent window by dragging the dock window outside of any dock area.
Free-floating dock windows are always “on top” of their main window. Users
can close a QDockWidget by clicking the close button in the widget’s title bar.
Any combination of these features can be disabled by calling QDockWidget::
setFeatures().

In earlier versions of Qt, toolbars were treated like dock widgets and shared
the same dock areas. Starting with Qt 4, toolbars occupy their own areas

Dock Widgets and Toolbars 151

around the central widget (as shown in Figure 6.14) and can’t be undocked. If
a floating toolbar is required, we can simply put it inside a QDockWindow.

T Window Title

Menu Bar
Top Toolbar Area

Top Dock Area

Left Toolbar Area
Left Dock Area
Right Dock Area

Right Toolbar Area

Bottom Dock Area

Bottom Toolbar Area
Status Bar

Figure 6.14. QMainWindow’s dock and toolbar areas

The corners indicated with dotted lines can belong to either of their two
adjoining dock areas. For example, we could make the top-left corner belong
to the left dock area by calling QMainWindow: :setCorner (Qt::TopLeftCorner, Qt::
LeftDockWidgetArea).

The following code snippet shows how to wrap an existing widget (in this case,
a QTreeWidget) in a QDockWidget and insert it into the right dock area:

QDockWidget *shapesDockWidget = new QDockWidget (tr ("Shapes"));
shapesDockWidget->setWidget (treeWidget);
shapesDockWidget->setAllowedAreas (Qt::LeftDockWidgetArea

| Qt::RightDockWidgetArea);
addDockWidget (Qt::RightDockWidgetArea, shapesDockWidget);

The setAllowedAreas () call specifies constraints on which dock areas can accept
the dock window. Here, we only allow the user to drag the dock widget into
the left and right dock areas, where there is enough vertical space for it to be
displayed sensibly. If no allowed areas are explicitly set, the user can drag the
dock widget to any of the four areas.

Here’s how to create a toolbar containing a QComboBox, a QSpinBox, and a few
QToolButtons from a QMainWindow subclass’s constructor:

152 6. Layout Management

QToolBar *fontToolBar = new QToolBar (tr("Font"));
fontToolBar->addWidget (familyComboBox) ;
fontToolBar->addWidget (sizeSpinBox);
fontToolBar->addAction (boldAction);
fontToolBar->addAction(italicAction);
fontToolBar->addAction (underlineAction);
fontToolBar->setAllowedAreas (Qt::TopToolBarArea

| Qt::BottomToolBarArea);
addToolBar (fontToolBar);

If we want to save the position of all the dock widgets and toolbars so that we
can restore them the next time the application is run, we can write code that
is similar to the code we used to save a QSplitter’s state, using QMainWindow’s
saveState () and restoreState () functions:

void MainWindow::writeSettings()

{
QSettings settings("Software Inc.", "Icon Editor");
settings.beginGroup ("mainWindow");
settings.setValue("size", size());
settings.setValue ("state", saveState());
settings.endGroup();

}

void MainWindow::readSettings()

{
QSettings settings("Software Inc.", "Icon Editor");
settings.beginGroup ("mainWindow");
resize(settings.value("size").toSize());
restoreState(settings.value("state").toByteArray());
settings.endGroup();

}

Finally, MainWindow provides a context menu that lists all the dock windows
and toolbars. The user can close and restore dock windows and hide and
restore toolbars using this menu.

[X| Shapes
(%] File

% Edit
(%] Font

Figure 6.15. A QMainWindow context menu

Multiple Document Interface

Applications that provide multiple documents within the main window’s cen-
tral area are called multiple document interface applications, or MDI appli-
cations. In Qt, an MDI application is created by using the QWorkspace class

Multiple Document Interface 153

as the central widget and by making each document window a child of the
QWorkspace.

It is conventional for MDI applications to provide a Window menu that includes
some commands for managing the windows and the list of windows. The active
window is identified with a checkmark. The user can make any window active
by clicking its entry in the Window menu.

In this section, we will develop the MDI Editor application shown in Fig-
ure 6.16 to demonstrate how to create an MDI application and how to imple-
ment its Window menu.

%5 MDI Editor
File Edit

Close
Close All

Tie
Cascade # LICENSE

Next Cirl+Fs Gt COMMERCIAL LICENSE AGREEMENT
Previous Ctrl+5hift +76 Agreement version 3.0

License IMPORTANT-READ CAREFULLY:
feld.
cannontiea.cep 1. This Trolkech End-User License Agreement (" Agreement” hs alegal
agrasment betwesn you (siher an individual or a lsgal ety
(Licensee") and Trokech AS ["Troktech)forthe Troltech -
Agreement, which nci

B cannonfield.cpp software and may include "orline” or electronic documentation.
Fnchude <QPaiter> associsted media, and printed malerils, including the source code,
Hnclue <iTmers =xample progrems and the documentation ("Loensed Software']

#nclude <math > 2. The Licensed Software is protected by copyright laws and
intemational copyright treaties, as wel as other telectual
#nclude "cannonfield h"” property laws and treaties. The Licensed Software is licensed. not
sold.
CannonField: CannonField{QWidget “parert)
QWidgetlparert) 3. Some of the files inthe Licensed Software have been grouped into
{ Modules. These files contain specfic notices defining the Module of
curertAngle = 45; which they are a part. The Modules licensedto Licensee are specfied
cumentForce = 0; inthe lcense ceficate ("License Certficate") accompanyng the
timerCount = 0 Licensed Software. The tems of the Licens Cetficate are considered
autoShoot Timer = new Qimerthis): part of the Agresment. Inthe evert of incensistency or corflict
connect{atoShoot Timer, SIGNAL fimeout(), this, S between the language of this Agreement and the License Certficate,
shootAnge = 0. the provisions of this Agreement shall govem
shootForce = 0;

Calor(250, 250, 200))): 4.By

void CannonField: setAngle{rt angle)
{

f lanle < 5)
angle = 5

Ready

Figure 6.16. The MDI Editor application

The application consists of two classes: MainWindow and Editor. The code is
on the CD, and since most of it is the same or similar to the Spreadsheet
application from Part I, we will only present the new code.

Window Help

[Mew Ctri4-n e cut Ctri4x Close ctri+F4a About

[’ Open.. ctri+0 Copy ctrl4+c Close All About Ot

[save ctri+s B paste ctr+v Tile
Save As... Cascade

Exit ctrl+q Mext Ctrl+F6

Previous Ctrl+Shift+F&
[] readme txt
%] Makefile

Figure 6.17. The MDI Editor application’s menus

154 6. Layout Management

Let’s start with the MainWindow class.

MainWindow: :MainWindow ()
{
workspace = new QWorkspace;
setCentralWidget (workspace);
connect (workspace, SIGNAL (windowActivated(QWidget =)),
this, SLOT (updateMenus()));

createActions();
createMenus();
createToolBars();
createStatusBar();

setWindowTitle (tr ("MDI Editor"));
setWindowIcon (QPixmap (":/images/icon.png"));
}

In the MainWindow constructor, we create a QWorkspace widget and make it the
central widget. We connect the QWorkspace’s windowActivated() signal to the slot
we will use to keep the window menu up to date.

void MainWindow::newFile ()

{
Editor xeditor = createEditor();
editor->newFile();
editor->show();

}

The newFile () slot corresponds to the File|New menu option. It depends on the
createEditor () private function to create a child Editor widget.

Editor *MainWindow::createEditor()
{
Editor *editor = new Editor;
connect (editor, SIGNAL (copyAvailable(bool)),
cutAction, SLOT(setEnabled(bool)));
connect (editor, SIGNAL (copyAvailable(bool)),
copyAction, SLOT(setEnabled(bool)));

workspace->addWindow (editor);
windowMenu->addAction (editor->windowMenuAction());
windowActionGroup->addAction (editor->windowMenuAction());

return editor;

}

The createtditor() function creates an Editor widget and sets up two
signal—slot connections. These connections ensure that Edit|Cut and Edit|Copy
are enabled or disabled depending on whether there is any selected text.

Because we are using MDI, it is possible that there will be multiple Editor
widgets in use. This is a concern since we are only interested in responding
to the copyAvailable (bool) signal from the active Editor window, not from the
others. But these signals can only ever be emitted by the active window, so this
isn’t a problem in practice.

Multiple Document Interface 155

Once we have set up the Editor, we add a QAction representing the window
to the Window menu. The action is provided by the Editor class, which we
will cover in a moment. We also add the action to a QActionGroup object. The
QAction6roup ensures that only one Window menu item is checked at a time.

void MainWindow::open ()

{
Editor xeditor = createEditor();
if (editor->open()) {
editor->show();
} else {
editor->close();
}
}

The open() function corresponds to File|Open. It creates an Editor for the new
document and calls open() on the Editor. It makes more sense to implement
the file operations in the Editor class than in the MainWindow class, because each
Editor needs to maintain its own independent state.

If the open() fails, we simply close the editor since the user will have already
been notified of the error. We don’t need to explicitly delete the Editor object
ourselves; this is done automatically by Editor through the Qt::WA_DeleteOn-
Close widget attribute, which is set in the Editor constructor.

void MainWindow::save ()

{
if (activeEditor())
activeEditor () ->save();
}

The save () slot calls Editor::save () on the active editor, if there is one. Again,
the code that performs the real work is located in the Editor class.

Editor *MainWindow::activeEditor ()
{

}

The activeEditor() private function returns the active child window as an
Editor pointer, or a null pointer if there isn’t one.

return qobject_cast<kEditor x> (workspace->activeWindow());

void MainWindow::cut ()

{
if (activeEditor())
activeEditor () ->cut();

}

The cut () slot calls Editor::cut () on the active editor. We don’t show the copy ()
and paste () slots because they follow the same pattern.

void MainWindow::updateMenus ()

{
bool haskEditor = (activeEditor() !'= 0);

156 6. Layout Management

bool hasSelection = activeEditor()
&& activeEditor () ->textCursor() .hasSelection();

saveAction->setEnabled (hasEditor);
saveAsAction->setEnabled (hasEditor);
pasteAction->setEnabled (hasEditor);
cutAction->setEnabled(hasSelection);
copyAction->setEnabled(hasSelection);
closeAction->setEnabled(hasEditor);
closeAllAction->setEnabled (hasEditor);
tileAction->setEnabled(hasEditor);
cascadeAction->setEnabled(hasEditor);
nextAction->setEnabled (haskEditor);
previousAction->setEnabled (hasEditor);
separatorAction->setVisible (haskEditor);

if (activeEditor())
activeEditor () ->windowMenuAction () ->setChecked (true);

}

The updateMenus () slot is called whenever a window is activated (and when
the last window is closed) to update the menu system, due to the signal-slot
connection we put in the MainWindow constructor.

Most menu options only make sense if there is an active window, so we
disable them if there isn’t one. At the end, we call setChecked() on the QAction
representing the active window. Thanks to the QActionGroup, we don’t need to
explicitly uncheck the previously active window.

void MainWindow::createMenus ()
{

windowMenu = menuBar () ->addMenu (tr ("&Window"));
windowMenu->addAction(closeAction);
windowMenu->addAction(closeAllAction);
windowMenu->addSeparator();
windowMenu->addAction(tileAction);
windowMenu->addAction (cascadeAction);
windowMenu->addSeparator();
windowMenu->addAction(nextAction);
windowMenu->addAction (previousAction);
windowMenu->addAction (separatorAction);

}

The createMenus() private function fills the Window menu with actions. The
actions are all typical of such menus and are easily implemented using
QWorkspace’s closeActiveWindow (), closeAllWindows (), tile (), and cascade() slots.
Every time the user opens a new window, it is added to the Window menu’s list
of actions. (This is done in the createEditor () function that we saw on page
154.) When the user closes an editor window, its action in the Window menu is
deleted (since the action is owned by the editor window), and so the action is
automatically removed from the Window menu.

Multiple Document Interface 157

void MainWindow::closeEvent (QCloseEvent xevent)

{
workspace->closeAllWindows () ;
if (activeEditor()) {
event->ignore();
} else {
event->accept ();
}
}

The closeEvent () function is reimplemented to close all child windows, causing
each child to receive a close event. If one of the child widgets “ignores” its
close event (because the user canceled an “unsaved changes” message box), we
ignore the close event for the MainWindow; otherwise, we accept it, resulting in Qt
closing the entire window. If we didn’t reimplement closeEvent () in MainWindow,
the user would not be given the opportunity to save unsaved changes.

We have now finished our review of MainWindow, so we can move on to the Editor
implementation. The Editor class represents one child window. It inherits
QTextEdit, which provides the text editing functionality. Just as any Qt widget
can be used as a stand-alone window, any Qt widget can be used as a child
window in an MDI workspace.

Here’s the class definition:

class Editor : public QTextEdit
{
Q_OBJECT

public:
Editor (QWidget =parent = 0);

void newFile();

bool open();

bool openFile(const QString &fileName);

bool save();

bool saveAs();

QSize sizeHint() const;

QAction *windowMenuAction() const { return action; }

protected:
void closeEvent (QCloseEvent *event);

private slots:
void documentWasModified();

private:
bool okToContinue();
bool saveFile(const QString &fileName);
void setCurrentFile(const QString &fileName);
bool readFile(const QString &fileName);
bool writeFile(const QString &fileName);
QString strippedName(const QString &fullFileName);

QString curFile;
bool isUntitled;

158 6. Layout Management

QString fileFilters;
QAction *action;

}

Four of the private functions that were in the Spreadsheet application’s Main-
Window class (p. 57) are also present in the Editor class: okToContinue(), save-
File(), setCurrentFile (), and strippedName ().

Editor::Editor (QWidget =parent)
: QTextEdit (parent)
{

action = new QAction(this);

action->setCheckable (true);

connect (action, SIGNAL (triggered()), this, SLOT(show()));
connect (action, SIGNAL (triggered()), this, SLOT(setFocus()));

isUntitled = true;
fileFilters = tr("Text files (*.txt)\n"
"All files (%)");

connect (document (), SIGNAL (contentsChanged()),
this, SLOT(documentWasModified()));

setWindowIcon (QPixmap (":/images/document.png"));
setAttribute (Qt::WA_DeleteOnClose);
}

First, we create a QAction representing the editor in the application’s Window
menu and connect that action to the show() and setFocus () slots.

Since we allow users to create any number of editor windows, we must make
some provision for naming them so that they can be distinguished before they
have been saved for the first time. One common way of handling this is to
allocate names that include a number (for example, document1.txt). We use the
isUntitled variable to distinguish between names supplied by the user and
names we have created programmatically.

We connect the text document’s contentsChanged() signal to the private docu-
mentWasModified () slot. This slot simply calls setWindowModified (true).

Finally, we set the Qt::WA_DeleteOnClose attribute to prevent memory leaks
when the user closes an Editor window.

After the constructor, we expect either newFile () or open() to be called.

void Editor::newFile()
{
static int documentNumber = 1;

curfFile = tr("document’1.txt").arg(documentNumber);
setWindowTitle(curFile + "[*]");

action->setText (curFile);

isUntitled = true;

++documentNumber;

Multiple Document Interface 159

The newFile() function generates a name like document1.txt for the new docu-
ment. The code belongs in newFile (), rather than the constructor, because we
don’t want to consume numbers when we call open() to open an existing doc-
ument in a newly created Editor. Since documentNumber is declared static, it is
shared across all Editor instances.

The “[*]” marker in the window title is a place marker for where we want the
asterisk to appear when the file has unsaved changes on platforms other than
Mac OS X. We covered this place marker in Chapter 3 (p. 58).

bool Editor::open()

{

QString fileName =

QFileDialog::getOpenFileName (this, tr("Open"), ".",
fileFilters);
if (fileName.isEmpty())
return false;

return openfFile(fileName);

}

The open () function tries to open an existing file using openFile ().

bool Editor::save()

{
if (isUntitled) {
return saveAs();
} else {
return saveFile(curFile);
}
}

The save() function uses the isUntitled variable to determine whether it
should call saveFile() or saveAs().

void Editor::closeEvent (QCloseEvent x*event)

{
if (okToContinue()) {
event->accept ();
} else {
event->ignore();
}
}

The closeEvent () function is reimplemented to allow the user to save unsaved
changes. The logic is coded in the okToContinue () function, which pops up a
message box that asks, “Do you want to save your changes?” If okToContinue ()
returns true, we accept the close event; otherwise, we “ignore” it and leave the
window unaffected by it.

void Editor::setCurrentFile(const QString &fileName)
{

curFile = fileName;

isUntitled = false;

action->setText (strippedName(curFile));

160 6. Layout Management

document () ->setModified(false);
setWindowTitle(strippedName (curFile) + "[*1");
setWindowModified(false);

}

The setCurrentFile() function is called from openFile() and saveFile() to up-
date the curfFile and isUntitled variables, to set the window title and action
text, and to set the document’s “modified” flag to false. Whenever the user
modifies the text in the editor, the underlying QTextDocument emits the contents-
Changed () signal and sets its internal “modified” flag to true.

QSize Editor::sizeHint() const
{
return QSize (72 = fontMetrics () .width('x"),
25 = fontMetrics().lineSpacing());
}

The sizeHint () function returns a size based on the width of the letter x’ and
the height of a text line. QWorkspace uses the size hint to give an initial size to
the window.

Here’s the MDI Editor application’s main.cpp file:
#include <QApplication>
#include "mainwindow.h"

int main(int argc, char =argv[])

{
QApplication app(argc, argv);
QStringlList args = app.arguments();

MainWindow mainWin;
if (args.count() > 1) {
for (int i = 1; i < args.count(); ++i)
mainWin.openFile(args[il);
} else {
mainWin.newFile();
}

mainWin.show();
return app.exec();

}

If the user specifies any files on the command line, we attempt to load them.
Otherwise, we start with an empty document. Qt-specific command-line op-
tions, such as -style and -font, are automatically removed from the argument
list by the QApplication constructor. So if we write

mdieditor -style motif readme.txt

on the command line, QApplication: :arguments () returns a QStringlList contain-
ing two items (“mdieditor” and “readme.txt”), and the MDI Editor application
starts up with the document readme.txt.

Multiple Document Interface 161

MDI is one way of handling multiple documents simultaneously. On Mac OSX,
the preferred approach is to use multiple top-level windows. This approach is
covered in the “Multiple Documents” section of Chapter 3.

¢ Reimplementing Event Handlers
¢ [Installing Event Filters

¢ Staying Responsive During Intensive
Processing

7. Event Processing

Events are generated by the window system or by Qt itself in response to
various occurrences. When the user presses or releases a key or mouse button,
a key or mouse event is generated; when a window is shown for the first time, a
paint event is generated to tell the newly visible window that it needs to draw
itself. Most events are generated in response to user actions, but some, like
timer events, are generated independently by the system.

When we program with Qt, we seldom need to think about events, because
Qt widgets emit signals when something significant occurs. Events become
useful when we write our own custom widgets or when we want to modify the
behavior of existing Qt widgets.

Events should not be confused with signals. As a rule, signals are useful when
using a widget, whereas events are useful when implementing a widget. For
example, when we are using QPushButton, we are more interested in its clicked()
signal than in the low-level mouse or key events that caused the signal to be
emitted. But if we are implementing a class like QPushButton, we need to write
code to handle mouse and key events and emit the clicked() signal when nec-
essary.

Reimplementing Event Handlers

In Qt, an event is an object that inherits QEvent. Qt handles more than a hun-
dred types of event, each identified by an enum value. For example, QEvent::
type () returns QEvent: :MouseButtonPress for mouse press events.

Many event types require more information than can be stored in a plain
QEvent object; for example, mouse press events need to store which mouse
button triggered the event as well as where the mouse pointer was positioned
when the event occurred. This additional information is stored in dedicated
QEvent subclasses, such as QMouseEvent.

163

164 7. Event Processing

Events are notified to objects through their event () function, inherited from
Q0bject. The event () implementation in QWidget forwards the most common
types of event to specific event handlers, such as mousePressEvent (), keyPress-
Event (), and paintEvent ().

We have already seen many event handlers when implementing MainWindow,
IconEditor, and Plotter in earlier chapters. There are many other types of
event listed in the QEvent reference documentation, and it is also possible to
create custom event types and to dispatch events ourselves. Here, we will
review two common event types that deserve more explanation: key events and
timer events.

Key events are handled by reimplementing keyPressEvent () and keyRelease-
Event (). The Plotter widget reimplements keyPressEvent (). Normally, we only
need to reimplement keyPressEvent () since the only keys for which release is
important are the modifier keys Ctrl, Shift, and Alt, and these can be checked for
in a keyPressEvent () using QKeyEvent::modifiers (). For example, if we were im-
plementing a CodeEditor widget, its stripped-down keyPressEvent () that distin-
guishes between Home and Ctrl+Home would look like this:

void CodeEditor::keyPressEvent (QKeyEvent =event)
{
switch (event->key()) {
case Qt::Key_Home:
if (event->modifiers() & Qt::ControlModifier) {
goToBeginningOfDocument () ;
} else {
goToBeginningOfLine ();

break;
case Qt::Key_End:

default:
QWidget::keyPressEvent (event);
}

}

The Tab and Backtab (Shift+Tab) keys are special cases. They are handled by
QWidget::event () before it calls keyPressEvent (), with the semantic of passing
the focus to the next or previous widget in the focus chain. This behavior is
usually what we want, but in a CodeEditor widget, we might prefer to make Tab
indent a line. The event () reimplementation would then look like this:

bool CodeEditor::event(QEvent *event)
{
if (event->type() == QEvent::KeyPress) {
QKeyEvent =keyEvent = static_cast<QKeyEvent x> (event);
if (keyEvent->key() == Qt::Key_Tab) {
insertAtCurrentPosition('\t");
return true;

Reimplementing Event Handlers 165

return QWidget::event (event);

}

If the event is a key press, we cast the QEvent object to a QkeyEvent and check
which key was pressed. If the key is Tab, we do some processing and return
true to tell Qt that we have handled the event. If we returned false, Qt would
propagate the event to the parent widget.

A higher-level approach for implementing key bindings is to use a QAction.
For example, if goToBeginning0fLine () and goToBeginningOfDocument () are public
slots in the CodeEditor widget, and the CodeEditor is used as the central widget
in a MainWindow class, we could add the key bindings with the following code:

MainWindow: :MainWindow ()

{
editor = new CodeEditor;
setCentralWidget (editor);

goToBeginningOfLineAction =
new QAction(tr("Go to Beginning of Line"), this);
goToBeginningOfLineAction->setShortcut (tr ("Home"));
connect (goToBeginningOfLineAction, SIGNAL (activated()),
editor, SLOT(goToBeginningOfLine()));

goToBeginningOfDocumentAction =
new QAction(tr("Go to Beginning of Document"), this);
goToBeginningOfDocumentAction->setShortcut (tr ("Ctrl+Home"));
connect (goToBeginningOfDocumentAction, SIGNAL (activated()),
editor, SLOT(goToBeginningOfDocument()));

}

This makes it easy to add the commands to a menu or a toolbar, as we saw
in Chapter 3. If the commands don’t appear in the user interface, the QAction
objects could be replaced with a QShortcut object, the class used by QAction
internally to support key bindings.

By default, key bindings set using QAction or QShortcut on a widget are enabled
whenever the window that contains the widget is active. This can be changed
using QAction::setShortcutContext () or QShortcut::setContext ().

Another common type of event is the timer event. While most other event
types occur as a result of a user action, timer events allow applications to per-
form processing at regular time intervals. Timer events can be used to imple-
ment blinking cursors and other animations, or simply to refresh the display.

To demonstrate timer events, we will implement a Ticker widget. This widget
shows a text banner that scrolls left by one pixel every 30 milliseconds. If the
widget is wider than the text, the text is repeated as often as necessary to fill
the entire width of the widget.

166 7. Event Processing

1 say ++ How long it lasted was impossible ta say ++ Ho

Figure 7.1. The Ticker widget

Here’s the header file:

#ifndef TICKER_H
#define TICKER_H

#include <QWidget>

class Ticker : public QWidget
{
Q_OBJECT
Q_PROPERTY (QString text READ text WRITE setText)

public:
Ticker (QWidget xparent = 0);

void setText(const QString &newText);
QString text () const { return myText; }
QSize sizeHint() const;

protected:
void paintEvent (QPaintEvent =event);
void timerEvent (QTimerEvent *event);
void showEvent (QShowEvent *event);
void hideEvent (QHideEvent xevent);

private:
QString myText;
int offset;
int myTimerId;
b

#endif

We reimplement four event handlersin Ticker, three of which we have not seen
before: timerEvent (), showEvent (), and hideEvent ().

Now let’s review the implementation:
#include <QtGui>
#include "ticker.h"

Ticker::Ticker (QWidget =parent)

: QWidget (parent)
{
offset = 0;
myTimerld = 0;
}

The constructor initializes the of fset variable to 0. The x coordinate at which
the text is drawn is derived from the offset value. Timer IDs are always
non-zero, so we use 0 to indicate that no timer has been started.

Reimplementing Event Handlers 167

void Ticker::setText (const QString &newText)

{
myText = newText;
update ();
updateGeometry ();
}

The setText () function sets the text to display. It calls update() to request a
repaint and updateGeometry () to notify any layout manager responsible for the
Ticker widget about a size hint change.

QSize Ticker::sizeHint() const
{

}

The sizeHint () function returns the space needed by the text as the widget’s
ideal size. QWidget::fontMetrics() returns a QFontMetrics object that can be
queried to obtain information relating to the widget’s font. In this case, we ask
for the size required by the given text. (The first argument to QFontMetrics::
size () is a flag that isn’t needed for simple strings, so we just pass 0.)

return fontMetrics().size(0, text());

void Ticker::paintEvent (QPaintEvent = /% event x/)
{

QPainter painter(this);

int textWidth = fontMetrics().width(text());
if (textWidth < 1)
return;
int x = -offset;
while (x < width()) {
painter.drawText (x, 0, textWidth, height(),
Qt::AlignLeft | Qt::AlignVCenter, text());
X += textWidth;

}

The paintEvent () function draws the text using QPainter::drawText (). It uses
fontMetrics() to ascertain how much horizontal space the text requires, and
then draws the text as many times as necessary to fill the entire width of the
widget, taking of fset into account.

void Ticker::showEvent (QShowEvent * /% event =/)

{
}

The showevent() function starts a timer. The call to QObject::startTimer ()
returns an ID number, which we can use later to identify the timer. Q0bject
supports multiple independent timers, each with its own time interval. After
the call to startTimer (), Qt will generate a timer event approximately every
30 milliseconds; the accuracy depends on the underlying operating system.

myTimerId = startTimer (30);

168 7. Event Processing

We could have called startTimer() in the Ticker constructor, but we save
some resources by having Qt generate timer events only when the widget is
actually visible.

void Ticker::timerEvent (QTimerEvent xevent)

{
if (event->timerId() == myTimerId) {
++offset;
if (offset >= fontMetrics().width(text()))
offset = 0;
scroll (-1, 0);
} else {
QWidget::timerEvent (event);
}
}

The timerEvent () function is called at intervals by the system. It increments
offset by 1 to simulate movement, wrapping at the width of the text. Then it
scrolls the contents of the widget one pixel to the left using QWidget::scroll().
It would have been sufficient to call update () instead of scroll(), but scroll()
is more efficient because it simply moves the existing pixels on screen and only
generates a paint event for the widget’s newly revealed area (a 1-pixel-wide
strip in this case).

If the timer event isn’t for the timer we are interested in, we pass it on to our
base class.

void Ticker::hideEvent (QHideEvent = /% event */)

{

}
The hidekvent () function calls Q0bject::killTimer () to stop the timer.

killTimer (myTimerId);

Timer events are low level, and if we need multiple timers, it can become
cumbersome to keep track of all the timer IDs. In such situations, it is usually
easier to create a QTimer object for each timer. QTimer emits the timeout ()
signal at each time interval. QTimer also provides a convenient interface for
single-shot timers (timers that time out just once).

Installing Event Filters

One really powerful feature of Qt’s event model is that a Q0bject instance can
be set to monitor the events of another Q0bject instance before the latter object
even sees them.

Let’s suppose that we have a CustomerInfoDialog widget composed of several
QLineEdits and that we want to use the Space key to move the focus to the next
QLineEdit. This non-standard behavior might be appropriate for an in-house
application whose users are trained in its use. A straightforward solution is
to subclass QLineEdit and reimplement keyPressEvent () to call focusNextChild(),
like this:

Installing Event Filters 169

void MyLineEdit::keyPressEvent (QKeyEvent =event)

{
if (event->key() == Qt::Key_Space) {
focusNextChild();
} else {
QLineEdit::keyPressEvent (event);
}
}

This approach has one main disadvantage: If we use several different kinds
of widgets in the form (for example, QComboBoxes and QSpinBoxes), we must also
subclass them to make them exhibit the same behavior. A better solution is
to make CustomerInfoDialog monitor its child widgets’ key press events and
implement the required behavior in the monitoring code. This can be achieved
using event filters. Setting up an event filter involves two steps:

1. Register the monitoring object with the target object by calling install-
EventFilter () on the target.

2. Handle the target object’s events in the monitor’s eventFilter () function.

A good place to register the monitoring object is in the CustomerInfoDialog con-
structor:

CustomerInfoDialog::CustomerInfoDialog(QWidget xparent)

: QDialog(parent)
{
firstNameEdit->installEventFilter (this);
lastNameEdit->installEventFilter (this);
cityEdit->installEventFilter (this);
phoneNumberEdit->installEventFilter (this);
}

Once the event filter is registered, the events that are sent to the firstName-
Edit, lastNameEdit, cityEdit, and phoneNumberEdit widgets are first sent to the
CustomerInfoDialog’s eventFilter () function before they are sent on to their in-
tended destination.

Here’s the eventFilter () function that receives the events:

bool CustomerInfoDialog::eventFilter (QObject =target, QEvent =event)
{
if (target == firstNameEdit || target == lastNameEdit
|| target == cityEdit || target == phoneNumberEdit) {
if (event->type() == QEvent::KeyPress) {
QKeyEvent xkeyEvent = static_cast<QKeyEvent *>(event);
if (keyEvent->key() == Qt::Key_Space) {
focusNextChild();
return true;

}
}
return QDialog::eventFilter (target, event);

170 7. Event Processing

First, we check to see if the target widget is one of the QLineEdits. If the event
was a key press, we cast it to QkeyEvent and check which key was pressed. If
the pressed key was Space, we call focusNextChild () to pass focus on to the next
widget in the focus chain, and we return true to tell Qt that we have handled
the event. If we returned false, Qt would send the event to its intended target,
resulting in a spurious space being inserted into the QLineEdit.

If the target widget isn’t a QLineEdit, or if the event isn’t a Space key press,
we pass control to the base class’s implementation of eventFilter (). The target
widget could also be some widget that the base class, @Dialog, is monitoring. (In
Qt 4.1, this is not the case for QDialog. However, other Qt widget classes, such
as QScrollArea, do monitor some of their child widgets for various reasons.)

Qt offers five levels at which events can be processed and filtered:
1. We can reimplement a specific event handler.

Reimplementing event handlers such as mousePressEvent(), keyPress-
Event (), and paintEvent () is by far the most common way to process events.
We have already seen many examples of this.

2. We can reimplement QObject::event().

By reimplementing the event () function, we can process events before
they reach the specific event handlers. This approach is mostly needed
to override the default meaning of the Tab key, as shown earlier (p. 164).
This is also used to handle rare types of event for which no specific event
handler exists (for example, QEvent: :HoverEnter). When we reimplement
event (), we must call the base class’s event () function for handling the
cases we don’t explicitly handle.

3. We can install an event filter on a single QObject.

Once an object has been registered using installEventFilter (), all the
events for the target object are first sent to the monitoring object’s event-
Filter () function. If multiple event filters are installed on the same object,
the filters are activated in turn, from the most recently installed back to
the first installed.

4. We can install an event filter on the QApplication object.

Once an event filter has been registered for gApp (the unique QApplication
object), every event for every object in the application is sent to the event-
Filter () function before it is sent to any other event filter. This approach
is mostly useful for debugging. It can also be used to handle mouse events
sent to disabled widgets, which QApplication normally discards.

5. We can subclass QApplication and reimplement notify().

Qt calls QApplication::notify () to send out an event. Reimplementing this
function is the only way to get all the events, before any event filters get
the opportunity to look at them. Event filters are generally more useful,

Installing Event Filters 171

because there can be any number of concurrent event filters, but only one
notify () function.

Many event types, including mouse and key events, can be propagated. If
the event has not been handled on the way to its target object or by the target
object itself, the whole event processing process is repeated, but this time with
the target object’s parent as the new target. This continues, going from parent
to parent, until either the event is handled or the top-level object is reached.

| Window Title

QDialog (3]
QGroupBox (2]
QCheckBox QCheckBox

QCheckBox QCheckBox @

Figure 7.2. Event propagation in a dialog

Figure 7.2 shows how a key press event is propagated from child to parent in
a dialog. When the user presses a key, the event is first sent to the widget that
has focus, in this case the bottom-right aCheckBox. If the acheckBox doesn’t han-
dle the event, Qt sends it to the Q6roupBox, and finally to the aDialog object.

Staying Responsive During Intensive Processing

When we call QApplication::exec(), we start Qt’s event loop. Qt issues a few
events on startup to show and paint the widgets. After that, the event loop is
running, constantly checking to see if any events have occurred and dispatch-
ing these events to Q0bjects in the application.

While one event is being processed, additional events may be generated and ap-
pended to Qt’s event queue. If we spend too much time processing a particular
event, the user interface will become unresponsive. For example, any events
generated by the window system while the application is saving a file to disk
will not be processed until the file is saved. During the save, the application
will not respond to requests from the window system to repaint itself.

One solution is to use multiple threads: one thread for the application’s user in-
terface and another thread to perform file saving (or any other time-consuming
operation). This way, the application’s user interface will stay responsive while
the file is being saved. We will see how to achieve this in Chapter 18.

A simpler solution is to make frequent calls to QApplication: :processEvents () in
the file saving code. This function tells Qt to process any pending events, and

172 7. Event Processing

then returns control to the caller. In fact, QApplication::exec() is little more
than a while loop around a processEvents () function call.

Here’s an example of how we can keep the user interface responsive using
processEvents (), based on the file saving code for Spreadsheet (p. 80):

bool Spreadsheet::writeFile(const QString &fileName)

{
QFile file(fileName);
for (int row = 0; row < RowCount; ++row) {
for (int column = 0; column < ColumnCount; ++column) {
QString str = formula(row, column);
if (Istr.isEmpty())
out << quint16(row) << quinti16(column) << str;
}
gApp->processEvents();
return true;
}

One danger with this approach is that the user might close the main window
while the application is still saving, or even click File|Save a second time, result-
ing in undefined behavior. The easiest solution to this problem is to replace

gApp->processkvents();
with
gApp—>processEvents (QEventLoop: :ExcludeUserInputEvents);

telling Qt to ignore mouse and key events.

Often, we want to show a QProgressDialog while a long-running operation
is taking place. QProgressDialog has a progress bar that keeps the user in-
formed about the progress being made by the application. QProgressDialog also
provides a Cancel button that allows the user to abort the operation. Here’s
the code for saving a Spreadsheet file using this approach:

bool Spreadsheet::writeFile(const QString &fileName)

{
QFile file(fileName);

QProgressDialog progress(this);
progress.setlLabelText (tr ("Saving %1") .arg(fileName));
progress.setRange (0, RowCount);

progress.setModal (true);

for (int row = 0; row < RowCount; ++row) {
progress.setValue (row);
gApp->processEvents();
if (progress.wasCanceled()) {
file.remove();
return false;

Staying Responsive During Intensive Processing 173

for (int column = 0; column < ColumnCount; ++column) {
QString str = formula(row, column);
if (!str.isEmpty())
out << quint16(row) << quint16(column) << str;

}
}
return true;

}

We create a QProgressDialog with NumRows as the total number of steps. Then,
for each row, we call setValue() to update the progress bar. QProgressDialog
automatically computes a percentage by dividing the current progress value
by the total number of steps. We call QApplication::processEvents() to process
any repaint events or any user clicks or key presses (for example, to allow the

user to click Cancel). If the user clicks Cancel, we abort the save and remove
the file.

We don’t call show () on the QProgressDialog because progress dialogs do that for
themselves. If the operation turns out to be short, presumably because the file
to save is small or because the machine is fast, QProgressDialog will detect this
and will not show itself at all.

In addition to multithreading and using QProgressDialog, there is a completely
different way of dealing with long-running operations: Instead of performing
the processing when the user requests, we can defer the processing until the
application is idle. This can work if the processing can be safely interrupted
and resumed, since we cannot predict how long the application will be idle.

In Qt, this approach can be implemented by using a 0-millisecond timer. These
timers time out whenever there are no pending events. Here’s an example
timerEvent () implementation that shows the idle processing approach:

void Spreadsheet::timerEvent (QTimerEvent xevent)

{
if (event->timerId() == myTimerId) {
while (step < MaxStep && !gApp->hasPendingEvents()) {
performStep(step);
++step;
}
} else {
QTableWidget::timerEvent (event);
}
}

If hasPendingEvents () returns true, we stop processing and give control back to
Qt. The processing will resume when Qt has handled all its pending events.

¢ Painting with QPainter

¢ Painter Transformations

¢ High-Quality Rendering with
QImage

¢ Printing

Graphics with OpenGL

L 2

8. 2D and 3D Graphics

Qt’s 2D graphics engine is based on the QPainter class. QPainter can draw
geometric shapes (points, lines, rectangles, ellipses, arcs, chords, pie segments,
polygons, and Bézier curves), as well as pixmaps, images, and text. Further-
more, QPainter supports advanced features such as antialiasing (for text and
shape edges), alpha blending, gradient filling, and vector paths. QPainter also
supports transformations, which makes it possible to draw resolution-indepen-
dent 2D graphics.

QPainter can be used to draw on a “paint device”, such as a QWidget, a QPixmap, or
a QImage. It is useful when we write custom widgets or custom item classes with
their own look and feel. QPainter can also be used in conjunction with QPrinter
for printing and for generating PDFs. This means that we can often use the
same code to display data on screen and to produce printed reports.

An alternative to QPainter is to use OpenGL. OpenGL is a standard library for
drawing 2D and 3D graphics. The QitOpenGL module makes it very easy to
integrate OpenGL code into Qt applications.

Painting with QPainter
To start painting to a paint device (typically a widget), we simply create a
QPainter and pass a pointer to the device. For example:

void MyWidget::paintEvent(QPaintEvent xevent)
QPainter painter(this);

}

We can draw various shapes using QPainter’s draw... () functions. Figure 8.1
lists the most important ones. The way the drawing is performed is influenced
by QPainter’s settings. Some of these are adopted from the device, others are
initialized to default values. The three main painter settings are the pen, the
brush, and the font:

175

176 8. 2D and 3D Graphics

® The pen is used for drawing lines and shape outlines. It consists of a color,
a width, a line style, a cap style, and a join style.

¢ The brush is the pattern used for filling geometric shapes. It normally
consists of a color and a style, but can also be a texture (a pixmap that is
repeated infinitely) or a gradient.

* The font is used for drawing text. A font has many attributes, including a
family and a point size.

These settings can be modified at any time by calling setPen (), setBrush (), and
setFont () with a QPen, QBrush, or QFont object.

(X1! Y1) p2 p3
x.y), / \
(X21 Y2) p1 p4

drawPoint () drawLine () drawPolyline ()
)) / \ Dps
Py = = Py Py P4 o Py
drawPoints () drawLines () drawPolygon()
(x,y) (X,),
h @
>
w e
drawRect () drawRoundRect () drawElllpse()
x,y), (xy), xy),
N .
w w w
drawArc () drawChord () drawPie ()
(X’Y) § .
A t(36 1
xy), g S

drawText () drawPixmap () drawPath ()

Figure 8.1. QPainter’s most frequently used draw... () functions

Painting with QPainter

177
FlatCap SquareCap RoundCap
MiterdJoin BeveldJoin RoundJoin
Figure 8.2. Cap and join styles
line width
1 2 3 4
NoPen
SolidLine
DashLine — e e e . — — — ——
DotLine mmmmememmesme: EmEEEEm——-——
DashDotLine — e e
DashDotDotLine

Figure 8.3. Pen styles

SolidPattern DenselPattern Dense2Pattern Dense3Pattern Dense4Pattern

i
i

e
i
i

ST
e
i

R

HEEhh bR e

£ £
o i3
£
i

t

i
s

e 2

bt
£
tttys
i

£
£
!

Dense5Pattern Dense6Pattern Dense7Pattern

CrossPattern BDiagPattern FDiagPattern

HorPattern VerPattern

DiagCrossPat. NoBrush

Figure 8.4. Predefined brush styles

178 8. 2D and 3D Graphics

~\.—'/

(a) An ellipse (b) A pie segment (c) A Bézier curve

Figure 8.5. Geometric shape examples

Let’s see a few examples in practice. Here’s the code to draw the ellipse shown
in Figure 8.5 (a):

QPainter painter(this);

painter.setRenderHint (QPainter::Antialiasing, true);
painter.setPen(QPen(Qt::black, 12, Qt::DashDotLine, Qt::RoundCap));
painter.setBrush(QBrush(Qt::green, Qt::SolidPattern));
painter.drawEllipse (80, 80, 400, 240);

The setRenderHint () call enables antialiasing, telling QPainter to use different
color intensities on the edges to reduce the visual distortion that normally
occurs when the edges of a shape are converted into pixels. The result is
smoother edges on platforms and devices that support this feature.

Here’s the code to draw the pie segment shown in Figure 8.5 (b):

QPainter painter(this);

painter.setRenderHint (QPainter::Antialiasing, true);

painter.setPen(QPen(Qt::black, 15, Qt::SolidLine, Qt::RoundCap,
Qt::MiterJdoin));

painter.setBrush(QBrush(Qt::blue, Qt::DiagCrossPattern));

painter.drawPie (80, 80, 400, 240, 60 = 16, 270 * 16);

The last two arguments to drawPie () are expressed in sixteenths of a degree.
Here’s the code to draw the cubic Bézier curve shown in Figure 8.5 (c):

QPainter painter(this);
painter.setRenderHint (QPainter::Antialiasing, true);

QPainterPath path;
path.moveTo (80, 320);
path.cubicTo (200, 80, 320, 80, 480, 320);

painter.setPen(QPen(Qt::black, 8));
painter.drawPath(path);

The QPainterPath class can specify arbitrary vector shapes by connecting basic
graphical elements together: straight lines, ellipses, polygons, arcs, quadratic
and cubic Bézier curves, and other painter paths. Painter paths are the
ultimate drawing primitive in the sense that any shape or combination of
shapes can be expressed as a path.

Painting with QPainter 179

A path specifies an outline, and the area described by the outline can be filled
using a brush. In the example of Figure 8.5 (c), we didn’t set a brush, so only
the outline is drawn.

The three examples above use built-in brush patterns (Qt::SolidPattern, Qt::
DiagCrossPattern, and Qt::NoBrush). In modern applications, gradient fills are
a popular alternative to monochrome fill patterns. Gradients rely on color
interpolation to obtain smooth transitions between two or more colors. They
are frequently used to produce 3D effects; for example, the Plastique style uses
gradients to render QPushButtons.

Qt supports three types of gradients: linear, conical, and radial. The Oven
Timer example in the next section combines all three types of gradients in a
single widget to make it look like the real thing.

QLinearGradient QRadialGradient QConicalGradient

Figure 8.6. QPainter’s gradient brushes

* Linear gradients are defined by two control points and by a series of “color
stops” on the line that connects these two points. For example, the linear
gradient of Figure 8.6 is created using the following code:

QLinearGradient gradient (50, 100, 300, 350);
gradient.setColorAt (0.0, Qt::white);
gradient.setColorAt (0.2, Qt::green);
gradient.setColorAt (1.0, Qt::black);

We specify three colors at three different positions between the two control
points. Positions are specified as floating-point values between 0 and 1,

180 8. 2D and 3D Graphics

where 0 corresponds to the first control point and 1 to the second control
point. Colors between the specified stops are interpolated.

* Radial gradients are defined by a center point (x,, y.), a radiusr, and a focal
point (x, y), in addition to the color stops. The center point and the radius
specify a circle. The colors spread outward from the focal point, which can
be the center point or any other point inside the circle.

¢ Conical gradients are defined by a center point (x., y.) and an angle .
The colors spread around the center point like the sweep of a watch’s
seconds hand.

So far we have mentioned QPainter’s pen, brush, and font settings. In addition
to these, QPainter has other settings that influence the way shapes and text
are drawn:

® The background brush is used to fill the background of geometric shapes
(underneath the brush pattern), text, or bitmaps when the background
mode is Qt: :OpaqueMode (the default is Qt: : TransparentMode).

* The brush origin is the starting point for brush patterns, normally the
top-left corner of the widget.

* The clip region is the area of the device that can be painted. Painting
outside the clip region has no effect.

* The viewport, window, and world matrix determine how logical QPainter
coordinates map to physical paint device coordinates. By default, these
are set up so that the logical and physical coordinate systems coincide.
Coordinate systems are covered in the next section.

* The composition mode specifies how the newly drawn pixels should
interact with the pixels already present on the paint device. The default is
“source over”, where drawn pixels are drawn on top of existing pixels. This
is supported only on certain devices and is covered later in this chapter.

At any time, we can save the current state of a painter on an internal stack by
calling save () and restore it later on by calling restore (). This can be useful if
we want to temporarily change some painter settings and then reset them to
their previous values, as we will see in the next section.

Painter Transformations

With QpPainter’s default coordinate system, the point (0, 0) is located at the
top-left corner of the paint device; x coordinates increase rightward and y
coordinates increase downward. Each pixel occupies an area of size 1 x 1in the
default coordinate system.

One important thing to understand is that the center of a pixel lies on
“half-pixel” coordinates. For example, the top-left pixel covers the area be-
tween points (0, 0) and (1, 1), and its center is located at (0.5, 0.5). If we ask
QPainter to draw a pixel at, say, (100, 100), it will approximate the result by

Painter Transformations 181

shifting the coordinate by +0.5 in both directions, resulting in the pixel cen-
tered at (100.5, 100.5) being drawn.

This distinction may seem rather academic at first, but it has important
consequences in practice. First, the shifting by +0.5 only occurs if antialiasing
is disabled (the default); if antialiasing is enabled and we try to draw a pixel
at (100, 100) in black, QPainter will actually color the four pixels (99.5, 99.5),
(99.5,100.5),(100.5, 99.5), and (100.5, 100.5) light gray, to give the impression
of a pixel lying exactly at the meeting point of the four pixels. If this effect is
undesirable, we can avoid it by specifying half-pixel coordinates, for example,
(100.5, 100.5).

When drawing shapes such as lines, rectangles, and ellipses, similar rules ap-
ply. Figure 8.7 shows how the result of a drawRect (2, 2, 6, 5) call varies accord-
ing to the pen’s width, when antialiasing is off. In particular, it is important to
notice that a 6 x 5 rectangle drawn with a pen width of 1 effectively covers an
area of size 7 x 6. This is different from older toolkits, including earlier versions
of Qt, but it is essential for making truly scalable, resolution-independent vec-
tor graphics possible.

(0,0)

[TTTTTTI [TTTTTTTI
No pen Pen width 1 Pen width 2 Pen width 3

Figure 8.7. Drawing a 6 x 5 rectangle with no antialiasing

Now that we understand the default coordinate system, we can take a closer
look at how it can be changed using QPainter’s viewport, window, and world
matrix. (In this context, the term “window” does not refer to a window in
the sense of a top-level widget, and the “viewport” has nothing to do with
QScrollArea’s viewport.)

The viewport and the window are tightly bound. The viewport is an arbitrary
rectangle specified in physical coordinates. The window specifies the same rect-
angle, but in logical coordinates. When we do the painting, we specify points
in logical coordinates, and those coordinates are converted into physical coor-
dinates in a linear algebraic manner, based on the current window—viewport
settings.

By default, the viewport and the window are set to the device’s rectangle. For
example, if the device is a 320 x 200 widget, both the viewport and the window
are the same 320 x 200 rectangle with its top-left corner at position (0, 0). In
this case, the logical and physical coordinate systems are the same.

182 8. 2D and 3D Graphics

The window—viewport mechanism is useful to make the drawing code inde-
pendent of the size or resolution of the paint device. For example, if we want
the logical coordinates to extend from (-50, -50) to (+50, +50), with (0, 0) in the
middle, we can set the window as follows:

painter.setWindow(-50, -50, 100, 100);

The (-50, -50) pair specifies the origin, and the (100, 100) pair specifies the
width and height. This means that the logical coordinates (-50, -50) now cor-
respond to the physical coordinates (0, 0), and the logical coordinates (+50, +50)
correspond to the physical coordinates (320, 200). In this example, we didn’t
change the viewport.

(-50, -50) (0,0)

(-30, -20) (64, 60)

)

(+10, +20) (192, 140)

(+50, +50) (320, 200)
window viewport

Figure 8.8. Converting logical coordinates into physical coordinates

Now comes the world matrix. The world matrix is a transformation matrix
that is applied in addition to the window—viewport conversion. It allows us to
translate, scale, rotate, or shear the items we are drawing. For example, if we
wanted to draw text at a 45° angle, we would use this code:

QMatrix matrix;

matrix.rotate(45.0);

painter.setMatrix(matrix);

painter.drawText(rect, Qt::AlignCenter, tr("Revenue"));

The logical coordinates we pass to drawText () are transformed by the world
matrix, then mapped to physical coordinates using the window-viewport
settings.

If we specify multiple transformations, they are applied in the order in
which they are given. For example, if we want to use the point (10, 20) as the
rotation’s pivot point, we can do so by translating the window, performing the
rotation, and then translating the window back to its original position:

QMatrix matrix;

matrix.translate(-10.0, -20.0);

matrix.rotate(45.0);

matrix.translate(+10.0, +20.0);

painter.setMatrix (matrix);

painter.drawText(rect, Qt::AlignCenter, tr("Revenue"));

Painter Transformations 183

A simpler way to specify transformations is to use QPainter’s translate(),
scale(), rotate(), and shear () convenience functions:

painter.translate(-10.0, -20.0);

painter.rotate(45.0);

painter.translate(+10.0, +20.0);
painter.drawText (rect, Qt::AlignCenter, tr("Revenue"));

But if we want to use the same transformations repeatedly, it’s more efficient
to store them in a QMatrix object and set the world matrix on the painter
whenever the transformations are needed.

Figure 8.9. The OvenTimer widget

To illustrate painter transformations, we will review the code of the OvenTimer
widget shown in Figure 8.9. The OvenTimer widget is modeled after the kitchen
timers that were used before it was common to have ovens with clocks built-in.
The user can click a notch to set the duration. The wheel automatically
turns counterclockwise until 0 is reached, at which point OvenTimer emits the
timeout () signal.

class OvenTimer : public QWidget

{
Q_OBJECT
public:
OvenTimer (QWidget *parent = 0);
void setDuration(int secs);
int duration() const;
void draw(QPainter xpainter);
signals:
void timeout();
protected:
void paintEvent (QPaintEvent =event);
void mousePressEvent (QMouseEvent xevent);
private:

QDateTime finishTime;
QTimer =updateTimer;
QTimer =finishTimer;

3

184 8. 2D and 3D Graphics

The OvenTimer class inherits QWidget and reimplements two virtual functions:
paintEvent () and mousePressEvent ().

const double DegreesPerMinute = 7.0;

const double DegreesPerSecond = DegreesPerMinute / 60;
const int MaxMinutes = 45;

const int MaxSeconds = MaxMinutes * 60;

const int Updatelnterval = 1;

We start by defining a few constants that control the oven timer’s look
and feel.

OvenTimer::0venTimer (QWidget x*parent)

: QWidget (parent)
{
finishTime = QDateTime::currentDateTime();
updateTimer = new QTimer (this);
connect (updateTimer, SIGNAL (timeout()), this, SLOT(update()));
finishTimer = new QTimer (this);
finishTimer->setSingleShot (true);
connect (finishTimer, SIGNAL (timeout()), this, SIGNAL (timeout()));
connect (finishTimer, SIGNAL (timeout()), updateTimer, SLOT(stop()));
}

In the constructor, we create two QTimer objects: updateTimer is used to refresh
the appearance of the widget every second, and finishTimer emits the widget’s
timeout () signal when the oven timer reaches 0. The finishTimer only needs to
timeout once, so we call setSingleShot (true); by default, timers fire repeatedly
until they are stopped or destroyed. The last connect () call is an optimization
to stop updating the widget every second when the timer is inactive.

void OvenTimer::setDuration(int secs)

{
if (secs > MaxSeconds) {
secs = MaxSeconds;
} else if (secs <= 0) {
secs = 0;
}
finishTime = QDateTime::currentDateTime () .addSecs(secs);
if (secs > 0) {
updateTimer->start (UpdateInterval 1000);
finishTimer->start(secs * 1000);
} else {
updateTimer->stop();
finishTimer->stop();
}
update ();
}

The setDuration() function sets the duration of the oven timer to the given
number of seconds. We compute the finish time by adding the duration to the

Painter Transformations 185

current time (obtained from QDateTime::currentDateTime()) and store it in the
finishTime private variable. At the end, we call update () to redraw the widget
with the new duration.

The finishTime variable is of type QDateTime. Since the variable holds both a
date and a time, we avoid a wrap-around bug when the current time is before
midnight and the finish time is after midnight.

int OvenTimer::duration() const

{
int secs = QDateTime::currentDateTime().secsTo(finishTime);
if (secs < 0)
secs = 0;
return secs;
}

The duration() function returns the number of seconds left before the timer is
due to finish. If the timer is inactive, we return 0.

void OvenTimer::mousePressEvent (QMouseEvent =event)

{
QPointF point = event->pos() - rect().center();
double theta = atan2(-point.x(), -point.y()) = 180 / 3.14159265359;
setDuration(duration() + int(theta / DegreesPerSecond));
update () ;
}

If the user clicks the widget, we find the closest notch using a subtle but
effective mathematical formula, and we use the result to set the new duration.
Then we schedule a repaint. The notch that the user clicked will now be at the
top and will move counterclockwise as time passes until O is reached.

void OvenTimer::paintEvent (QPaintEvent = /% event */)

{
QPainter painter(this);
painter.setRenderHint (QPainter::Antialiasing, true);

int side = gMin(width(), height());

painter.setViewport ((width() - side) / 2, (height() - side) / 2,
side, side);
painter.setWindow(-50, -50, 100, 100);

draw (&painter);

}

In paintEvent (), we set the viewport to be the largest square area that fits in-
side the widget, and we set the window to be the rectangle (-50, -50, 100, 100),
that is, the 100 x 100 rectangle extending from (-50, -50) to (+50, +50). The
gMin() template function returns the lowest of its two arguments. Then we call
the draw () function to actually perform the drawing.

186 8. 2D and 3D Graphics

Figure 8.10. The OvenTimer widget at three different sizes

If we had not set the viewport to be a square, the oven timer would be an
ellipse when the widget is resized to a non-square rectangle. To avoid such
deformations, we must set the viewport and the window to rectangles with the
same aspect ratio.

Now let’s look at the drawing code:

void OvenTimer::draw(QPainter =painter)

{
static const int triangle[31[2] = {
{-2, 493}, {+2, <49}, {0, -47}
}:

Qi’en thickPen(palette() .foreground(), 1.5);
QPen thinPen(palette().foreground(), 0.5);
QColor niceBlue(150, 150, 200);

painter->setPen(thinPen);
painter->setBrush(palette().foreground());
painter->drawPolygon (QPolygon (3, &triangle[0]1[0]1));

We start by drawing the tiny triangle that marks the 0 position at the top of
the widget. The triangle is specified by three hard-coded coordinates, and we
use drawPolygon () to render it.

What is so convenient about the window—viewport mechanism is that we can
hard-code the coordinates we use in the draw commands and still get good
resizing behavior.

QConicalGradient coneGradient (@, 0, -90.0);
coneGradient.setColorAt (0.0, Qt::darkGray);
coneGradient.setColorAt (0.2, niceBlue);
coneGradient.setColorAt (0.5, Qt::white);
coneGradient.setColorAt (1.0, Qt::darkGray);

painter->setBrush(coneGradient);
painter->drawEllipse (-46, -46, 92, 92);

Painter Transformations 187

We draw the outer circle and fill it using a conical gradient. The gradient’s
center point is located at (0, 0), and the angle is -90°.

QRadialGradient haloGradient(@, 0, 20, 0, 0);
haloGradient.setColorAt (0.0, Qt::lightGray);
haloGradient.setColorAt (0.8, Qt::darkGray);
haloGradient.setColorAt (0.9, Qt::white);
haloGradient.setColorAt (1.0, Qt::black);

painter->setPen(Qt::NoPen);
painter->setBrush(haloGradient);
painter->drawEllipse (-20, -20, 40, 40);

We fill the inner circle using a radial gradient. The center point and the focal
point of the gradient are located at (0, 0). The radius of the gradient is 20.

}

QLinearGradient knobGradient (-7, -25, 7, -25);
knobGradient.setColorAt (0.0, Qt::black);
knobGradient.setColorAt (0.2, niceBlue);
knobGradient.setColorAt (0.3, Qt::lightGray);
knobGradient.setColorAt(0.8, Qt::white);
knobGradient.setColorAt (1.0, Qt::black);

painter->rotate(duration() = DegreesPerSecond);
painter->setBrush(knobGradient);
painter->setPen(thinPen);
painter->drawRoundRect (-7, -25, 14, 50, 150, 50);

for (int i = 0; i <= MaxMinutes; ++i) {
if (1%5==20) {
painter->setPen(thickPen);
painter->drawLine (@, -41, 0, -44);
painter->drawText (=15, -41, 30, 25,
Qt::AlignHCenter | Qt::AlignTop,
QString::number(i));
} else {
painter->setPen(thinPen);
painter->drawLine (0, -42, 0, -44);
}

painter->rotate (-DegreesPerMinute);

We call rotate () torotate the painter’s coordinate system. In the old coordinate
system, the 0-minute mark was on top; now, the 0-minute mark is moved to
the place that is appropriate for the time left. We draw the rectangular knob
handle after the rotation, since its orientation depends on the rotation angle.

In the for loop, we draw the tick marks along the outer circle’s edge and the
numbers for each multiple of 5 minutes. The text is drawn in an invisible
rectangle underneath the tick mark. At the end of each iteration, we rotate
the painter clockwise by 7°, which corresponds to one minute. The next time
we draw a tick mark, it will be at a different position around the circle, even

188 8. 2D and 3D Graphics

though the coordinates we pass to the drawLine() and drawText() calls are
always the same.

The code in the for loop suffers from a minor flaw, which would quickly become
apparent if we performed more iterations. Each time we call rotate (), we ef-
fectively multiply the current world matrix with a rotation matrix, producing
a new world matrix. The rounding errors associated with floating-point arith-
metic add up, resulting in an increasingly inaccurate world matrix. Here’s one
way to rewrite the code to avoid this issue, using save () and restore() to save
and reload the original transformation matrix for each iteration:

for (int i = 0; 1 <= MaxMinutes; ++i) {
painter->save();
painter->rotate(-i * DegreesPerMinute);

if (i %45==0) {
painter->setPen(thickPen);
painter->drawLine (0, -41, 0, -44);
painter->drawText (=15, -41, 30, 25,
Qt::AlignHCenter | Qt::AlignTop,
QString::number(i));
} else {
painter->setPen(thinPen);
painter->drawLine (0, -42, 0, -44);
}
painter->restore();

}

Another way of implementing an oven timer would have been to compute the
(x, y) positions ourselves, using sin() and cos() to find the positions along the
circle. But then we would still need to use a translation and a rotation to draw
the text at an angle.

High-Quality Rendering with QImage

When drawing, we may be faced with a trade-off between speed and accuracy.
For example, on X11 and Mac OS X, drawing on a QWidget or QPixmap relies on
the platform’s native paint engine. On X11, this ensures that communication
with the X server is kept to a minimum; only paint commands are sent rather
than actual image data. The main drawback of this approach is that Qt is
limited by the platform’s native support:

¢ On X11, features such as antialiasing and support for fractional coordi-
nates are available only if the X Render extension is present on the X
server.

* On Mac OSX,the native aliased graphics engine uses different algorithms

for drawing polygons than X11 and Windows, with slightly different
results.

When accuracy is more important than efficiency, we can draw to a QImage
and copy the result onto the screen. This always uses Qt’s own internal paint

High-Quality Rendering with QImage 189

engine, giving identical results on all platforms. The only restriction is that
the QImage on which we paint must be created with an argument of either
QImage::Format_RGB32 or QImage::Format_ARGB32_Premultiplied.

The premultiplied ARGB32 format is almost identical to the conventional
ARGB32 format (0xaarrggbb), the difference being that the red, green, and blue
channels are “premultiplied” with the alpha channel. This means that the
RGB values, which normally range from 0x00 to 0xFF, are scaled from 0x00 to
the alpha value. For example, a 50%-transparent blue color is represented
as 0x7F0000FF in ARGB32 format, but 0x7F00007F in premultiplied ARGB32
format, and similarly a 75%-transparent dark green of 0x3F008000 in ARGB32
format would be 0x3F002000 in premultiplied ARGB32 format.

Let’s suppose we want to use antialiasing for drawing a widget, and we want
to obtain good results even on X11 systems with no X Render extension. The
original paintEvent () handler, which relies on X Render for the antialiasing,
might look like this:

void MyWidget::paintEvent (QPaintEvent xevent)
{

QPainter painter(this);
painter.setRenderHint (QPainter::Antialiasing, true);
draw (&painter);

}

Here’s how to rewrite the widget’s paintEvent () function to use Qt’s platform-
independent graphics engine:

void MyWidget::paintEvent (QPaintEvent =event)

{
QImage image(size(), QImage::Format_ARGB32_Premultiplied);
QPainter imagePainter (&image);
imagePainter.initFrom(this);
imagePainter.setRenderHint (QPainter::Antialiasing, true);
imagePainter.eraseRect (rect());
draw (&imagePainter);
imagePainter.end();

QPainter widgetPainter (this);
widgetPainter.drawlImage (0, 0, image);

}

We create a QImage of the same size as the widget in premultiplied ARGB32
format, and a QPainter to draw on the image. The initFrom() call initializes
the painter’s pen, background, and font based on the widget. We perform the
drawing using the QPainter as usual, and at the end we reuse the QPainter
object to copy the image onto the widget.

This approach produces identical high-quality results on all platforms, with
the exception of font rendering, which depends on the installed fonts.

One particularly powerful feature of Qt’s graphics engine is its support for com-
position modes. These specify how a source and a destination pixel are merged

190 8. 2D and 3D Graphics

together when drawing. This applies to all painting operations, including pen,
brush, gradient, and image drawing.

The default composition mode is QImage: :CompositionMode_SourceOver, meaning
that the source pixel (the pixel we are drawing) is blended on top of the
destination pixel (the existing pixel) in such a way that the alpha component
of the source defines its translucency. Figure 8.11 shows the result of drawing
a semi-transparent butterfly on top of a checker pattern with the different
modes.

iyf&‘ y \%&N_&

Source SourceOver Sourceln SourceQut SourceAtop Clear

Destination- Destination- Destination- Destination-
Over In Out Atop

Destination
Figure 8.11. QPainter’s composition modes

Compositions modes are set using QPainter::setCompositionMode (). For exam-
ple, here’s how to create a QImage containing the XOR of the butterfly and the
checker pattern:

QImage resultImage = checkerPatternlImage;

QPainter painter (&resultImage);
painter.setCompositionMode (QPainter::CompositionMode_Xor);
painter.drawImage (@, @, butterflyImage);

One issue to be aware of is that the QImage::CompositionMode_Xor operation
applies to the alpha channel. This means that if we XOR the color white
(oxFFFFFFFF) with itself, we obtain a transparent color (0x00000000), not black
(0xFF000000).

Printing
Printing in Qt is similar to drawing on a QWidget, QPixmap, or QImage. It consists
of the following steps:

1. Create a QPrinter to serve as the paint device.

2. Pop up a QPrintDialog, allowing the user to choose a printer and to set a
few options.

3. Create a QPainter to operate on the QPrinter.

4. Draw a page using the QPainter.

Printing 191

5. Call QPrinter: :newPage () to advance to the next page.

6. Repeat steps 4 and 5 until all the pages are printed.

On Windows and Mac OS X, QPrinter uses the system’s printer drivers. On
Unix, it generates PostScript and sends it to 1p or 1pr (or to the program set
using QPrinter::setPrintProgram()). QPrinter can also be used to generate PDF
files by calling setOutputFormat (QPrinter::PdfFormat).

Software Inc.

Figure 8.12. Printing a QImage

Let’s start with some simple examples that all print on a single page. The first
example prints a QImage:

void PrintWindow::printImage (const QImage &image)
{
QPrintDialog printDialog(&printer, this);
if (printDialog.exec()) {
QPainter painter (&printer);
QRect rect = painter.viewport();
QSize size = image.size();
size.scale(rect.size(), Qt::KeepAspectRatio);
painter.setViewport(rect.x(), rect.y(),
size.width(), size.height());
painter.setWindow (image.rect());
painter.drawlmage (0, 0, image);

}

We assume that the PrintWindow class has a member variable called printer
of type QPrinter. We could simply have created the QPrinter on the stack in

192 8. 2D and 3D Graphics

printImage (), but then it would not remember the user’s settings from one print
run to another.

We create a QPrintDialog and call exec () to show it. It returns true if the user
clicked the OK button; otherwise, it returns false. After the call to exec(), the
QPrinter object is ready to use. (It is also possible to print without using a
QPrintDialog, by directly calling QPrinter member functions to set things up.)

Next, we create a QPainter to draw on the QPrinter. We set the window to the
image’s rectangle and the viewport to a rectangle with the same aspect ratio,
and we draw the image at position (0, 0).

By default, QPainter’s window is initialized so that the printer appears to have
a similar resolution as the screen (usually somewhere between 72 and 100 dots
per inch), making it easy to reuse widget painting code for printing. Here, it
didn’t matter, because we set our own window.

Printing items that take up no more than a single page is simple, but many
applications need to print multiple pages. For those, we need to paint one
page at a time and call newPage () to advance to the next page. This raises the
problem of determining how much information we can print on each page.
There are two main approaches to handling multi-page documents with Qt:

* We can convert our data to HTML and render it using QTextDocument, Qt’s
rich text engine.

* We can perform the drawing and the page breaking by hand.

We will review both approachesin turn. As an example, we will print a flower
guide: a list of flower names, each with a textual description. Each entry in
the guide is stored as a string of the format “name: description”, for example:

Miltonopsis santanae: A most dangerous orchid species.

Since each flower’s data is represented by a single string, we can represent all
the flowers in the guide using one QStringList. Here’s the function that prints
a flower guide using Qt’s rich text engine:

void PrintWindow::printFlowerGuide(const QStringlList &entries)

{
QString html;

foreach (QString entry, entries) {
QStringlList fields = entry.split(": ");
QString title = Qt::escape(fields[0]);
QString body = Qt::escape(fields[1]);

html += "<table width=\"100%\" border=1 cellspacing=0>\n"
"<tr><td bgcolor=\"lightgray\">"
"<EXKI>" + title + "</id<K/b>\n<tr><td>" + body
+ "\n</table>\n
\n";
}
printHtml(html);

Printing 193

The first step is to convert the aStringList into HTML. Each flower becomes
an HTML table with two cells. We use Qt::escape() to replace the special
characters ‘&’, ‘<’, >’ with the corresponding HTML entities (“&”, “&It;”,
“>”). Then we call printHtml () to print the text.

void PrintWindow::printHtml(const QString &html)

{
QPrintDialog printDialog(&printer, this);
if (printDialog.exec()) {
QPainter painter (&printer);
QTextDocument textDocument;
textDocument.setHtml (html);
textDocument.print (&printer);
}
}

The printHtml () function pops up a QPrintDialog and takes care of printing
an HTML document. It can be reused “as is” in any Qt application to print
arbitrary HTML pages.

laponogeton distachyos Trapa natans

nnnnnnnnn

purpl botches.

Zantedeschia aethiopica

Figure 8.13. Printing a flower guide using 0TextDocument

Converting a document to HTML and using QTextDocument to print it is by
far the most convenient alternative for printing reports and other complex
documents. In cases where we need more control, we can do the page layout
and the drawing by hand. Let’s now see how we can use this approach to print
a flower guide. Here’s the new printFlowerGuide () function:

void PrintWindow::printFlowerGuide(const QStringlList &entries)
{

QPrintDialog printDialog(&printer, this);

if (printDialog.exec()) {

194 8. 2D and 3D Graphics

QPainter painter (&printer);
QList<QStringlList> pages;

paginate (&painter, &pages, entries);
printPages (&painter, pages);

}

After setting up the printer and constructing the painter, we call the paginate ()
helper function to determine which entry should appear on which page. The
result of thisis a list of QStringLists, with each QStringlList holding the entries
for one page. We pass on that result to printPages ().

For example, let’s suppose that the flower guide contains 6 entries, which we
will refer to as 4, B, C, D, E, and F. Now let’s suppose that there is room for
A and B on the first page; C, D, and ‘£ on the second page; and F on the third
page. The pages list would then have the list [4, B] at index position 0, the
list [C, D, E]at index position 1, and the list [F] at index position 2.

void PrintWindow::paginate(QPainter =painter, QList<QStringList> =xpages,
const QStringlList &entries)

{
QStringlList currentPage;
int pageHeight = painter->window() .height() - 2 * LargeGap;
int y = 0;
foreach (QString entry, entries) {
int height = entryHeight(painter, entry);
if (y + height > pageHeight && !currentPage.empty()) {
pages—>append (currentPage);
currentPage.clear ();
y = 0;
}
currentPage.append (entry);
y += height + MediumGap;
}
if (lcurrentPage.empty())
pages—>append (currentPage);
}

The paginate() function distributes the flower guide entries into pages. It
relies on the entryHeight () function, which computes the height of one entry.
It also takes into account the vertical gaps at the top and bottom of the page,
of size LargeGap.

We iterate through the entries and append them to the current page until we
come to an entry that doesn’t fit; then we append the current page to the pages
list and start a new page.

int PrintWindow::entryHeight (QPainter xpainter, const QString &entry)
{

QStringlList fields = entry.split(": ");

QString title = fields[0];

QString body = fields[1];

Printing 195

int textWidth
int maxHeight

painter->window () .width() - 2 * SmallGap;
painter->window () .height ();

painter->setFont (titleFont);
QRect titleRect = painter->boundingRect (@, 0, textWidth, maxHeight,
Qt::TextWordWrap, title);

painter->setFont (bodyFont);

QRect bodyRect = painter->boundingRect (0, 0, textWidth, maxHeight,

Qt::TextWordWrap, body);
return titleRect.height() + bodyRect.height() + 4 * SmallGap;
}

The entryHeight() function uses QPainter::boundingRect() to compute the
vertical space needed by one entry. Figure 8.14 shows the layout of a flower
entry and the meaning of the Small6ap and MediumGap constants.

L |

SmallGap e i SmallGap
3 SmallGap

;SmallGap
SmallGap

§ SmallGap

MediumGap §

| I
Figure 8.14. A flower entry’s layout

void PrintWindow::printPages(QPainter x*painter,
const QList<QStringlList> &pages)
{

int firstPage = printer.fromPage() - 1;
if (firstPage >= pages.size())

return;
if (firstPage == -1)

firstPage = 0;

int lastPage = printer.toPage() - 1;
if (lastPage == -1 || lastPage >= pages.size())
lastPage = pages.size() - 1;

int numPages = lastPage - firstPage + 1;

for (int i = 0; i < printer.numCopies(); ++i) {
for (int j = 0; j < numPages; ++j) {
if @!=011j!=0)
printer.newPage();

int index;

if (printer.pageOrder() == QPrinter::FirstPageFirst) {
index = firstPage + j;

} else {

196 8. 2D and 3D Graphics

index = lastPage - j;
}
printPage(painter, pages[index], index + 1);

}

The printPages () function’s role is to print each page using printPage () in the
correct order and the correct amount of times. Using the QPrintDialog, the
user might request several copies, specify a print range, or request the pages
in reverse order. It is our responsibility to honor these options—or to disable
them using QPrintDialog: :setEnabledOptions ().

We start by determining the range to print. QPrinter’s fromPage () and toPage ()
functions return the page numbers selected by the user, or 0 if no range
was chosen. We subtract 1 because our pages list is indexed from 0, and set
firstPage and lastPage to cover the full range if the user didn’t set any range.

Then we print each page. The outer for loop iterates as many times as nec-
essary to produce the number of copies requested by the user. Most printer
drivers support multiple copies, so for those QPrinter::numCopies() always re-
turns 1. If the printer driver can’t handle multiple copies, numCopies () returns
the number of copies requested by the user, and the application is responsible
for printing that number of copies. (In the QImage example earlier in this sec-
tion, we ignored numCopies () for the sake of simplicity.)

Aponogeton distachyos

This
or shade, and i uselul for a water Iy eflct where Nymphaea

will not grow.

Cabomba caroliniana

Orontium aquaticum

The Fish grass (c isa ponds. s a decid
food and as a The Golden clubis flowers lack the spath ypical of cther aroids,leaving the cants

spawn fan-shaped
Tiny whit fowors appear in the summer. wator.In spring, tho pencil-iko flower spikes (spadicos) emergo from among tho f

Caltha palustris

The Marsh marigold (or ki
of ponds suited L The rounded

height, with a spread of 45 cm. The double-lowered cultvar ‘Flore Plenalonly reaches 10 cm.

Ceratophyllum demersum

alarge area. thas no
ro0ts.

Juncus effusus ‘Spiralis’

The Cort

Figure 8.15. Printing a flower guide using QPainter

The inner for loop iterates through the pages. If the page isn’t the first page,
we call newPage () to flush the old page and start painting on a fresh page. We
call printPage () to paint each page.

Printing

197

void PrintWindow::printPage(QPainter xpainter,
const QStringlList &entries, int pageNumber)

{

}

painter->save();
painter->translate(0, LargeGap);
foreach (QString entry, entries) {

QStringlList fields =

entry.split(": ");

QString title = fields[0];

QString body = fields[1];

printBox (painter, title, titleFont, Qt::lightGray);
printBox (painter, body, bodyFont, Qt::white);
painter->translate (0, MediumGap);

}

painter->restore();

painter->setFont (footerFont);
painter->drawText (painter->window (),

Qt::AlignHCenter | Qt::AlignBottonm,
QString::number (pageNumber));

The printPage() function iterates through all the flower guide entries and
prints them using two calls to printBox (): one for the title (the flower’s name)
and one for the body (its description). It also draws the page number centered

at the bottom of the page.
(0,0
LargeGap (0, LargeGap) window
pageHeight flower entries print area

LargeGap

[page number]

Figure 8.16. The flower guide’s page layout

void PrintWindow::printBox (QPainter *painter, const QString &str,

{

const QFont &font, const QBrush &brush)

painter->setFont (font);

int boxWidth = painter->window () .width();

int textWidth
int maxHeight

boxWidth - 2 * SmallGap;
painter->window () .height ();

198 8. 2D and 3D Graphics

QRect textRect = painter->boundingRect (SmallGap, SmallGap,
textWidth, maxHeight,
Qt::TextWordWrap, str);
int boxHeight = textRect.height() + 2 = SmallGap;

painter->setPen(QPen(Qt::black, 2, Qt::SolidLine));
painter->setBrush(brush);
painter->drawRect (@8, @, boxWidth, boxHeight);
painter->drawText (textRect, Qt::TextWordWrap, str);
painter->translate (@, boxHeight);

}

The printBox () function draws the outline of a box, then draws the text inside
the box.

Graphics with OpenGL

OpenGL is a standard API for rendering 2D and 3D graphics. Qt applica-
tions can draw 3D graphics by using the @tOpenGL module, which relies
on the system’s OpenGL library. This section assumes that you are familiar
with OpenGL. If OpenGL is new to you, a good place to start learning it is
http://www.opengl.org/.

ene Tetrahedron

Figure 8.17. The Tetrahedron application

Drawing graphics with OpenGL from a Qt application is straightforward: We
must subclass QGLWidget, reimplement a few virtual functions, and link the
application against the QtOpenGL and OpenGL libraries. Because QGLWidget
inherits from QWidget, most of what we already know still applies. The main
difference is that we use standard OpenGL functions to perform the drawing
instead of QPainter.

Graphics with OpenGL 199

To show how this works, we will review the code of the Tetrahedron application
shown in Figure 8.17. The application presents a 3D tetrahedron, or four-sided
die, with each face drawn using a different color. The user can rotate the
tetrahedron by pressing a mouse button and dragging. The user can set the
color of a face by double-clicking it and choosing a color from the QColorDialog
that pops up.

class Tetrahedron : public QGLWidget

{
Q_OBJECT

public:
Tetrahedron (QWidget xparent = 0);

protected:
void initializeGL();
void resizeGL (int width, int height);
void paintGL();
void mousePressEvent (QMouseEvent xevent);
void mouseMoveEvent (QMouseEvent =event);
void mouseDoubleClickEvent (QMouseEvent xevent);

private:
void draw();
int faceAtPosition(const QPoint &pos);

GLfloat rotationX;
GLfloat rotationy;
GLfloat rotationZ;
QColor faceColors[4];
QPoint lastPos;

};

The Tetrahedron class inherits from QGLWidget. The initializeGL (), resize6L (),
and paint6L () functions are reimplemented from Q6LWidget. The mouse event
handlers are reimplemented from QWidget as usual.

Tetrahedron::Tetrahedron (QWidget =parent)

: QGLWidget (parent)
{
setFormat (QGLFormat (QGL: :DoubleBuffer | QGL::DepthBuffer));
rotationX = -21.0;
rotationY = -57.0;
rotationZ = 0.0;
faceColors[0] = Qt::red;
faceColors[1] = Qt::green;
faceColors[2] = Qt::blue;
faceColors[3] = Qt::yellow;
}

In the constructor, we call QGLWidget::setFormat() to specify the OpenGL
display context, and we initialize the class’s private variables.

void Tetrahedron::initializeGL ()
{

200 8. 2D and 3D Graphics

qglClearColor (Qt::black);
glShadeModel (GL_FLAT);
glEnable (GL_DEPTH_TEST);
glEnable (GL_CULL_FACE);

}

The initialize6L () function is called just once, before paint6L () is called. This
is the place where we can set up the OpenGL rendering context, define display
lists, and perform other initializations.

All the code is standard OpenGL, except for the call to QGLWidget’s qglClear-
Color () function. If we wanted to stick to standard OpenGL, we would call gl1-
ClearcColor () in RGBA mode and glClearIndex () in color index mode instead.

void Tetrahedron::resize6L (int width, int height)

{
glViewport (@, 0, width, height);
glMatrixMode (GL_PROJECTION);
glLoadIdentity();
GLfloat x = GLfloat(width) / height;
glFrustum(-x, x, -1.0, 1.0, 4.0, 15.0);
glMatrixMode (GL_MODELVIEW);

}

The resize6L () function is called before paint6GL () is called the first time, but
after initialize6L () is called. It is also called whenever the widget is resized.
This is the place where we can set up the OpenGL viewport, projection, and
any other settings that depend on the widget’s size.

void Tetrahedron::paintGL ()

{
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
draw();

}

The paint6L () function is called whenever the widget needs to be repainted.
This is similar to QWidget::paintEvent (), but instead of QPainter functions
we use OpenGL functions. The actual drawing is performed by the private
function draw ().

void Tetrahedron::draw()

{
static const GLfloat P1[3] =
static const GLfloat P2[3] =
static const GLfloat P3[3] =
static const GLfloat P4[3] =

0.0, -1.0, +2.0 };
+1.73205081, -1.0, -1.0 };
-1.73205081, -1.0, -1.0 }
0.0, +2.0, 0.0 };

static const GLfloat * const coords[4]1[3] = {
{pP1, P2, P3}, { P1, P3, P43}, { P1, P4, P2}, { P2, P4, P3}
h

glMatrixMode (GL_MODELVIEW);
glLoadIdentity();

glTranslatef (0.0, 0.0, -10.0);
glRotatef (rotationX, 1.0, 0.0, 0.0);

Graphics with OpenGL 201

glRotatef (rotationY, 0.0, 1.0, 0.0);
glRotatef (rotationz, 0.0, 0.0, 1.0);
for (int i = 0; 1 < 4; ++i) {

glLoadName (i);
glBegin (GL_TRIANGLES);
qglColor (faceColors[il);
for (int j = 0; j < 3; ++j) {
glvertex3f (coords[il[j1[@], coords[il[j1[1],
coords[il[j1[2]);
}
glEnd () ;

}

In draw(), we draw the tetrahedron, taking into account the x, y, and z rotations
and the colors stored in the faceColors array. Everything is standard OpenGL,
except for the qglColor () call. We could have used one of the OpenGL functions
glColor3d() or glindex () instead, depending on the mode.

void Tetrahedron::mousePressEvent (QMouseEvent xevent)

{
}

void Tetrahedron::mouseMoveEvent (QMouseEvent xevent)
{

lastPos = event->pos();

GLfloat dx
GLfloat dy

GLfloat (event->x() - lastPos.x()) / width();
GLfloat (event->y() - lastPos.y()) / height();

if (event->buttons() & Qt::LeftButton) {
rotationX += 180 = dy;
rotationY += 180 * dx;
updateGL ();

} else if (event->buttons() & Qt::RightButton) {
rotationX += 180 = dy;
rotationZ += 180 * dx;
updateGL ();

}

lastPos = event->pos();

}

The mousePressEvent () and mouseMoveEvent () functions are reimplemented from
QWidget to allow the user to rotate the view by clicking and dragging. The left
mouse button allows the user to rotate around the x and y axes, the right mouse
button around the x and z axes.

After modifying the rotationX variable, and either the rotationY or the rota-
tionzZ variable, we call updateGL () to redraw the scene.

void Tetrahedron::mouseDoubleClickEvent (QMouseEvent x*event)
{
int face = faceAtPosition(event->pos());
if (face != -1) {
QColor color = QColorDialog::getColor(faceColors[face], this);

202 8. 2D and 3D Graphics

if (color.isValid()) {
faceColors[face] = color;
updateGL ();

}

The mouseDoubleClickEvent () is reimplemented from QWidget to allow the user
to set the color of a tetrahedron face by double-clicking it. We call the private
function faceAtPosition() to determine which face, if any, is located under the
cursor. If a face was double-clicked, we call QColorDialog: :getColor () to obtain
a new color for that face. Then we update the faceColors array with the new
color, and we call update6L () to redraw the scene.

int Tetrahedron::faceAtPosition(const QPoint &pos)
{

const int MaxSize = 512;

GLuint buffer[MaxSizel;

GLint viewport[41];

glGetIntegerv (GL_VIEWPORT, viewport);
glSelectBuffer (MaxSize, buffer);
glRenderMode (GL_SELECT);

glinitNames();
glPushName (0);

glMatrixMode (GL_PROJECTION);

glPushMatrix();

glLoadIdentity();

gluPickMatrix(GLdouble (pos.x()), GLdouble(viewport[3] - pos.y()),
5.0, 5.0, viewport);

GLfloat x = GLfloat(width()) / height();

glFrustum(-x, x, -1.0, 1.0, 4.0, 15.0);

draw();

glMatrixMode (GL_PROJECTION);

glPopMatrix();

if (!glRenderMode (GL_RENDER))
return -1;
return buffer[3];
}

The faceAtPosition() function returns the number of the face at a certain
position on the widget, or -1 if there is no face at that position. The code for
determining this in OpenGL is a bit complicated. Essentially, what we do is
render the scene in GL_SELECT mode to take advantage of OpenGL’s picking
capabilities and then retrieve the face number (its “name”) from the OpenGL
hit record.

Here’s main.cpp:

#include <QApplication>
#include <iostream>

Graphics with OpenGL 203

#include "tetrahedron.h"
using namespace std;

int main(int argc, char =argv[])

{
QApplication app(argc, argv);
if (!QGLFormat::hasOpen6GL()) {
cerr << "This system has no OpenGL support" << endl;
return 1;
}
Tetrahedron tetrahedron;
tetrahedron.setWindowTitle (QObject::tr ("Tetrahedron"));
tetrahedron.resize (300, 300);
tetrahedron.show();
return app.exec();
}

If the user’s system doesn’t support OpenGL, we print an error message to the
console and return immediately.

To link the application against the QtOpenGL module and the system’s
OpenGL library, the .pro file needs this entry:

QT += opengl

That completes the Tetrahedron application. For more information about the
QtOpenGL module, see the reference documentation for 06LWidget, QGLFormat,
QGLContext, Q6LColormap, and QGLPixelBuffer.

¢ Enabling Drag and Drop
¢ Supporting Custom Drag Types
¢ Clipboard Handling

9. Drag and Drop

Drag and drop is a modern and intuitive way of transferring information
within an application or between different applications. It is often provided in
addition to clipboard support for moving and copying data.

In this chapter, we will see how to add drag and drop support to an application
and how to handle custom formats. Then we will show how to reuse the drag
and drop code to add clipboard support. This code reuse is possible because
both mechanisms are based on QMimeData, a class that can provide data in
several formats.

Enabling Drag and Drop

Drag and drop involves two distinct actions: dragging and dropping. Qt
widgets can serve as drag sites, as drop sites, or as both.

Our first example shows how to make a Qt application accept a drag initiated
by another application. The Qt application is a main window with a QTextEdit
as its central widget. When the user drags a text file from the desktop or from
a file explorer and drops it onto the application, the application loads the file
into the QTextEdit.

Here’s the definition of the example’s MainWindow class:

class MainWindow : public QMainWindow

{
Q_OBJECT
public:
MainWindow ();
protected:
void dragEnterEvent (QDragEnterEvent xevent);
void dropEvent (QDropEvent xevent);
private:

bool readFile(const QString &fileName);

205

206 9. Drag and Drop

QTextEdit =textEdit;
};

The MainWindow class reimplements dragEnterEvent() and dropEvent() from
QWidget. Since the purpose of the example is to show drag and drop, much of the
functionality we would expect to be in a main window class has been omitted.

MainWindow: :MainWindow ()

{
textEdit = new QTextEdit;
setCentralWidget (textEdit);
textEdit->setAcceptDrops(false);
setAcceptDrops (true);
setWindowTitle (tr("Text Editor"));
}

In the constructor, we create a QTextEdit and set it as the central widget. By
default, QTextEdit accepts textual drags from other applications, and if the user
drops a file onto it, it will insert the file name into the text. Since drop events
are propagated from child to parent, by disabling dropping on the QTextEdit
and enabling it on the main window, we get the drop events for the whole
window in MainWindow.

void MainWindow::dragEnterEvent (QDragknterEvent xevent)
{
if (event->mimeData()->hasFormat ("text/uri-list"))
event->acceptProposedAction();
}

The dragenterEvent () is called whenever the user drags an object onto a widget.
If we call acceptProposedAction() on the event, we indicate that the user can
drop the drag object on this widget. By default, the widget wouldn’t accept the
drag. Qt automatically changes the cursor to indicate to the user whether or
not the widget is a legitimate drop site.

Here we want the user to be allowed to drag files but nothing else. To do
so, we check the MIME type of the drag. The MIME type text/uri-list is
used to store a list of universal resource identifiers (URIs), which can be file
names, URLs (such as HTTP or FTP paths), or other global resource identi-
fiers. Standard MIME types are defined by the Internet Assigned Numbers
Authority (IANA). They consist of a type and a subtype separated by a slash.
MIME types are used by the clipboard and by the drag and drop system to
identify different types of data. The official list of MIME types is available
at http://www.l1ana.org/assignments/media-types/.

void MainWindow::dropEvent (QDropEvent x*event)
{
QList<QUrl> urls = event->mimeData()->urls();
if (urls.isEmpty())
return;

QString fileName = urls.first().tolLocalFile();

Enabling Drag and Drop 207

if (fileName.isEmpty())
return;

if (readFile(fileName))
setWindowTitle (tr("%1 - %2").arg(fileName)

.arg(tr("Drag File")));
}

The dropEvent () is called when the user drops an object onto the widget. We
call QMimeData::urls() to obtain a list of QUrls. Typically, users only drag one
file at a time, but it is possible for them to drag multiple files by dragging a
selection. If there’s more that one URL, or if the URL is not a local file name,
we return immediately.

QWidget also provides dragMoveEvent() and draglLeaveEvent(), but for most
applications they don’t need to be reimplemented.

The second example illustrates how to initiate a drag and accept a drop. We
will create a QListWidget subclass that supports drag and drop, and use it as a
component in the Project Chooser application shown in Figure 9.1.

eme Choose Project
Project A Project B
Giosue Carducci Rudolf Eucken
Eyvind Johnson Anatole France
Sally Prudhomme « Rudyard Kipling
Henryk Sienkiewicz
Carl Spitteler ' Eugene O'Neill
Rabindranath Tagore Sigrid Undset

Kawabata Yasunari

Figure 9.1. The Project Chooser application

The Project Chooser application presents the user with two list widgets,
populated with names. Each list widget represents a project. The user can
drag and drop the names in the list widgets to move a person from one project
to another.

The drag and drop code is all located in the QListWidget subclass. Here’s the
class definition:

class ProjectListWidget : public QListWidget

{
Q_OBJECT

public:
ProjectListWidget (QWidget *parent = 0);

protected:
void mousePressEvent (QMouseEvent *event);
void mouseMoveEvent (QMouseEvent =event);
void dragEnterEvent (QDragEnterEvent =event);

208 9. Drag and Drop

void dragMoveEvent (QDragMoveEvent xevent);
void dropEvent (QDropEvent xevent);

private:
void startDrag();

QPoint startPos;
};

The ProjectListWidget class reimplements five event handlers declared in
QWidget.

ProjectListWidget::ProjectListWidget (QWidget =parent)
: QListWidget (parent)
{

}

In the constructor, we enable drops on the list widget.

setAcceptDrops(true);

void ProjectListWidget::mousePressEvent (QMouseEvent xevent)
{
if (event->button() == Qt::LeftButton)
startPos = event->pos();
QListWidget::mousePressEvent (event);
}

When the user presses the left mouse button, we store the mouse position
in the startPos private variable. We call QListWidget’s implementation of
mousePressEvent () to ensure that the QListWidget has the opportunity to process
mouse press events as usual.

void ProjectListWidget::mouseMoveEvent (QMouseEvent =event)
{
if (event->buttons() & Qt::LeftButton) {
int distance = (event->pos() - startPos).manhattanLength();
if (distance >= QApplication::startDragDistance())
startDrag();
}
QListWidget::mouseMoveEvent (event);

}

When the user moves the mouse cursor while holding the left mouse button,
we consider starting a drag. We compute the distance between the current
mouse position and the position where the left mouse button was pressed. If
the distance is larger than QApplication’s recommended drag start distance
(normally 4 pixels), we call the private function startdrag() to start dragging.
This avoids initiating a drag just because the user’s hand shakes.

void ProjectListWidget::startDrag()
{
QListWidgetItem =item = currentItem();
if (item) {
QMimeData *mimeData = new QMimeData;
mimeData->setText (item->text());

Enabling Drag and Drop 209

QDrag *drag = new QDrag(this);

drag->setMimeData (mimeData);

drag->setPixmap (QPixmap (":/images/person.png"));

if (drag->start(Qt::MoveAction) == Qt::MoveAction)
delete item;

}

In startDrag(), we create an object of type QDrag with this as its parent. The
QDrag object stores the data in a QMimeData object. For this example, we provide
the data as a text/plain string using QMimeData: :setText (). QMimeData provides
several functions for handling the most common types of drags (images, URLs,
colors, etc.) and can handle arbitrary MIME types represented as QByteArrays.
The call to QDrag: :setPixmap () sets the icon that follows the cursor while the
drag is taking place.

The Qbrag: :start () call starts the dragging operation and blocks until the user
drops or cancels the drag. It takes a combination of supported “drag actions”
as argument (Qt::CopyAction, Qt::MoveAction, and Qt::LinkAction) and returns
the drag action that was executed (or Qt::IgnoreAction if none was executed).
Which action is executed depends on what the source widget allows, what the
target supports, and which modifier keys are pressed when the drop occurs.
After the start () call, Qt takes ownership of the drag object and will delete it
when it is no longer required.

void ProjectListWidget::dragEnterEvent (QDragEnterEvent xevent)
{
ProjectListWidget =source =
gobject_cast<ProjectListWidget *>(event->source());
if (source && source != this) {
event->setDropAction (Qt::MoveAction);
event->accept ();

}

The ProjectListWidget widget not only originates drags, it also accepts such
drags if they come from another ProjectListWidget in the same application.
QDragEnterEvent::source() returns a pointer to the widget that initiated the
drag if that widget is part of the same application; otherwise, it returns a
null pointer. We use qobject_cast<T>() to ensure that the drag comes from a
ProjectListWidget. If all is correct, we tell Qt that we are ready to accept the
action as a move action.

void ProjectListWidget::dragMoveEvent (QDragMoveEvent xevent)
{
ProjectListWidget =source =
gobject_cast<ProjectListWidget *>(event->source());
if (source && source != this) {
event->setDropAction (Qt::MoveAction);
event->accept ();

210 9. Drag and Drop

The code in dragMoveEvent () is identical to what we did in dragEnterEvent (). It
is necessary because we need to override QListWidget’s (actually, QAbstractItem-
View’s) implementation of the function.

void ProjectListWidget::dropEvent (QDropEvent =event)

{
ProjectListWidget =source =
qobject_cast<ProjectListWidget =*>(event->source());
if (source && source != this) {
addItem(event->mimeData () ->text());
event->setDropAction(Qt::MoveAction);
event->accept ();
}
}

In dropEvent (), we retrieve the dragged text using QMimeData: :text () and create
an item with that text. We also need to accept the event as a “move action”
to tell the source widget that it can now remove the original version of the
dragged item.

Drag and drop is a powerful mechanism for transferring data between applica-
tions. Butin some cases, it’s possible to implement drag and drop without using
Qt’s drag and drop facilities. If all we want to do is to move data within one
widget in one application, we can often simply reimplement mousePressEvent ()
and mouseReleaseEvent ().

Supporting Custom Drag Types

In the examples so far, we have relied on QMimeData’s support for common MIME
types. Thus, we called QMimeData: :setText () to create a text drag, and we used
QMimeData:urls() to retrieve the contents of a text/uri-list drag. If we want
to drag plain text, HTML text, images, URLs, or colors, we can use QMimeData
without formality. But if we want to drag custom data, we must choose
between the following alternatives:

1. We can provide arbitrary data as a QByteArray using QMimeData: :setData()
and extract it later using QMimeData: :data().

2. We can subclass QMimeData and reimplement formats () and retrieveData()
to handle our custom data types.

3. For drag and drop operations within a single application, we can subclass
QMimeData and store the data using any data structure we want.

The first approach does not involve any subclassing, but does have some draw-
backs: We need to convert our data structure to a QByteArray even if the drag
is not ultimately accepted, and if we want to provide several MIME types to
interact nicely with a wide range of applications, we need to store the data sev-
eral times (once per MIME type). If the data is large, this can slow down the
application needlessly. The second and third approaches can avoid or minimize
these problems. They give us complete control and can be used together.

Supporting Custom Drag Types 211

To show how these approaches work, we will show how to add drag and drop
capabilities to a QTableWidget. The drag will support the following MIME types:
text/plain, text/html, and text/csv. Using the first approach, starting a drag
looks like this:

void MyTableWidget::mouseMoveEvent (QMouseEvent x*event)

{
if (event->buttons() & Qt::LeftButton) {
int distance = (event->pos() - startPos).manhattanLength();
if (distance >= QApplication::startDragDistance())
startDrag();
}
QTableWidget::mouseMoveEvent (event);
}
void MyTableWidget::startDrag()
{
QString plainText = selectionAsPlainText();
if (plainText.isEmpty())
return;
QMimeData *mimeData = new QMimeData;
mimeData->setText (plainText);
mimeData->setHtml (toHtml (plainText));
mimeData->setData("text/csv", toCsv(plainText).toUtf8());
QDrag *drag = new QDrag(this);
drag->setMimeData(mimeData);
if (drag->start(Qt::CopyAction | Qt::MoveAction) == Qt::MoveAction)
deleteSelection();
}

The startdrag() private function is called from mouseMoveEvent () to start drag-
ging a rectangular selection. We set the text/plain and text/html MIME
types using setText() and setHtml (), and we set the text/csv type using set-
Data(), which takes an arbitrary MIME type and a QByteArray. The code for the
selectionAsString() is more or less the same as the Spreadsheet::copy () func-
tion from Chapter 4 (p. 83).

QString MyTableWidget::toCsv(const QString &plainText)
{

QString result = plainText;
result.replace ("\\", "\\\\");
result.replace("\"", "\\\"");
result.replace ("\t", "\", \"");
result.replace("\n", "\"\n\"");
result.prepend("\"");
result.append("\"");

return result;

}

QString MyTableWidget::toHtml(const QString &plainText)
{
QString result = Qt::escape(plainText);
result.replace("\t", "<td>");

212 9. Drag and Drop

result.replace("\n", "\n<tr><td>");
result.prepend("<table>\n<tr><td>");
result.append("\n</table>");

return result;

}

The toCsv() and toHtml () functions convert a “tabs and newlines” string into a
CSV (comma-separated values) or an HTML string. For example, the data

Red Green Blue
Cyan Yellow Magenta

is converted to

"Red", "Green", "Blue"
"Cyan", "Yellow", "Magenta"

or to

<table>
<tr><td>Red<td>Green<td>Blue
<tr><td>Cyan<td>Yellow<td>Magenta
</table>

The conversion is performed in the simplest way possible, using QString::
replace (). To escape HTML special characters, we use Qt: :escape ().

void MyTableWidget::dropEvent (QDropEvent *event)
{
if (event->mimeData()->hasFormat ("text/csv")) {
QByteArray csvData = event->mimeData()->data("text/csv");
QString csvText = QString::fromUtf8(csvData);

event->acceptProposedAction();
} else if (event->mimeData()->hasFormat ("text/plain")) {
QString plainText = event->mimeData () ->text();

event->acceptProposedAction();

}

Although we provide the data in three different formats, we only accept two
of them in dropEvent (). If the user drags cells from a QTableWidget to an HTML
editor, we want the cells to be converted into an HTML table. But if the user
drags arbitrary HTML into a QTableWidget, we don’t want to accept it.

To make this example work, we also need to call setAcceptDrops(true) and
setSelectionMode (ContiguousSelection) in the MyTableWidget constructor.

We will now redo the example, but this time we will subclass QMimeData to post-
pone or avoid the (potentially expensive) conversions between QTableWidget-
Items and QByteArray. Here’s the definition of our subclass:

class TableMimeData : public QMimeData

{
Q_OBJECT

Supporting Custom Drag Types 213

public:
TableMimeData(const QTableWidget =tableWidget,
const QTableWidgetSelectionRange &range);

const QTableWidget =tableWidget() const { return myTableWidget; }
QTableWidgetSelectionRange range() const { return myRange; }
QStringList formats() const;

protected:
Qvariant retrieveData(const QString &format,
Qvariant::Type preferredType) const;

private:
static QString toHtml (const QString &plainText);
static QString toCsv(const QString &plainText);

QString text(int row, int column) const;
QString rangeAsPlainText() const;

const QTableWidget *myTableWidget;
QTableWidgetSelectionRange myRange;
QStringList myFormats;

b

Instead of storing actual data, we store a QTableWidgetSelectionRange that spec-
ifies which cells are being dragged and keep a pointer to the QTableWidget. The
formats() and retrieveData() functions are reimplemented from QMimeData.

TableMimeData::TableMimeData(const QTableWidget *tableWidget,
const QTableWidgetSelectionRange &range)

{

myTableWidget = tableWidget;

myRange = range;

myFormats << "text/csv" << "text/html" << "text/plain";
}

In the constructor, we initialize the private variables.

QStringList TableMimeData::formats() const
{

}

The formats() function returns a list of MIME types provided by the MIME
data object. The precise order of the formats is usually irrelevant, but it’s
good practice to put the “best” formats first. Applications that support many
formats will sometimes use the first one that matches.

return myFormats;

QVariant TableMimeData::retrieveData(const QString &format,
QVariant::Type preferredType) const
{

if (format == "text/plain") {
return rangeAsPlainText();
} else if (format == "text/csv") {
return toCsv(rangeAsPlainText());
} else if (format == "text/html") {

214 9. Drag and Drop

return toHtml (rangeAsPlainText());
} else {

return QMimeData::retrieveData(format, preferredType);
}

}

The retrieveData() function returns the data for a given MIME type as a Qvari-
ant. The value of the format parameter is normally one of the strings returned
by formats (), but we cannot assume that, since not all applications check the
MIME type against formats (). The getter functions text (), html (),urls(), image-
Data(),colorData(),and data() provided by QMimeData are implemented in terms
of retrieveData().

The preferredType parameter gives us a hint about which type we should put in
the Qvariant. Here, we ignore it and trust QMimeData to convert the return value
into the desired type, if necessary.

void MyTableWidget::dropEvent (QDropEvent =event)

{
const TableMimeData =tableData =
gobject_cast<const TableMimeData *>(event->mimeData());
if (tableData) {
const QTableWidget xotherTable = tableData->tableWidget();
QTableWidgetSelectionRange otherRange = tableData->range();
event->acceptProposedAction();

} else if (event->mimeData()->hasFormat ("text/csv")) {
QByteArray csvData = event->mimeData() ->data("text/csv");
QString csvText = QString::fromUtf8(csvData);
event->acceptProposedAction();

} else if (event->mimeData() ->hasFormat ("text/plain")) {
QString plainText = event->mimeData () ->text();
event->acceptProposedAction();

}

QTableWidget: :mouseMoveEvent (event);

}

The dropEvent () function is similar to the one we had earlier in this section,
but this time we optimize it by checking first if we can safely cast the QMimeData
object to a TableMimeData. If the qobject_cast<T>() works, this means the drag
was originated by a MyTableWidget in the same application, and we can directly
access the table data instead of going through QMimeData’s API. If the cast fails,
we extract the data the standard way.

In this example, we encoded the CSV text using the UTF-8 encoding. If
we want to be certain of using the right encoding, we could use the charset
parameter of the text/plain MIME type to specify an explicit encoding. Here
are a few examples:

text/plain; charset=US-ASCII
text/plain; charset=150-8859-1

Supporting Custom Drag Types 215

text/plain; charset=Shift_JIS
text/plain; charset=UTF-8

Clipboard Handling

Most applications make use of Qt’s built-in clipboard handling in one way or
another. For example, the QTextEdit class provides cut (), copy (), and paste ()
slots as well as keyboard shortcuts, so little or no additional code is required.

When writing our own classes, we can access the clipboard through QApplica-
tion::clipboard(), which returns a pointer to the application’s QClipboard ob-
ject. Handling the system clipboard is easy: Call setText (), setImage (), or set-
Pixmap () to put data onto the clipboard, and call text (), image (), or pixmap () to
retrieve data from the clipboard. We have already seen examples of clipboard
use in the Spreadsheet application from Chapter 4.

For some applications, the built-in functionality might not be sufficient. For
example, we might want to provide data that isn’t just text or an image, or we
might want to provide data in many different formats for maximum interop-
erability with other applications. The issue is very similar to what we encoun-
tered earlier with drag and drop, and the answer is also similar: We can sub-
class QMimeData and reimplement a few virtual functions.

If our application supports drag and drop through a custom QMimeData subclass,
we can simply reuse the QMimeData subclass and put it on the clipboard using
the setMimeData() function. To retrieve the data, we can call mimeData() on
the clipboard.

On X11, it is usually possible to paste a selection by clicking the middle button
of a three-button mouse. This is done using a separate “selection” clipboard.
If you want your widgets to support this kind of clipboard as well as the stan-
dard one, you must pass QClipboard::Selection as an additional argument to
the various clipboard calls. For example, here’s how we would reimplement
mouseReleaseEvent () in a text editor to support pasting using the middle mouse
button:

void MyTextEditor::mouseReleaseEvent (QMouseEvent *event)
{
QClipboard =clipboard = QApplication::clipboard();
if (event->button() == Qt::MidButton
&& clipboard->supportsSelection()) {
QString text = clipboard->text (QClipboard::Selection);
pasteText (text);

}

On X11, the supportsSelection() function returns true. On other platforms, it
returns false.

If we want to be notified whenever the clipboard’s contents change, we can
connect the QClipboard: :dataChanged() signal to a custom slot.

Using the Item View Convenience
Classes

Using Predefined Models
Implementing Custom Models

Implementing Custom Delegates

10. Item View Classes

Many applications let the user search, view, and edit individual items that be-
long to a data set. The data might be held in files or accessed from a database
or a network server. The standard approach to dealing with data sets like this
is to use Qt’s item view classes.

In earlier versions of Qt, the item view widgets were populated with the entire
contents of a data set; the users would perform all their searches and edits on
the data held in the widget, and at some point the changes would be written
back to the data source. Although simple to understand and use, this approach
doesn’t scale well to very large data sets and doesn’t lend itself to situations
where we want to display the same data set in two or more different widgets.

The Smalltalk language popularized a flexible approach to visualizing large
data sets: model-view—controller (MVC). In the MVC approach, the model rep-
resents the data set and is responsible for fetching the data that is needed for
viewing and for writing back any changes. Each type of data set has its own
model, but the API that the models provide to the views is uniform no matter
what the underlying data set. The view presentsthe data to the user. With any
large data set only a limited amount of data will be visible at any one time, so
that is the only data that the view asks for. The controller mediates between
the user and the view, converting user actions into requests to navigate or edit
data, which the view then transmits to the model as necessary.

f Delegate

Data Source <—> Model

Figure 10.1. Qt’s model/view architecture
Qt provides a model/view architecture inspired by the MVC approach. In

Qt, the model behaves the same as it does for classic MVC. But instead of a
controller, Qt uses a slightly different abstraction: the delegate. The delegate

217

218 10. Item View Classes

is used to provide fine control over how items are rendered and edited. Qt
provides a default delegate for every type of view. This is sufficient for most
applications, so we usually don’t need to care about it.

Using Qt’s model/view architecture, we can use models that only fetch the data
that is actually needed for display in the view. This makes handling very large
data sets much faster and less memory hungry than reading all the data. And
by registering a model with two or more views, we can give the user the oppor-
tunity of viewing and interacting with the data in different ways, with little
overhead. Qt automatically keeps multiple views in sync, reflecting changes
to one in all the others. An additional benefit of the model/view architecture is
that if we decide to change how the underlying data set is stored, we just need
to change the model; the views will continue to behave correctly.

List View 3 Table View 1 Table View 2

v
<
o
[oX
@
7y

Figure 10.2. One model can serve multiple views

In many situations, we only need to present relatively small numbers of items
to the user. In these common cases, we can use Qt’s convenience item view
classes (QListWidget, QTableWidget, and QTreeWidget) and populate them with
items directly. These classes behave in a similar way to the item view class-
es provided by earlier versions of Qt. They store their data in “items” (for ex-
ample, a QTableWidget contains QTableWidgetItems). Internally, the convenience
classes use custom models that make the items visible to the views.

For large data sets, duplicating the data is often not an option. In these cases,
we can use Qt’s views (QListView, QTableView, and QTreeView),in conjunction with
a data model, which can be a custom model or one of Qt’s predefined models.
For example, if the data set is held in a database, we can combine a QTableView
with a QSqlTableModel.

Using the Item View Convenience Classes

Using Qt’s item view convenience subclasses is usually simpler than defining
a custom model and is appropriate when we don’t need the benefits of sepa-
rating the model and the view. We used this technique in Chapter 4 when we
subclassed QTableWidget and QTableWidgetItem to implement spreadsheet func-
tionality.

Using the Item View Convenience Classes 219

In this section, we will show how to use the convenience item view subclasses
to display items. The first example shows a read-only QListWidget, the second
example shows an editable QTableWidget, and the third example shows a
read-only QTreeWidget.

We begin with a simple dialog that lets the user pick a flowchart symbol from
a list. Each item consists of an icon, a text, and a unique ID.

B Flowchart Symbol Picker E|§|

~
U Wanual Operation
|O On Page Reference

Predefined Process

W

[OK H Cancel]

Figure 10.3. The Flowchart Symbol Picker application

Let’s start with an extract from the dialog’s header file:

class FlowChartSymbolPicker : public QDialog

{
Q_OBJECT
public:
FlowChartSymbolPicker (const QMap<int, QString> &symbolMap,
QWidget xparent = 0);
int selectedId() const { return id; }
void done(int result);
}

When we construct the dialog, we must pass it a QMap<int, QString>, and after it
has executed we can retrieve the chosen ID (or -1 if the user didn’t select any
item) by calling selectedId().

FlowChartSymbolPicker::FlowChartSymbolPicker (
const QMap<int, QString> &symbolMap, QWidget =parent)
: QDialog(parent)

listWidget = new QListWidget;
listWidget->setIconSize (QSize (60, 60));

QMapIterator<int, QString> i(symbolMap);

220 10. Item View Classes

while (i.hasNext()) {
i.next();
QListWidgetItem =item = new QListWidgetItem(i.value(),
listWidget);
item->setIcon (iconForSymbol (i.value()));
item->setData(Qt::UserRole, i.key());

}

We initialize id (the last selected ID) to -1. Next we construct a QListWidget, a
convenience item view widget. We iterate over each item in the flowchart sym-
bol map and create a QListWidgetItem to represent each one. The QListWidget-
Item constructor takes a QString that represents the text to display, followed by
the parent QListWidget.

Then we set the item’s icon and we call setData() to store our arbitrary ID in
the QListWidgetItem. The iconForSymbol () private function returns a QIcon for a
given symbol name.

QListWidgetItem’s have several roles, each of which has an associated Qvariant.
The most common roles are Qt::DisplayRole, Qt::EditRole, and Qt::IconRole,
and for these there are convenience setter and getter functions (setText (),
setIcon()), but there are several other roles. We can also define custom roles by
specifying a numeric value of Qt::UserRole or higher. In our example, we use
Qt::UserRole to store each item’s ID.

The omitted part of the constructor is concerned with creating the buttons,
laying out the widgets, and setting the window’s title.

void FlowChartSymbolPicker::done(int result)

{
id = -1;
if (result == QDialog::Accepted) {
QListWidgetItem =item = listWidget->currentItem();
if (item)
id = item->data(Qt::UserRole).toInt();
}
QDialog::done(result);
}

The done () function is reimplemented from QDialog. It is called when the user
presses OK or Cancel. If the user clicked OK, we retrieve the relevant item and
extract the ID using the data() function. If we were interested in the item’s
text, we could retrieve it by calling item->data(Qt::DisplayRole).toString() or
more conveniently, item->text ().

By default, QListWidget is read-only. If we wanted the user to edit the items, we
could set the view’s edit triggers using QAbstractItemView::setEditTriggers();
for example, a setting of QAbstractItemView: :AnyKeyPressed means that the user
can begin editing an item just by starting to type. Alternatively, we could
provide an Edit button (and perhaps Add and Delete buttons) and connect them
to slots so that we could handle the editing operations programmatically.

Using the Item View Convenience Classes 221

Now that we have seen how to use a convenience item view class for viewing
and selecting data, we will look at an example where we can edit data. Again
we are using a dialog, this time one that presents a set of (x, y) coordinates that
the user can edit.

B Coordinate Setter

X Y ~
5 08 25
§ 1 71
7 12 4
8 14 136
3 16 22
10 18 22
[addrow |[ok][concel |

Figure 10.4. The Coordinate Setter application

As with the previous example, we will focus on the item view relevant code,
starting with the constructor.

CoordinateSetter::CoordinateSetter (QList<QPointF> =coords,
QWidget xparent)
: QDialog(parent)

coordinates = coords;

tableWidget = new QTableWidget (0, 2);
tableWidget->setHorizontalHeaderLabels(
QStringList () << tr("X") <L tr("Y"));

for (int row = 0; row < coordinates->count(); ++row) {
QPointF point = coordinates—>at(row);
addRow () ;
tableWidget->item(row, 0)->setText(QString::number (point.x()));
tableWidget->item(row, 1)->setText(QString::number (point.y()));

}

The QTableWidget constructor takes the initial number of table rows and
columns to display. Every item in a QTableWidget is represented by a QTable-
WidgetItem, including horizontal and vertical header items. The setHorizontal-
HeaderLabels () function sets the text for each horizontal table widget item to
the corresponding text in the string list it is passed. By default, QTableWidget
provides a vertical header with rows labeled from 1, which is exactly what we
want, so we don’t need to set the vertical header labels manually.

222 10. Item View Classes

Once we have created and centered the column labels, we iterate through the
coordinate data that was passed in. For every (x, y) pair, we create two QTable-
WidgetItems corresponding to the x and y coordinates. The items are added to
the table using QTableWidget::setItem(), which takes a row and a column in
addition to the item.

By default, aTableWidget allows editing. The user can edit any cell in the table
by navigating to it and then either pressing F2 or simply by typing. All changes
made by the user in the view will be automatically reflected into the QTableWid-
getItems. To prevent editing, we can call setEditTriggers (QAbstractItemView: :
NoEditTriggers).

void CoordinateSetter::addRow ()

{
int row = tableWidget->rowCount();

tableWidget->insertRow (row);

QTableWidgetItem =item@ = new QTableWidgetItem;
item@->setTextAlignment (Qt::AlignRight | Qt::AlignVCenter);
tableWidget->setItem(row, 0, item0);

QTableWidgetItem =item1 = new QTableWidgetItem;
item1->setTextAlignment (Qt::AlignRight | Qt::AlignVCenter);
tableWidget->setItem(row, 1, iteml);

tableWidget->setCurrentItem(item0);
}

The addRow() slot is invoked when the user clicks the Add Row button. We
append a new row using insertRow (). If the user attempts to edit a cell in the
new row, the QTableWidget will automatically create a new QTableWidgetItenm.

void CoordinateSetter::done(int result)
{
if (result == QDialog::Accepted) {
coordinates->clear();
for (int row = 0; row < tableWidget->rowCount(); ++row) {
double x = tableWidget->item(row, 0)->text().toDouble();
double y = tableWidget->item(row, 1)->text().toDouble();
coordinates->append (QPointF (x, y));

}
}
QDialog::done(result);

}

Finally, when the user clicks OK, we clear the coordinates that were passed in
to the dialog, and create a new set based on the coordinates in the QTableWid-
get’s items.

For our third and final example of Qt’s convenience item view widgets, we will
look at some snippets from an application that shows Qt application settings
using a QTreeWidget. Read-only is the default for QTreeWidget.

Using the Item View Convenience Classes 223

Il Settings Viewer - Designer by Trolltech

Key Value o
qt_designer_widgetbox
qt_designer_signalsloteditor
qt_designer_resourceeditor
qt_designer_propertyeditor

- i

visible true
screen 0
maxdmized false
geometry
= qt_designer_objectinspector
visible true
screen 0 hd

[open. |[Cose |

Figure 10.5. The Settings Viewer application

Here’s an extract from the constructor:

SettingsViewer::SettingsViewer (QWidget *parent)

{

}

: QDialog(parent)

organization = "Trolltech";
application = "Designer";

treeWidget = new QTreeWidget;
treeWidget->setColumnCount (2);
treeWidget->setHeaderLabels(

QStringList () << tr("Key") << tr("value"));
treeWidget->header () ->setResizeMode (0, QHeaderView::Stretch);
treeWidget->header () ->setResizeMode (1, QHeaderView::Stretch);

setWindowTitle (tr("Settings Viewer"));
readSettings();

To access an application’s settings, a QSettings object must be created with the
organization’s name and the application’s name as parameters. We set default
names (“Designer” by “Trolltech”) and then construct a new QTreeWidget. At the
end, we call the readSettings () function.

void SettingsViewer::readSettings()

{

QSettings settings(organization, application);

treeWidget->clear();
addChildSettings(settings, 0, "");

treeWidget->sortByColumn(0);

treeWidget->setFocus();

setWindowTitle(tr ("Settings Viewer - %1 by %2")
.arg(application).arg(organization));

224 10. Item View Classes

Application settings are stored in a hierarchy of keys and values. The add-
ChildSettings() private function takes a settings object, a parent QTreeWid-
getItem, and the current “group”. A group is the QSettings equivalent of a file
system directory. The addChildSettings () function can call itself recursively to
traverse an arbitrary tree structure. The initial call from the readSettings()
function passes 0 as the parent item to represent the root.

void SettingsViewer::addChildSettings(QSettings &settings,
QTreeWidgetItem *parent, const QString &group)

{
QTreeWidgetItem =item;
settings.beginGroup (group);
foreach (QString key, settings.childKeys()) {
if (parent) {
item = new QTreeWidgetItem(parent);
} else {
item = new QTreeWidgetItem(treeWidget);
}
item->setText (0, key);
item->setText (1, settings.value(key).toString());
}
foreach (QString group, settings.childGroups()) {
if (parent) {
item = new QTreeWidgetItem(parent);
} else {
item = new QTreeWidgetItem(treeWidget);
}
item->setText (@, group);
addChildSettings(settings, item, group);
}
settings.endGroup();
}

The addChildSettings () function is used to create all the QTreeWidgetItems. It
iterates over all the keys at the current level in the settings hierarchy and
creates one QTableWidgetItem per key. If 0 was passed as the parent item, we
create the item as a child of the 0TreeWidget itself (making it a top-level item);
otherwise, we create the item as a child of parent. The first column is set to the
name of the key and the second column to the corresponding value.

Next, the function iterates over every group at the current level. For each
group, a new QTreeWidgetItem is created with its first column set to the group’s
name. The function then calls itself recursively with the group item as the
parent to populate the QTreeWidget with the group’s child items.

The item view widgets shown in this section allow us to use a style of program-
ming that is very similar to that used in earlier versions of Qt: reading an en-
tire data set into an item view widget, using item objects to represent data el-
ements, and (if the items are editable) writing back to the data source. In the
following sections, we will go beyond this simple approach and take full advan-
tage of Qt’s model/view architecture.

Using Predefined Models 225

Using Predefined Models

Qt provides several predefined models for use with the view classes:

QStringListModel Stores a list of strings

QStandardItemModel Stores arbitrary hierarchical data

QDirModel Encapsulates the local file system
QSqlQueryModel Encapsulates an SQL result set
QSqlTableModel Encapsulates an SQL table
QSqlRelationalTableModel | Encapsulates an SQL table with foreign keys
QSortFilterProxyModel Sorts and/or filters another model

In this section, we will look at how to use the QStringListModel, the QDirModel,
and the QSortFilterProxyModel. The SQL models are covered in Chapter 13.

Let’s begin with a simple dialog that users can use to add, delete, and edit a
QStringlList, where each string represents a team leader.

H Team Leaders

Stooge Viller
Littleface

B-B Eyes
Pruneface

Mrs. Pruneface
The Brow
Vitamin Flintheart
Flattop Sr.
Shakey
Breathless Mahoney
Mumbles
Shoulders
Sketch Paree

[Insert H Delete H QK H Cancel]

Figure 10.6. The Team Leaders application

Here’s the relevant extract from the constructor:

TeamLeadersDialog::TeamLeadersDialog(const QStringlList &leaders,
QWidget xparent)
: QDialog(parent)

model = new QStringListModel (this);
model->setStringlList (leaders);

listView = new QListView;
listView->setModel (model);
listView->setEditTriggers (QAbstractItemView::AnyKeyPressed
| QAbstractItemView::DoubleClicked);

226 10. Item View Classes

We begin by creating and populating a QStringListModel. Next we create a
QListview and set its model to the one we have just created. We also set some
editing triggers to allow the user to edit a string simply by starting to type on
it or by double-clicking it. By default, no editing triggers are set on a QListView,
making the view effectively read-only.

void TeamLeadersDialog::insert()

{
int row = listView->currentIndex().row();
model->insertRows (row, 1);
QModelIndex index = model->index (row);
listView->setCurrentIndex (index);
listView->edit (index);

}

When the user clicks the Insert button, the insert () slot is invoked. The slot be-
gins by retrieving the row number for the list view’s current item. Every data
item in a model has a corresponding “model index”, which is represented by a
QModelIndex object. We will look at model indexes in detail in the next section,
but for now it is sufficient to know that an index has three main components: a
row, a column, and a pointer to the model to which it belongs. For a one-dimen-
sional list model, the column is always 0.

Once we have the row number, we insert one new row at that position. The
insertion is performed on the model, and the model automatically updates the
list view. We then set the list view’s current index to the blank row we just
inserted. Finally, we set the list view to editing mode on the new row, just as
if the user had pressed a key or double-clicked to initiate editing.

void TeamlLeadersDialog::del()
{

}

In the constructor, the Delete button’s clicked() signal is connected to the del ()
slot. Since we are just deleting the current row, we can call removeRows () with
the current index position and a row count of 1. Just like with insertion, we
rely on the model to update the view accordingly.

model->removeRows (listView->currentIndex () .row(), 1);

QStringList TeamLeadersDialog::leaders() const
{

}

Finally, the leaders() function provides a means of reading back the edited
strings when the dialog is closed.

return model->stringlList();

TeamLeadersDialog could be made into a generic string list editing dialog sim-
ply by parameterizing its window title. Another generic dialog that is often
required is one that presents a list of files or directories to the user. The next
example uses the QDirModel class, which encapsulates the computer’s file sys-
tem and is capable of showing (and hiding) various file attributes. This model

Using Predefined Models 227

can apply a filter to restrict the kinds of file system entries that are shown and
can order the entries in various ways.

M Directory Viewer

MName Size Type Modfied |
= ﬁ Intemet Explarer 0 bytes Directory
ﬁ Connection Wizard D bytes Directory
B [F MUl 0 bytes Directary
- [1409 0 bytes Directary
D mazcorier.dl 150 KB dl File 200509-23...
[PLUGINS 0 bytes Directary
SIGNUP 0 bytes Directory
HMMAF.DLL IBKB DLL File 2004-08-04...
iedw exe 18 KB exe File
IEXPLORE.EXE 53 KB EXE File
= Q Java D bytes Directory b
Create Direc:tory...l [Remove] Quit

Figure 10.7. The Directory Viewer application

We will begin by looking at the creation and setting up of the model and the
view in the Directory Viewer dialog’s constructor.

DirectoryViewer::DirectoryViewer (QWidget *parent)
: QDialog(parent)
{

model = new QDirModel;
model->setReadOnly (false);
model->setSorting(QDir::DirsFirst | QDir::IgnoreCase | QDir::Name);

treeView = new QTreeView;

treeView->setModel (model);

treeView->header () ->setStretchLastSection(true);
treeView->header () ->setSortIndicator (0, Qt::AscendingOrder);
treeView->header () ->setSortIndicatorShown (true);
treeView—->header () ->setClickable (true);

QModelIndex index = model->index (QDir::currentPath());
treeView->expand (index);

treeView->scrollTo (index);
treeView->resizeColumnToContents (0);

}

Once the model has been constructed, we make it editable and set various
initial sort ordering attributes. We then create the QTreeview that will display
the model’s data. The QTreeView’s header can be used to provide user-controlled
sorting. By making the header clickable, the user can sort by whichever
column header they click, with repeated clicks alternating between ascending
and descending orders. Once the tree view’s header has been set up, we get
the model index of the current directory and make sure that this directory is
visible by expanding its parents if necessary using expand(), and scrolling to

228 10. Item View Classes

it using scrollTo(). Then we make sure that the first column is wide enough to
show all its entries without using ellipses (...).

In the part of the constructor code that isn’t shown here, we connected the
Create Directory and Remove buttons to slots to perform these actions. We do
not need a Rename button since users can rename in-place by pressing F2
and typing.

void DirectoryViewer::createDirectory ()
{

QModelIndex index = treeView->currentIndex();
if (lindex.isValid())
return;

QString dirName = QInputDialog::getText (this,
tr("Create Directory"),
tr("Directory name"));
if (!dirName.isEmpty()) {
if (!model->mkdir (index, dirName).isValid())
QMessageBox::information(this, tr("Create Directory"),
tr("Failed to create the directory"));

}

If the user enters a directory name in the input dialog, we attempt to create
a directory with this name as a child of the current directory. The QDirModel::
mkdir () function takes the parent directory’s index and the name of the new
directory, and returns the model index of the directory it created. If the
operation fails, it returns an invalid model index.

void DirectoryViewer::remove()
{
QModelIndex index = treeView->currentIndex();

if (lindex.isValid())
return;

bool ok;

if (model->filelnfo(index).isDir()) {
ok = model->rmdir (index);

} else {
ok = model->remove (index);

}

if (lok)
QMessageBox::information(this, tr("Remove"),
tr("Failed to remove %1").arg(model->fileName(index)));
}

If the user clicks Remove, we attempt to remove the file or directory associated
with the current item. We could use QDir to accomplish that, but QDirModel
offers convenience functions that work on QModelIndexes.

The last example in this section shows how to use QSortFilterProxyModel. Un-
like the other predefined models, this model encapsulates an existing model
and manipulates the data that passes between the underlying model and the

Using Predefined Models 229

view. In our example, the underlying model is a QStringListModel initialized
with the list of color names recognized by Qt (obtained through QColor::col-
orNames ()). The user can type a filter string in a QLineEdit and specify how this
string is to be interpreted (as a regular expression, a wildcard pattern, or a
fixed string) using a combobox.

M Color Names @E|

darkgray ~
darkgrey

darkslategray

darkslategrey

dimgray

dimgrey

aray

garey

lightaray

ligftgrey

lightslategray w

Filter: arlaely

Pattem syntac: | Regular expression W

Figure 10.8. The Color Names application

Here’s an extract from the ColorNamesDialog constructor:

ColorNamesDialog::ColorNamesDialog(QWidget =parent)
: QDialog(parent)
{

sourceModel = new QStringlListModel (this);
sourceModel->setStringlist (QColor::colorNames());

proxyModel = new QSortFilterProxyModel (this);
proxyModel->setSourceModel (sourceModel);
proxyModel->setFilterKeyColumn(0);

listView = new QListView;
listView->setModel (proxyModel);

syntaxComboBox = new QComboBox;
syntaxComboBox->addItem (tr ("Regular expression"), QRegExp::RegExp);
syntaxComboBox->addItem(tr ("Wildcard"), QRegExp::Wildcard);
syntaxComboBox->addItem(tr ("Fixed string"), QRegExp::FixedString);

}

The QStringlListModel is created and populated in the usual way. This is fol-
lowed by the construction of the QSortFilterProxyModel. We pass the underly-
ing model using setSourceModel () and tell the proxy to filter based on column
0 of the original model. The QComboBox: :addItem() function accepts an optional
“data” argument of type QVariant; we use this to store the QRegExp: :PatternSyn-
tax value that corresponds to each item’s text.

230 10. Item View Classes

void ColorNamesDialog::reapplyFilter ()
{
QRegExp::PatternSyntax syntax =
QRegExp::PatternSyntax (syntaxComboBox->itemData
syntaxComboBox->currentIndex()) .toInt());
QRegExp regExp (filterLineEdit->text (), Qt::Caselnsensitive, syntax);
proxyModel->setFilterRegExp (regkxp);

The reapplyFilter () slot is invoked whenever the user changes the filter string
or the pattern syntax combobox. We create a QRegExp using the text in the line
edit. Then we set its pattern syntax to the one stored in the syntax combobox’s
current item’s data. When we call setFilterRegExp (), the new filter becomes
active and the view is automatically updated.

Implementing Custom Models

Qt’s predefined models offer a convenient means of handling and viewing data.
However, some data sources cannot be used efficiently using the predefined
models, and for these situations it is necessary to create custom models
optimized for the underlying data source.

Before we embark on creating custom models, let’s first review the key con-
cepts used in Qt’s model/view architecture. Every data element in a model
has a model index and a set of attributes, called roles, that can take arbitrary
values. We saw earlier in the chapter that the most commonly used roles are
Qt::DisplayRole and Qt::EditRole. Other roles are used for supplementary data
(for example, Qt::ToolTipRole, Qt::StatusTipRole, and Qt::WhatsThisRole), and
yet others for controlling basic display attributes (such as Qt::FontRole, Qt::
TextAlignmentRole, Qt::TextColorRole, and Qt::BackgroundColorRole).

List Model Table Model Tree Model
root row root @ root
row 0 ; row
0 =0
1
I e T O O 0
2
2 : . Fald 1

coumn 0 1 2 1 m
2 —{ [T1

column 01 2

Figure 10.9. Schematic view of Qt’s models

Implementing Custom Models 231

For a list model, the only relevant index component is the row number, accessi-
ble from QModelIndex::row(). For a table model, the relevant index components
are the row and column numbers, accessible from QModelIndex: :row() and QMod-
ellndex::column(). For both list and table models, every item’s parent is the
root, which is represented by an invalid QModelIndex. The first two examples in
this section show how to implement custom table models.

A tree model is similar to a table model, with the following differences. Like
a table model, the parent of top-level items is the root (an invalid QModelIndex),
but every other item’s parent is some other item in the hierarchy. Parents are
accessible from QModelIndex: :parent (). Every item has its role data, and zero or
more children, each an item in its own right. Since items can have other items
as children, it is possible to represent recursive (tree-like) data structures, as
the final example in this section will show.

The first example in this section is a read-only table model that shows currency
values in relation to each other.

M Currencies |
NOK NZD SEK SGD usp bt

NOK 0.2254 11591 0.25%2 01534
NZD 44363 1.0000 5.3195 1.1500 0.65304
SEK 0.2340 013280 1.0000 0.2162 01279
SGD 3.8578 0.8696 46258 1.0000 0.5917
uso 6.5200 1.4657 7.8180 1.6501 1.0000
£ 4

Figure 10.10. The Currencies application

The application could be implemented using a simple table, but we want to
use a custom model to take advantage of certain properties of the data to
minimize storage. If we were to store the 162 currently traded currenciesin a
table, we would need to store 162 x 162 = 26 244 values; with the custom model
presented below, we only need to store 162 values (the value of each currency
in relation to the U.S. dollar).

The CurrencyModel class will be used with a standard QTableView. The Currency-
Model is populated with a QMap<QString, double>; each key is a currency code and
each value is the value of the currency in U.S. dollars. Here’s a code snippet
that shows how the map is populated and how the model is used:

QMap<Qstring, double> currencyMap;
currencyMap.insert ("AUD", 1.3259);
currencyMap.insert ("CHF", 1.2970);

currencyMap.insert ("SGD", 1.6901);
currencyMap.insert ("USD", 1.0000);

232 10. Item View Classes

CurrencyModel currencyModel;
currencyModel.setCurrencyMap (currencyMap) ;

QTableView tableView;
tableView.setModel (¤cyModel);
tableView.setAlternatingRowColors(true);

Now we can look at the implementation of the model, starting with its
header:

class CurrencyModel : public QAbstractTableModel

{

public:
CurrencyModel (QObject =parent = 0);
void setCurrencyMap (const QMap<QString, double> &map);
int rowCount (const QModelIndex &parent) const;
int columnCount (const QModelIndex &parent) const;
QVariant data(const QModellIndex &index, int role) const;
QVariant headerData(int section, Qt::0rientation orientation,

int role) const;

private:
QString currencyAt(int offset) const;
QMap<QString, double> currencyMap;

h

We have chosen to subclass QAbstractTableModel for our model since that most
closely matches our data source. Qt provides several model base classes, in-
cluding QAbstractListModel, QAbstractTableModel, and QAbstractItemModel. The
QAbstractItemModel class is used to support a wide variety of models, including
those that are based on recursive data structures, while the QAbstractListModel
and QAbstractTableModel classes are provided for convenience when using one-
dimensional or two-dimensional data sets.

QObject

|
QAbstractltemModel
|

[|
QAbstractListModel QAbstractTableModel

Figure 10.11. Inheritance tree for the abstract model classes

For a read-only table model, we must reimplement three functions: rowCount (),
columnCount (), and data(). In this case, we have also reimplemented header-
Data(), and we provide a function to initialize the data (setCurrencyMap ()).

CurrencyModel::CurrencyModel (Q0Object =parent)
: QAbstractTableModel (parent)
{

}

Implementing Custom Models 233

We do not need to do anything in the constructor, except pass the parent
parameter to the base class.

int CurrencyModel::rowCount (const QModelIndex & /* parent =/) const

{
}

int CurrencyModel::columnCount (const QModellndex & /* parent x/) const
{

}

For this table model, the row and column counts are the number of currencies
in the currency map. The parent parameter has no meaning for a table model;
it is there because rowCount () and columnCount () are inherited from the more
generic QAbstractItemModel base class, which supports hierarchies.

return currencyMap.count ();

return currencyMap.count ();

Qvariant CurrencyModel::data(const QModelIndex &index, int role) const

{
if (lindex.isValid())
return QvVariant();

if (role == Qt::TextAlignmentRole) {
return int(Qt::AlignRight | Qt::AlignVCenter);

} else if (role == Qt::DisplayRole) {
QString rowCurrency = currencyAt (index.row());
QString columnCurrency = currencyAt(index.column());

if (currencyMap.value(rowCurrency) == 0.0)
return "####";

double amount = currencyMap.value(columnCurrency)
/ currencyMap.value (rowCurrency);

return QString("%1").arg(amount, 0, 'f', 4);

}
return QvVariant();

}

The data() function returns the value of any of an item’s roles. The item
is specified as a QModelIndex. For a table model, the interesting components
of a QModellIndex are its row and column number, available using row() and
column().

If the role is Qt::TextAlignmentRole, we return an alignment suitable for
numbers. If the display role is Qt::DisplayRole, we look up the value for each
currency and calculate the exchange rate.

We could return the calculated value as a double, but then we would have no
control over how many decimal places were shown (unless we use a custom
delegate). Instead, we return the value as a string, formatted as we want.

234 10. Item View Classes

QVariant CurrencyModel::headerData(int section,
Qt::0rientation /* orientation =/,
int role) const

{
if (role I= Qt::DisplayRole)
return QVariant();
return currencyAt (section);
}

The headerData() function is called by the view to populate its horizontal and
vertical headers. The section parameter is the row or column number (depend-
ing on the orientation). Since the rows and columns have the same currency
codes, we do not care about the orientation and simply return the code of the
currency for the given section number.

void CurrencyModel::setCurrencyMap (const QMap<QString, double> &map)
{

currencyMap = map;

reset();

}

The caller can change the currency map using setCurrencyMap (). The QAbstract-
ItemModel::reset () call tells any views that are using the model that all their
data is invalid; this forces them to request fresh data for the items that are
visible.

QString CurrencyModel::currencyAt(int offset) const
{

}

The currencyAt () function returns the key (the currency code) at the given
offset in the currency map. We use an STL-style iterator to find the item and
call key () on it.

return (currencyMap.begin() + offset).key();

As we have just seen, it is not difficult to create read-only models, and depend-
ing on the nature of the underlying data, there are potential savings in mem-
ory and speed with a well-designed model. The next example, the Cities appli-
cation, is also table-based, but this time all the data is entered by the user.

This application is used to store values indicating the distance between any
two cities. Like the previous example, we could simply use a QTableWidget and
store one item for every city pair. However, a custom model could be more
efficient, because the distance from any city 4 to any different city B is the
same whether traveling from 4 to B or from B to 4, so the items are mirrored
along the main diagonal.

To see how a custom model compares with a simple table, let us assume that
we have three cities, 4, B, and C. If we store a value for every combination,
we would need to store nine values. A carefully designed model would require
only the three items (4, B), (4, C), and (B, O).

Implementing Custom Models 235

EIBIX

Arvika Boden Eskilstuna Falun L
Arvika 0 1063 280 285
Boden 1063 0 958 830
Eskilstuna 280 958 0 0
Falun 285 230 0 0
Filipstad 122 ‘ 0 0

Halmstad o] o] a
£ b

Figure 10.12. The Cities application

Here’s how we set up and use the model:

QStringlList cities;

cities << "Arvika" << "Boden" << "Eskilstuna" << "Falun"
<< "Filipstad" << "Halmstad" << "Helsingborg" << "Karlstad"
<< "Kiruna" << "Kramfors" << "Motala" << "Sandviken"
<< "Skara" << "Stockholm" << "Sundsvall" << "Trelleborg";

CityModel cityModel;
cityModel.setCities(cities);

QTableView tableView;
tableView.setModel (&cityModel);
tableView.setAlternatingRowColors(true);

We must reimplement the same functions as we did for the previous example.
In addition, we must also reimplement setData() and flags() to make the
model editable. Here is the class definition:

class CityModel : public QAbstractTableModel

{
Q_OBJECT

public:
CityModel (QObject xparent = 0);

void setCities(const QStringList &cityNames);

int rowCount (const QModelIndex &parent) const;

int columnCount (const QModelIndex &parent) const;

QVariant data(const QModellIndex &index, int role) const;

bool setData(const QModelIndex &index, const QVariant &value,
int role);

QVariant headerData(int section, Qt::0rientation orientation,

int role) const;
Qt::ItemFlags flags(const QModelIndex &index) const;

private:
int offsetOf (int row, int column) const;

QStringlList cities;
QVector<int> distances;
};

236 10. Item View Classes

For this model, we are using two data structures: cities of type QStringlList
to hold the city names, and distances of type QVector<int> to hold the distance
between each unique pair of cities.

CityModel::CityModel (QObject =parent)
: QAbstractTableModel (parent)
{

}

The constructor does nothing beyond pass on the parent parameter to the
base class.

int CityModel::rowCount (const QModelIndex & /% parent /) const
{

}

int CityModel::columnCount (const QModellIndex & /* parent =/) const

{
}

Since we have a square grid of cities, the number of rows and columns is the
number of cities in our list.

return cities.count();

return cities.count();

QVariant CityModel::data(const QModelIndex &index, int role) const
{
if (lindex.isValid())
return QVariant();

if (role == Qt::TextAlignmentRole) {
return int(Qt::AlignRight | Qt::AlignVCenter);
} else if (role == Qt::DisplayRole) {
if (index.row() == index.column())
return 0;
int offset = offsetOf (index.row(), index.column());
return distances[offset];
}
return QVariant();

}

The data() function is similar to what we did in CurrencyModel. It returns 0 if
the row and column are the same, because that corresponds to the case where
the two cities are the same; otherwise, it finds the entry for the given row and
column in the distances vector and returns the distance for that particular pair
of cities.

QVariant CityModel::headerData(int section,
Qt::Orientation /* orientation =/,
int role) const

if (role == Qt::DisplayRole)
return cities[section];
return QVariant();

Implementing Custom Models 237

The headerData () function is simple because we have a square table with every
row having an identical column header. We simply return the name of the city
at the given offset in the cities string list.

bool CityModel::setData(const QModellIndex &index,
const QVariant &value, int role)

{
if (index.isValid() && index.row() != index.column()
&8 role == Qt::EditRole) {
int offset = offsetOf (index.row(), index.column());
distances[offset] = value.toInt();
QModelIndex transposedIndex = createlIndex (index.column(),
index.row());
emit dataChanged(index, index);
emit dataChanged(transposedIndex, transposedIndex);
return true;
}
return false;
}

The setbData() function is called when the user edits an item. Providing the
model index is valid, the two cities are different, and the data element to
modify is the Qt: :EditRole, the function stores the value the user entered in the
distances vector.

The createlIndex() function is used to generate a model index. We need it to
get the model index of the item on the other side of the main diagonal that
corresponds with the item being set, since both items must show the same
data. The createlndex() function takes the row before the column; here we
invert the parameters to get the model index of the diagonally opposite item
to the one specified by index.

We emit the datachanged() signal with the model index of the item that was
changed. The reason this signal takes two model indexes is that it is possible
for a change to affect a rectangular region of more than one row and column, so
the indexes passed are the index of the top left and bottom right items of those
that have changed. We also emit the dataChanged() signal for the transposed
index to ensure that the view will refresh the item. Finally, we return true or
false to indicate whether or not the edit succeeded.

Qt::ItemFlags CityModel::flags(const QModelIndex &index) const
{
Qt::ItemFlags flags = QAbstractItemModel::flags(index);
if (index.row() != index.column())
flags |= Qt::ItemIsEditable;
return flags;
}

The flags() function is used by the model to communicate what can be done
with an item (for example, whether it is editable). The default implementation
from QAbstractTableModel returns Qt::ItemIsSelectable | Qt::ItemIsEnabled. We

238 10. Item View Classes

add the Qt::ItemIsEditable flag for all items except those lying on the diagonals
(which are always 0).

void CityModel::setCities(const QStringlList &cityNames)
{
cities = cityNames;
distances.resize(cities.count() = (cities.count() - 1) / 2);
distances.fill(0);
reset();

}

If a new list of cities is given, we set the private QStringList to the new list,
resize and clear the distances vector, and call QAbstractItemModel::reset() to
notify any views that their visible items must be refetched.

int CityModel::offsetOf (int row, int column) const

{
if (row < column)
gSwap (row, column);
return (row * (row — 1) / 2) + column;
}

The offset0f () private function computes the index of a given city pair in the
distances vector. For example, if we had cities 4, B, C, and D, and the user
updated row 3, column 1, B to D, the offset would be 3 x (3 - 1)/2+1=4.1If
the user had instead updated row 1, column 3, D to B, thanks to the qSwap (),
exactly the same calculation would be performed and an identical offset would
be returned.

Cities Table Model

| Al B | c]| D| A | B | Cc | D
A | 0 |[AoB|A~C|AD

Distances B |A~»B| 0 |B<C|B<D

|AoB|A-C|AoD|BC|BD[CD] C |AC|B~C| 0 [CeoD
D |A~D[B~D|CD| 0

Figure 10.13. The cities and distances data structures and the table model

The last example in this section is a model that shows the parse tree for a given
regular expression. A regular expression consists of one or more terms, sep-
arated by ‘I’ characters. Thus, the regular expression “alpha | bravo | charlie”
contains three terms. Each term is a sequence of one or more factors; for exam-
ple, the term “bravo” consists of five factors (each letter is a factor). The factors
can be further decomposed into an atom and an optional quantifier, such as ¥,
‘+’, and ‘7. Since regular expressions can have parenthesized subexpressions,
they can have recursive parse trees.

The regular expression shown in Figure 10.14, “abl(cd)?e”, matches an ‘a’
followed by a ‘b’, or alternatively either a ‘¢’ followed by a ‘d’ followed by an ‘e’,
or just an ‘e’ on its own. So it will match “ab” and “cde”, but not “b¢” or “cd”.

Implementing Custom Models 239

M Regexp Parser

Regular expression: |ab lcd)?e |
Node Value A
=} Expression ablicd)?e
Tem ab
Teminal
= Term led)?e
= Factor {cd)?
- Atom led)
Terminal {
Expression cd
Terminal)
Teminal 7
= Factar g
= Atom e v

Figure 10.14. The Regexp Parser application

The Regexp Parser application consists of four classes:

* RegExpWindow is a window that lets the user enter a regular expression and
shows the corresponding parse tree.

* RegExpParser generates a parse tree from a regular expression.
* RegExpModel is a tree model that encapsulates a parse tree.

* Node represents an item in a parse tree.

Let’s start with the Node class:

class Node
{
public:
enum Type { RegExp, Expression, Term, Factor, Atom, Terminal };
Node (Type type, const QString &str = "");
~“Node () ;
Type type;

QString str;

Node =*parent;

QList<Node *> children;
};

Every node has a type, a string (which may be empty), a parent (which may be
0), and a list of child nodes (which may be empty).

Node: :Node (Type type, const QString &str)
{

this->type = type;

this->str = str;

parent = 0;

240 10. Item View Classes

The constructor simply initializes the node’s type and string. Because all the
data is public, code that uses Node can manipulate the type, string, parent, and
children directly.

Node: :~Node ()
{

}

The qgpbeleteAll() function iterates over a container of pointers and calls
delete on each one. It does not set the pointers to 0, so if it is used outside of a
destructor it is common to follow it with a call to clear () on the container that
holds the pointers.

gDeleteAll (children);

Now that we have defined our data items (each represented by a Node), we are
ready to create a model:

class RegExpModel : public QAbstractItemModel

{
public:
RegExpModel (QObject *parent = 0);
~RegExpModel () ;
void setRootNode (Node *node);
QModelIndex index(int row, int column,
const QModelIndex &parent) const;
QModelIndex parent(const QModellIndex &child) const;
int rowCount (const QModelIndex &parent) const;
int columnCount (const QModelIndex &parent) const;
QVariant data(const QModellIndex &index, int role) const;
Qvariant headerData(int section, Qt::0rientation orientation,
int role) const;
private:
Node x*nodeFromIndex(const QModelIndex &index) const;
Node =*rootNode;
};

This time we have inherited from QAbstractItemModel rather than from its con-
venience subclass QAbstractTableModel, because we want to create a hierarchical
model. The essential functions that we must reimplement remain the same,
except that we must also implement index () and parent (). To set the model’s
data, we have a setRootNode () function that must be called with a parse tree’s
root node.

RegExpModel: :RegExpModel (Q0Object =parent)
: QAbstractItemModel (parent)
{

}

rootNode = 0;

Implementing Custom Models 241

In the model’s constructor, we just need to set the root node to a safe null value
and pass on the parent to the base class.

RegExpModel: : “RegExpModel ()

delete rootNode;
}

In the destructor we delete the root node. If the root node has children, each
of these is deleted, and so on recursively, by the Node destructor.

void RegExpModel::setRootNode (Node *node)

delete rootNode;
rootNode = node;
reset();

}

When a new root node is set, we begin by deleting any previous root node (and
all of its children). Then we set the new root node and call reset () to notify any
views that they must refetch the data for any visible items.

QModelIndex RegExpModel::index(int row, int column,
const QModellIndex &parent) const

{
if (!rootNode)
return QModellIndex();
Node x*parentNode = nodeFromIndex (parent);
return createlIndex(row, column, parentNode->childrenl[row]);
}

The index () function is reimplemented from QAbstractItemModel. It is called
whenever the model or the view needs to create a QModelIndex for a particular
child item (or a top-level item if parent is an invalid QModelIndex). For table and
list models, we don’t need to reimplement this function, because QAbstractList-
Model’s and QAbstractTableModel’s default implementations normally suffice.

In our index() implementation, if no parse tree is set, we return an invalid
QModellIndex. Otherwise, we create a QModelIndex with the given row and column
and with a Node * for the requested child. For hierarchical models, knowing
the row and column of an item relative to its parent is not enough to uniquely
identify it; we must also know who the parent is. To solve this, we can store a
pointer to the internal node in the QModelIndex. QModelIndex gives us the option
of storing a void * or an int in addition to the row and column numbers.

The Node * for the child is obtained through the parent node’s childrenlist. The
parent node is extracted from the parent model index using the nodeFromIndex ()
private function:

Node =RegExpModel::nodeFromIndex (const QModelIndex &index) const
{
if (index.isValid()) {
return static_cast<Node =>(index.internalPointer());
} else {

242 10. Item View Classes

return rootNode;

}

The nodeFromindex () function casts the given index’s void * to a Node *, or returns
the root node if the index is invalid, since an invalid model index is used to
represent the root in a model.

int RegExpModel::rowCount (const QModelIndex &parent) const

Node x*parentNode = nodeFromIndex (parent);
if (!parentNode)

return 0;
return parentNode->children.count();

}

The number of rows for a given item is simply how many children it has.
int RegExpModel::columnCount (const QModelIndex & /% parent /) const

return 2;

}

The number of columns is fixed at 2. The first column holds the node types; the
second column holds the node values.

QModelIndex RegExpModel::parent(const QModelIndex &child) const
{
Node *node = nodeFromIndex(child);
if (!node)
return QModellIndex();
Node =parentNode = node->parent;
if (!parentNode)
return QModellIndex();
Node x*grandparentNode = parentNode->parent;
if (!grandparentNode)
return QModellIndex();

int row = grandparentNode->children.indexOf (parentNode);
return createlndex(row, child.column(), parentNode);
}

Retrieving the parent QModelIndex from a child is a bit more work than finding
a parent’s child. We can easily retrieve the parent node using nodeFromIndex ()
and going up using the Node’s parent pointer, but to obtain the row number
(the position of the parent among its siblings), we need to go back to the
grandparent and find the parent’s index position in its parent’s (that is, the
child’s grandparent’s) list of children.

QVariant RegExpModel::data(const QModelIndex &index, int role) const
{
if (role != Qt::DisplayRole)
return QVariant();

Node *node = nodeFromIndex (index);
if ('node)

Implementing Custom Models 243

return QVariant();

if (index.column() == 0) {

switch (node->type) {
case Node::RegExp:

return tr("RegExp");
case Node::Expression:

return tr("Expression");
case Node::Term:

return tr("Term");
case Node::Factor:

return tr("Factor");
case Node::Atom:

return tr("Atom");
case Node::Terminal:

return tr("Terminal");
default:

return tr("Unknown");
}

} else if (index.column() == 1) {
return node->str;
}

return QVariant();

}

In data(), we retrieve the Node * for the requested item and we use it to access
the underlying data. If the caller wants a value for any role except Qt::
DisplayRole or if we cannot retrieve a Node for the given model index, we return
an invalid Qvariant. If the column is 0, we return the name of the node’s type;
if the column is 1, we return the node’s value (its string).

QVariant RegExpModel::headerData(int section,
Qt::0Orientation orientation,
int role) const

{
if (orientation == Qt::Horizontal && role == Qt::DisplayRole) {
if (section == 0) {
return tr("Node");
} else if (section == 1) {
return tr("vValue");
}
}
return QvVariant();
}

In our headerData () reimplementation, we return appropriate horizontal head-
er labels. The QTreeView class, which is used to visualize hierarchical models,
has no vertical header, so we ignore that possibility.

Now that we have covered the Node and RegExpModel classes, let’s see how the
root node is created when the user changes the text in the line edit:

void RegExpWindow::regExpChanged(const QString ®Exp)
{

RegExpParser parser;

244 10. Item View Classes

Node *rootNode = parser.parse(regkxp);
regexpModel->setRootNode (rootNode);

When the user changes the text in the application’s line edit, the main win-
dow’s regExpChanged () slot is called. In this slot, the user’s text is parsed and
the parser returns a pointer to the root node of the parse tree.

We have not shown the RegExpParser class because it is not relevant for GUI or
model/view programming. The full source for this example is on the CD.

In this section, we have seen how to create three different custom models.
Many models are much simpler than those shown here, with one-to-one corre-
spondences between items and model indexes. Further model/view examples
are provided with Qt itself, along with extensive documentation.

Implementing Custom Delegates

Individual itemsin views are rendered and edited using delegates. In most cas-
es, the default delegate supplied by a view is sufficient. If we want to have finer
control over the rendering of items, we can often achieve what we want simply
by using a custom model: In our data() reimplementation we can handle the
Qt::FontRole, Qt::TextAlignmentRole, Qt::TextColorRole, and Qt::BackgroundCol-
orRole, and these are used by the default delegate. For example, in the Cities
and Currencies examples shown earlier, we handled the Qt::TextAlignmentRole
to get right-aligned numbers.

If we want even greater control, we can create our own delegate class and set
it on the views that we want to make use of it. The Track Editor dialog shown
below makes use of a custom delegate. It shows the titles of music tracks and
their durations. The data held by the model will be simply QStrings (titles) and
ints (seconds), but the durations will be separated into minutes and seconds
and will be editable using a QTimeEdit.

Track Duration
1 | The Flying Dutchman: Overture 10:30
2 | The Flying Dutchman: Wie aus der Fem laengst vergangn... 0614
3 | The Flying Dutchman: Steuermann, lass die Wacht 0232 :
4 Die Walkuere: Ride of the Valkyries 04-46
5 | Tannhaeuser: Freudig begruessen wir die edle Halle 06:24 | w
o)=

Figure 10.15. The Track Editor dialog

Implementing Custom Delegates 245

The Track Editor dialog uses a QTableWidget, a convenience item view subclass
that operates on QTableWidgetItems. The data is provided as a list of Tracks:

class Track

{

public:
Track (const QString &title = "", int duration = 0);
QString title;
int duration;

¥

Here is an extract from the constructor that shows the creation and population
of the table widget:

TrackEditor::TrackEditor (QList<Track> =tracks, QWidget =parent)

: QDialog(parent)
{
this->tracks = tracks;
tableWidget = new QTableWidget (tracks->count(), 2);
tableWidget->setItemDelegate (new TrackDelegate(1));
tableWidget->setHorizontalHeaderLabels (
QStringList() << tr("Track") << tr("Duration"));
for (int row = 0; row < tracks->count(); ++row) {
Track track = tracks->at(row);
QTableWidgetItem xitem@ = new QTableWidgetItem(track.title);
tableWidget->setItem(row, 0, item0d);
QTableWidgetItem xitem1
= new QTableWidgetItem(QString::number (track.duration));
item1->setTextAlignment (Qt::AlignRight);
tableWidget->setItem(row, 1, iteml);
}
}

The constructor creates a table widget, and instead of simply using the default
delegate, we set our custom TrackDelegate, passing it the column that holds
time data. We begin by setting the column headings, and then iterate through
the data, populating the rows with the name and duration of each track.

The rest of the constructor and the rest of the TrackEditor dialog holds no
surprises, so we will now look at the TrackDelegate that handles the rendering
and editing of track data.

class TrackDelegate : public QItemDelegate

{
Q_OBJECT

public:
TrackDelegate (int durationColumn, QObject *parent = 0);

246 10. Item View Classes

void paint(QPainter xpainter, const QStyleOptionViewItem &option,
const QModelIndex &index) const;

QWidget xcreateEditor (QWidget =parent,

const QStyleOptionViewItem &option,

const QModellIndex &index) const;
void setEditorData(QWidget *editor, const QModelIndex &index) const;
void setModelData(QWidget xeditor, QAbstractItemModel *model,

const QModelIndex &index) const;

private slots:
void commitAndCloseEditor();

private:
int durationColumn;

}

We use QItemDelegate as our base class, so that we benefit from the default
delegate implementation. We could also have used QAbstractItemDelegate if we
had wanted to start from scratch. To provide a delegate that can edit data, we
must implement createEditor (), setEditorData(), and setModelData(). We also
implement paint () to change the rendering of the duration column.

TrackDelegate::TrackDelegate (int durationColumn, QObject *parent)
: QItemDelegate (parent)
{

}

The durationColumn parameter to the constructor tells the delegate which
column holds the track duration.

this->durationColumn = durationColumn;

void TrackDelegate::paint(QPainter =painter,
const QStyleOptionViewItem &option,
const QModelIndex &index) const

{
if (index.column() == durationColumn) {
int secs = index.model()->data(index, Qt::DisplayRole).tolInt();
QString text = QString("%1:%2")
.arg(secs / 60, 2, 10, QChar('0'))
.arg(secs % 60, 2, 10, QChar('0"));
QStyleOptionViewItem myOption = option;
myOption.displayAlignment = Qt::AlignRight | Qt::AlignVCenter;
drawDisplay (painter, myOption, myOption.rect, text);
drawFocus (painter, myOption, myOption.rect);
} else{
QItemDelegate::paint(painter, option, index);
}
}

Since we want to render the duration in the form “minutes :seconds”, we have
reimplemented the paint () function. The arg() calls take an integer to render
as a string, how many characters the string should have, the base of the
integer (10 for decimal), and the padding character.

Implementing Custom Delegates 247

To right-align the text, we copy the current style options and overwrite the
default alignment. We then call QItemDelegate: :drawDisplay () to draw the text,
followed by QItemDelegate::drawFocus(), which will draw a focus rectangle if
the item has focus and will do nothing otherwise. Using drawDisplay () is very
convenient, especially when used with our own style options. We could also
draw using the painter directly.

QWidget xTrackDelegate::createEditor (QWidget xparent,
const QStyleOptionViewItem &option,
const QModelIndex &index) const

if (index.column() == durationColumn) {

QTimeEdit *timeEdit = new QTimeEdit (parent);

timeEdit->setDisplayFormat ("mm:ss");

connect (timeEdit, SIGNAL (editingFinished()),

this, SLOT(commitAndCloseEditor()));

return timekdit;
} else {

return QItemDelegate::createEditor (parent, option, index);
}

}

We only want to control the editing of track durations, leaving the editing of
track names to the default delegate. We achieve this by checking which col-
umn the delegate has been asked to provide an editor for. If it’s the duration
column, we create a QTimeEdit, set the display format appropriately,and connect
its editingFinished() signal to our commitAndCloseEditor () slot. For any other
column, we pass on the edit handling to the default delegate.

void TrackDelegate::commitAndCloseEditor ()

{
QTimeEdit =editor = gobject_cast<QTimeEdit x> (sender());
emit commitData(editor);
emit closeEditor (editor);

}

If the user presses Enter or moves the focus out of the QTimeEdit (but not if they
press Esc), the editingFinished() signal is emitted and the commitAndCloseEdi-
tor () slot is called. This slot emits the commitData() signal to inform the view
that there is edited data to replace existing data. It also emits the closeEdi-
tor () signal to notify the view that this editor is no longer required, at which
point the model will delete it. The editor is retrieved using Q0bject::sender (),
which returns the object that emitted the signal that triggered the slot. If the
user cancels (by pressing Esc), the view will simply delete the editor.

void TrackDelegate::setEditorData(QWidget xeditor,
const QModellIndex &index) const
{

if (index.column() == durationColumn) {
int secs = index.model () ->data(index, Qt::DisplayRole).toInt();
QTimeEdit =timeEdit = qobject_cast<QTimeEdit =*>(editor);
timeEdit->setTime (QTime (0, secs / 60, secs % 60));

} else {

248 10. Item View Classes

QItemDelegate::setEditorData(editor, index);

}

When the user initiates editing, the view calls createEditor() to create an
editor, and then setEditorData() to initialize the editor with the item’s current
data. If the editor is for the duration column, we extract the track’s duration
in seconds and set the QTimeEdit’s time to the corresponding number of minutes
and seconds; otherwise, we let the default delegate handle the initialization.

void TrackDelegate::setModelData(QWidget =editor,
QAbstractItemModel xmodel,
const QModelIndex &index) const

if (index.column() == durationColumn) {
QTimeEdit =timeEdit = qobject_cast<QTimeEdit *>(editor);
QTime time = timeEdit->time();
int secs = (time.minute() = 60) + time.second();
model->setData(index, secs);

} else {
QItemDelegate::setModelData(editor, model, index);

}

}

If the user completes the edit (for example, by left-clicking outside the editor
widget, or by pressing Enter or Tab) rather than canceling it, the model must
be updated with the editor’s data. If the duration was edited, we extract the
minutes and seconds from the QTimeEdit, and set the data to the corresponding
number of seconds.

Although not necessary in this case, it is entirely possible to create a custom
delegate that finely controls the editing and rendering of any item in a model.
We have chosen to take control of a particular column, but since the QModelIndex
is passed to all the QItemDelegate functions that we reimplement, we can take
control by column, row, rectangular region, parent, or any combination of these,
right down to individual items if required.

In this chapter, we have presented a broad overview of Qt’s model/view
architecture. We have shown how to use the view convenience subclasses, how
to use Qt’s predefined models, and how to create custom models and custom
delegates. But the model/view architecture is so rich that we have not had the
space to cover all the things it makes possible. For example, we could create a
custom view that does not render its items as a list, table, or tree. This is done
by the Chart example located in Qt’s examples/itemviews/chart directory, which
shows a custom view that renders model data in the form of a pie chart.

It is also possible to use multiple views to view the same model without any for-
mality. Any edits made through one view will be automatically and immediate-
ly reflected in the other views. This kind of functionality is particularly useful
for viewing large data sets where the user may wish to see sections of data that
are logically far apart. The architecture also supports selections: Where two

Implementing Custom Delegates 249

or more views are using the same model, each view can be set to have its own
independent selections, or the selections can be shared across the views.

Qt’s online documentation provides comprehensive coverage of item view
programming and the classes that implement it. See http://doc.trolltech.
com/4.1/model-view.html for a list of all the relevant classes, and http://doc.
trolltech.com/4.1/model-view-programming.html for additional information and
links to the relevant examples included with Qt.

Sequential Containers
Associative Containers

Generic Algorithms

Strings, Byte Arrays, and Variants

11. Container Classes

Container classes are general-purpose template classes that store items of a
given type in memory. C++ already offers many containers as part of the Stan-
dard Template Library (STL), which is included in the Standard C++ library.

Qt provides its own container classes, so for Qt programs we can use both the
Qt and the STL containers. The main advantages of the Qt containers are that
they behave the same on all platforms and that they are implicitly shared.
Implicit sharing, or “copy on write”, is an optimization that makes it possible to
pass entire containers as values without any significant performance cost. The
Qt containers also feature easy-to-use iterator classes inspired by Java, they
can be streamed using QDataStream, and they usually result in less code in the
executable than the corresponding STL containers. Finally, on some hardware
platforms supported by Qtopia Core (the Qt version for mobile devices), the Qt
containers are the only ones available.

Qt offers both sequential containers such as QVector<T>, QLinkedList<T>, and
QList<T>, and associative containers such as QMap<K, 7> and QHash<K, T>. Concep-
tually, the sequential containers store items one after another, whereas the
associative containers store key—value pairs.

Qt also provides generic algorithms that perform operations on arbitrary
containers. For example, the qSort() algorithm sorts a sequential container,
and gBinaryFind () performs a binary search on a sorted sequential container.
These algorithms are similar to those offered by the STL.

If you are already familiar with the STL containers and have STL available on
your target platforms, you might want to use them instead of, or in addition to,
the Qt containers. For more information about the STL classes and functions,
a good place to start is SGI's STL web site: http://www.sgi.com/tech/stl/.

In this chapter, we will also look at QString, QByteArray, and QVariant, since they
have a lot in common with containers. QStringis a 16-bit Unicode string used
throughout Qt’s API. QByteArray is an array of 8-bit chars useful for storing raw
binary data. Qvariant is a type that can store most C++ and Qt value types.

251

252 11. Container Classes

Sequential Containers

A Qvector<T> is an array-like data structure that stores its items at adjacent
positions in memory. What distinguishes a vector from a plain C++ array is
that a vector knows its own size and can be resized. Appending extra items to
the end of a vector is fairly efficient, while inserting items at the front or in the
middle of a vector can be expensive.

0 1 2 3 4
\ 937.81 \ 25.984 | 308.74 \ 310.92 \ 40.9 |

Figure 11.1. A vector of doubles

If we know in advance how many items we are going to need, we can give the
vector an initial size when we define it and use the [] operator to assign a value
to the items; otherwise, we must either resize the vector later on or append
items. Here’s an example where we specify the initial size:

QVector<double> vect (3);

vect[0] = 1.0;
vect[1] = 0.540302;
vect[2] = -0.416147;

Here’s the same example, this time starting with an empty vector and using
the append () function to append items at the end:

QVector<double> vect;
vect.append(1.0);
vect.append (0.540302);
vect.append(-0.416147);

We can also use the << operator instead of append():
vect << 1.0 << 0.540302 << -0.416147;
One way to iterate over the vector’s items is to use [] and count ():

double sum = 0.0;
for (int i = 0; i < vect.count(); ++i)
sum += vect[il;

Vector entries that are created without being assigned an explicit value are
initialized using the item class’s default constructor. Basic types and pointer
types are initialized to zero.

Inserting items at the beginning or in the middle of a Qvector<T>, or remov-
ing items from these positions, can be inefficient for large vectors. For this
reason, Qt also offers QLinkedList<T>, a data structure that stores its items at
non-adjacent locations in memory. Unlike vectors, linked lists don’t support
random access, but they provide “constant time” insertions and removals.

Sequential Containers 253

937.81 25.984 308.74 310.92 40.9
v) S) S w—

Figure 11.2. A linked list of doubles

Linked lists do not provide the [] operator, so iterators must be used to traverse
their items. Iterators are also used to specify the position of items. For
example, the following code inserts the string “Tote Hosen” between “Clash”
and “Ramones™

QLinkedList<QString> list;
list.append("Clash");
list.append("Ramones");

QLinkedList<QString>::iterator i = list.find("Ramones");
list.insert (i, "Tote Hosen");

We will take a more detailed look at iterators later in this section.

The QList<T> sequential container is an “array-list” that combines the most
important benefits of QVector<T> and QLinkedList<T> in a single class. It sup-
portsrandom access, and its interface is index-based like QVector’s. Inserting or
removing an item at either end of a QList<T> is very fast, and inserting in the
middle is fast for lists with up to about one thousand items. Unless we want
to perform insertions in the middle of huge lists or need the list’s items to occu-
py consecutive addresses in memory, QList<T> is usually the most appropriate
general-purpose container class to use.

The 0StringList class is a subclass of QList<QString> that is widely used in
Qt’s API. In addition to the functions it inherits from its base class, it provides
some extra functions that make the class more versatile for string handling.
QStringlList is discussed in the last section of this chapter (p. 268).

QStack<T> and QQueue<T> are two more examples of convenience subclasses.
QStack<T> is a vector that provides push(), pop (), and top (). QQueue<T> is a list
that provides enqueue (), dequeue (), and head ().

For all the container classes seen so far, the value type T can be a basic type
like int or double, a pointer type, or a class that has a default constructor (a
constructor that takes no arguments), a copy constructor, and an assignment
operator. Classes that qualify include QByteArray, QDateTime, QRegExp, QString,
and Qvariant. Qt classes that inherit from Q0bject do not qualify, because they
lack a copy constructor and an assignment operator. This is no problem in
practice, since we can simply store pointers to Q0bject types rather than the
objects themselves.

The value type T can also be a container, in which case we must remember to
separate consecutive angle brackets with spaces; otherwise, the compiler will
choke on what it thinks is a >> operator. For example:

QList<QVector<double> > list;

254 11. Container Classes

In addition to the types just mentioned, a container’s value type can be any
custom class that meets the criteria described earlier. Here is an example of
such a class:

class Movie

{
public:
Movie(const QString &title = "", int duration = 0);
void setTitle(const QString &title) { myTitle = title; }
QString title() const { return myTitle; }
void setDuration(int duration) { myDuration = duration; }
QString duration() const { return myDuration; }
private:
QString myTitle;
int myDuration;
¥

The class has a constructor that requires no arguments (although it can take
up to two). It also has a copy constructor and an assignment operator, both im-
plicitly provided by C++. For this class, member-by-member copy is sufficient,
so there’s no need to implement our own copy constructor and assignment op-
erator.

Qt provides two categories of iterators for traversing the items stored in a con-
tainer: Java-style iterators and STL-style iterators. The Java-style iterators
are easier to use, whereas the STL-style iterators can be combined with Qt’s
and STL'’s generic algorithms and are more powerful.

For each container class, there are two Java-style iterator types: a read-
only iterator and a read-write iterator. The read-only iterator classes are
QVectorIterator<T>, QLinkedListIterator<T>, and QListIterator<T>. The cor-
responding read-write iterators have Mutable in their name (for example,
QMutableVectorIterator<T>). In this discussion, we will concentrate on QList’s
iterators; the iterators for linked lists and vectors have the same API.

A | B] c] D | E |

T T T T

Figure 11.3. Valid positions for Java-style iterators

The first thing to keep in mind when using Java-style iterators is that they
don’t point directly at items. Instead, they can be located before the first
item, after the last item, or between two items. A typical iteration loop looks
like this:

QList<double> list;

QListIterator<double> i(list);
while (i.hasNext()) {

Sequential Containers 255

do_something(i.next());

}

The iterator is initialized with the container to traverse. At this point, the
iterator is located just before the first item. The call to hasNext () returns true
if there is an item to the right of the iterator. The next() function returns
the item to the right of the iterator and advances the iterator to the next
valid position.

Iterating backward is similar, except that we must first call toBack () to position
the iterator after the last item:

QListIterator<double> i(list);

i.toBack();

while (i.hasPrevious()) {
do_something(i.previous());

}

The hasPrevious() function returns true if there is an item to the left of the
iterator; previous () returns the item to the left of the iterator and moves the
iterator back by one position. Another way of thinking about the next () and
previous() iterators is that they return the item that the iterator has just
jumped over.

| A B C D | E]
previous()\/ next ()

Figure 11.4. Effect of previous() and next () on a Java-style iterator

Mutable iterators provide functions to insert, modify, and remove items while
iterating. The following loop removes all the negative numbers from a list:

QMutableListIterator<double> i(list);
while (i.hasNext()) {
if (i.next() < 0.0)
i.remove();

}

The remove () function always operates on the last item that was jumped over.
It also works when iterating backward:

QMutablelListIterator<double> i(list);
i.toBack();
while (i.hasPrevious()) {
if (i.previous() < 0.0)
i.remove();

}

Similarly, the mutable Java-style iterators provide a setValue() function that
modifies the last item that was jumped over. Here’s how we would replace
negative numbers with their absolute value:

256 11. Container Classes

QMutableListIterator<double> i(list);
while (i.hasNext()) {
int val = i.next();
if (val < 0.0)
i.setValue(-val);

}

It is also possible to insert an item at the current iterator position by calling
insert (). The iterator is then advanced to point between the new item and the
following item.

In addition to the Java-style iterators, every sequential container class C<T>
has two STL-style iterator types: C<T>::iterator and C<T>::const_iterator.
The difference between the two is that const_iterator doesn’t let us modify
the data.

A container’s begin() function returns an STL-style iterator that refers to
the first item in the container (for example, 1ist[0]), whereas end() returns
an iterator to the “one past the last” item (for example, 1ist[5] for a list of
size 5). If a container is empty, begin() equals end(). This can be used to see
if the container has any items, although it is usually more convenient to call
isEmpty () for this purpose.

LT

Figure 11.5. Valid positions for STL-style iterators

The STL-style iterator syntax is modeled after that of C++ pointers into an
array. We can use the ++ and -- operators to move to the next or previous item,
and the unary * operator to retrieve the current item. For Qvector<T>,the iter-
ator and const_iterator types are merely typedefs for T » and const T . (This is
possible because QVector<T> stores its items in consecutive memory locations.)

The following example replaces each value in a QList<double> with its absolute
value:

QList<double>::iterator i = list.begin();
while (i != list.end()) {

*1 = gAbs(*i);

++1;

}

A few Qt functions return a container. If we want to iterate over the return
value of a function using an STL-style iterator, we must take a copy of the
container and iterate over the copy. For example, the following code is the
correct way to iterate over the QList<int> returned by QSplitter::sizes():

QList<int> list = splitter->sizes();

Sequential Containers 257

QList<int>::const_iterator i = list.begin();
while (i != list.end()) {

do_something (*1);

++1;

}

The following code is wrong:

// WRONG
QList<int>::const_iterator i = splitter->sizes().begin();
while (i != splitter->sizes().end()) {
do_something(*i);
++1;
}
This is because QSplitter::sizes() returns a new QList<int> by value every
time it is called. If we don’t store the return value, C++ automatically destroys
it before we have even started iterating, leaving us with a dangling iterator.
To make matters worse, each time the loop is run, QSplitter::sizes() must
generate a new copy of the list because of the splitter->sizes().end() call.
In summary: When using STL-style iterators, always iterate on a copy of a
container returned by value.

With read-only Java-style iterators, we don’t need to take a copy. The iterator
takes a copy for us behind the scenes, ensuring that we always iterate over the
data that the function first returned. For example:

QListIterator<int> i(splitter->sizes());

while (i.hasNext()) {
do_something(i.next());

}

Copying a container like this sounds expensive, but it isn’t, thanks to an
optimization called implicit sharing. This means that copying a Qt container is
about as fast as copying a single pointer. Only if one of the copies is changed is
data actually copied—and this is all handled automatically behind the scenes.
For this reason, implicit sharing is sometimes called “copy on write”.

The beauty of implicit sharing is that it is an optimization that we don’t need
to think about; it simply works, without requiring any programmer interven-
tion. At the same time, implicit sharing encourages a clean programming style
where objects are returned by value. Consider the following function:

QVector<double> sineTable()

{
QVector<double> vect (360);
for (int 1 = 0; i < 360; ++i)
vect[i] = sin(i / (2 * M_PI));
return vect;
}

The call to the function looks like this:
QVector<double> table = sineTable();

258 11. Container Classes

STL, in comparison, encourages us to pass the vector as a non-const reference
to avoid the copy that takes place when the function’s return value is stored in
a variable:

using namespace std;

void sineTable(vector<double> &vect)

{
vect.resize(360);
for (int 1 = 0; 1 < 360; ++i)
vect[i] = sin(i / (2 » M_PI));
}

The call then becomes more tedious to write and less clear to read:

vector<double> table;
sineTable(table);

Qt uses implicit sharing for all of its containers and for many other classes,
including QByteArray, QBrush, QFont, QImage, QPixmap, and QString. This makes
these classes very efficient to pass by value, both as function parameters and
as return values.

Implicit sharing is a guarantee from Qt that the data won’t be copied if we
don’t modify it. To get the best out of implicit sharing, we can adopt a couple
of new programming habits. One habit is to use the at () function rather than
the [] operator for read-only access on a (non-const) vector or list. Since Qt’s
containers cannot tell whether [] appears on the left side of an assignment or
not, it assumes the worst and forces a deep copy to occur—whereas at () isn’t
allowed on the left side of an assignment.

A similar issue arises when we iterate over a container with STL-style itera-
tors. Whenever we call begin() or end() on a non-const container, Qt forces a
deep copy to occur if the data is shared. To prevent this inefficiency, the solu-
tion is to use const_iterator, constBegin(), and constEnd () whenever possible.

Qt provides one last method for iterating over items in a sequential contain-
er: the foreach loop. It looks like this:

QLinkedList<Movie> list;

foreach (Movie movie, list) {

if (movie.title() == "Citizen Kane") {
cout << "Found Citizen Kane" << endl;
break;

}

}

The foreach pseudo-keyword is implemented in terms of the standard for
loop. At each iteration of the loop, the iteration variable (movie) is set to a
new item, starting at the first item in the container and progressing forward.
The foreach loop automatically takes a copy of the container when the loop is
entered, and for this reason the loop is not affected if the container is modified
during iteration.

Sequential Containers 259

How Implicit Sharing Works

Implicit sharing works automatically behind the scenes, so we don’t have
to do anything in our code to make this optimization happen. But since
it’s nice to know how things work, we will study an example and see what
happens under the hood. The example uses QString, one of Qt’s many
implicitly shared classes.

QString stri
QString str2

" Humptyn;
stri;

We set str1 to “Humpty” and str2 to be equal to stri1. At this point, both
QString objects point to the same internal data structure in memory. Along
with the character data, the data structure holds a reference count that
indicates how many QStrings point to the same data structure. Since both
str1 and str2 point to the same data, the reference count is 2.

str2[0] = 'D';

When we modify str2, it first makes a deep copy of the data, to ensure
that str1 and str2 point to different data structures, and it then applies
the change to its own copy of the data. The reference count of str1’s data
(“Humpty”) becomes 1, and the reference count of str2’s data (“Dumpty”)is
set to 1. A reference count of 1 means that the data isn’t shared.

str2.truncate (4);

If we modify str2 again, no copying takes place because the reference count
of str2’s data is 1. The truncate () function operates directly on str2’s data,
resulting in the string “Dump”. The reference count stays at 1.

str1 = str2;

When we assign str2 to str1, the reference count for str1’s data goes down
to 0, which means that no QStringis using the “Humpty” data anymore. The
data is then freed from memory. Both QStrings point to “Dump”, which now
has a reference count of 2.

Data sharing is often disregarded as an option in multithreaded programs,
because of race conditions in the reference counting. With Qt, thisis not an
issue. Internally, the container classes use assembly language instructions
to perform atomic reference counting. This technology is available to Qt
users through the QSharedData and QSharedDataPointer classes.

The break and continue loop statements are supported. If the body consists of
a single statement, the braces are unnecessary. Just like a for statement, the
iteration variable can be defined outside the loop, like this:

QLinkedList<Movie> list;
Movie movie;

foreach (movie, list) {

260 11. Container Classes

if (movie.title() == "Citizen Kane") {
cout << "Found Citizen Kane" << endl;
break;

}

}

Defining the iteration variable outside the loop is the only option for containers
that hold data types that contain a comma (for example, QPair<QString, int>).

Associative Containers

An associative container holds an arbitrary number of items of the same type,
indexed by a key. Qt providestwo main associative container classes: QMap<K, T>
and QHash<K, T>.

A QMap<K, T> is a data structure that stores key—value pairs in ascending key
order. Thisarrangement makesit possible to provide good lookup and insertion
performance, and in-order iteration. Internally, QMap<kK, T> is implemented as a
skip-list.

Mexico City » 22350000
Seoul » 22050000
Tokyo » 34000000

Figure 11.6. A map of 0String to int

One simple way to insert items into a map is to call insert ():

QMap<QString, int> map;
map.insert("eins", 1);
map.insert("sieben", 7);
map.insert ("dreiundzwanzig", 23);

Alternatively, we can simply assign a value to a given key as follows:

map["eins"] = 1;
map["sieben"] = 7;
map["dreiundzwanzig"] = 23;

The [] operator can be used for both insertion and retrieval. If [] is used to
retrieve a value for a non-existent key in a non-const map, a new item will be
created with the given key and an empty value. To avoid accidentally creating
empty values, we can use the value () function to retrieve items instead of [1:

int val = map.value("dreiundzwanzig");

If the key doesn’t exist, a default value is returned using the value type’s
default constructor, and no new item is created. For basic and pointer types,

Associative Containers 261

zero is returned. We can specify another default value as second argument to
value (), for example:

int seconds = map.value("delay", 30);
This is equivalent to

int seconds = 30;
if (map.contains("delay"))
seconds = map.value("delay");

The k and T data types of a QMap<K, T> can be basic data typeslike int and double,
pointer types, or classes that have a default constructor, a copy constructor,and
an assignment operator. In addition, the K type must provide an operator<()
since QMap<K, T> uses this operator to store the items in ascending key order.

QMap<K, T> has a couple of convenience functions, keys () and values(), that are
especially useful when dealing with small data sets. They return QLists of a
map’s keys and values.

Maps are normally single-valued: If a new value is assigned to an existing key,
the old value is replaced by the new value, ensuring that no two items share the
same key. It is possible to have multiple key—value pairs with the same key by
using the insertMulti() function or the QMultiMap<K, T> convenience subclass.
QMap<K, T> has a values (const K &) overload that returns a QList of all the values
for a given key. For example:

QMultiMap<int, QString> multiMap;
multiMap.insert(1, "one");
multiMap.insert(1, "eins");
multiMap.insert(1, "uno");

QList<QString> vals = multiMap.values(1);

A QHash<K, T> is a data structure that stores key—value pairsin a hash table. Its
interface is almost identical to that of QMap<K, T>, but it has different require-
ments for the K template type and usually provides much faster lookups than
QMap<K, T> can achieve. Another difference is that QHash<k, T> is unordered.

In addition to the standard requirements on any value type stored in a contain-
er, the K type of a QHash<K, T> needs to provide an operator==() and be support-
ed by a global gHash () function that returns a hash value for a key. Qt already
provides gHash () functions for integer types, pointer types, QChar, QString, and
QByteArray.

QHash<k, T> automatically allocates a prime number of buckets for its internal
hash table and resizes this as items are inserted or removed. It is also possible
to fine-tune performance by calling reserve() to specify the number of items
expected to be stored in the hash and squeeze () to shrink the hash table based
on the current number of items. A common idiom is to call reserve () with the
maximum number of items we expect, then insert the data, and finally call
squeeze () to minimize memory usage if there were fewer items than expected.

262 11. Container Classes

Hashes are normally single-valued, but multiple values can be assigned to the
same key using the insertMulti() function or the QMultiHash<k, T> convenience
subclass.

Besides QHash<k, T>, Qt also provides a QCache<K, T> class that can be used to
cache objects associated with a key, and a QSet<k> container that only stores
keys. Internally, both rely on QHash<K, T> and both have the same requirements
for the K type as QHash<K, T>.

The easiest way to iterate through all the key—value pairs stored in an associa-
tive container is to use a Java-style iterator. Because the iterators must give
access to both a key and a value, the Java-style iterators for associative con-
tainers work slightly differently from their sequential counterparts. The main
difference is that the next () and previous () functions return an object that rep-
resents a key—value pair, rather than simply a value. The key and value com-
ponents are accessible from this object as key () and value (). For example:

QMap<QString, int> map;

int sum = 0;
QMapIterator<QString, int> i(map);
while (i.hasNext())

sum += i.next().value();

If we need to access both the key and the value, we can simply ignore the
return value of next() or previous() and use the iterator’s key () and value()
functions, which operate on the last item that was jumped over:

QMapIterator<QString, int> i(map);
while (i.hasNext()) {
i.next();
if (i.value() > largestvalue) {
largestkey = i.key();
largestValue = i.value();

}

Mutable iterators have a setValue () function that modifies the value associated
with the current item:

QMutableMapIterator<QString, int> i(map);
while (i.hasNext()) {
i.next();
if (i.value() < 0.0)
i.setValue(-i.value());
}

STL-style iterators also provide key () and value() functions. With the non-
const iterator types, value() returns a non-const reference, allowing us to
change the value as we iterate. Note that although these iterators are called
“STL-style”, they deviate significantly from the STL's map<K, T> iterators, which
are based on pair<K, T>.

Associative Containers 263

The foreach loop also works on associative containers, but only on the value
component of the key—value pairs. If we need both the key and the value
components of the items, we can call the keys () and values(const K &) functions
in nested foreach loops as follows:

QMultiMap<QString, int> map;

foreach (QString key, map.keys()) {
foreach (int value, map.values(key)) {
do_something(key, value);
}

Generic Algorithms

The <QtAlgorithms> header declares a set of global template functions that
implement basic algorithms on containers. Most of these functions operate on
STL-style iterators.

The STL <algorithm> header provides a more complete set of generic algo-
rithms. These algorithms can be used on Qt containers as well as STL contain-
ers. If STL implementations are available on all your platforms, there is prob-
ably no reason to avoid using the STL algorithms when Qt lacks an equivalent
algorithm. Here, we will introduce the most important Qt algorithms.

The gFind () algorithm searches for a particular value in a container. It takesa
“begin” and an “end” iterator and returns an iterator pointing to the first item
that matches, or “end” if there is no match. In the following example, i is set
to list.begin() + 1, whereas j is set to 1ist.end().

QStringlList list;
list << "Emma" << "Karl" << "James" << "Mariette";

QStringlList::iterator i
QStringList::iterator j

gFind(list.begin(), list.end(), "Karl");
gFind(list.begin(), list.end(), "Petra");

The gBinaryFind() algorithm performs a search just like gFind(), except that
it assumes that the items are sorted in ascending order and uses fast binary
searching rather than gFind()’s linear searching.

The gFill () algorithm populates a container with a particular value:

QLinkedList<int> list(10);
gFill(list.begin(), list.end(), 1009);

Like the other iterator-based algorithms, we can also use gFill() on a portion
of the container by varying the arguments. The following code snippet initial-
izes the first five items of a vector to 1009 and the last five items to 2013:

QVector<int> vect(10);
gFill (vect.begin(), vect.begin() + 5, 1009);
gFill(vect.end() - 5, vect.end(), 2013);

264 11. Container Classes

The gCopy () algorithm copies values from one container to another:

QVector<int> vect(list.count());
qCopy (list.begin(), list.end(), vect.begin());

qCopy () can also be used to copy values within the same container, as long as
the source range and the target range don’t overlap. In the next code snippet,
we use it to overwrite the last two items of a list with the first two items:

qCopy (list.begin(), list.begin() + 2, list.end() - 2);
The gSort () algorithm sorts the container’s items into ascending order:
gSort(list.begin(), list.end());

By default, gSort () uses the < operator to compare the items. To sort items
in descending order, pass g6reater<T>() as the third argument (where T is the
container’s value type), as follows:

gSort(list.begin(), list.end(), g6reater<int>());

We can use the third parameter to define custom sort criteria. For example,
here’s a “less than” comparison function that compares QStrings in a case-
insensitive way:

bool insensitivelessThan(const QString &str1, const QString &str2)
{

}
The call to gSort () then becomes

return stri.toLower () < str2.toLower();

QStringlList list;
gSort(list.begin(), list.end(), insensitivelLessThan);

The gStableSort() algorithm is similar to gSort(), except it guarantees that
items that compare equal appear in the same order after the sort as before.
This is useful if the sort criterion only takes into account parts of the value
and the results are visible to the user. We used qStableSort() in Chapter 4 to
implement sorting in the Spreadsheet application (p. 88).

The qDeleteAll () algorithm calls delete on every pointer stored in a container.
It only makes sense on containers whose value type is a pointer type. After the
call, the items are still present clear () on the container. For example:

gDeleteAll (list);
list.clear O);

The gswap () algorithm exchanges the value of two variables. For example:

int x1 = 1line.x1();
int x2 = line.x2();
if (x1 > x2)

gsSwap (x1, x2);

Generic Algorithms 265

Finally, the <Qt6lobal> header, which is included by every other Qt header,
provides several useful definitions, including the gAbs () function, that returns
the absolute value of its argument, and the gMin() and gMax() functions, that
return the minimum or maximum of two values.

Strings, Byte Arrays, and Variants

QString, QByteArray, and Qvariant are three classes that have many things in
common with containers and that can be used as alternatives to containers in
some contexts. Also, like the containers, these classes use implicit sharing as
a memory and speed optimization.

We will start with QString. Strings are used by every GUI program, not only for
the user interface but often also as data structures. C++ natively provides two
kinds of strings: traditional C-style \0’-terminated character arrays and the
std::string class. Unlike these, QString holds 16-bit Unicode values. Unicode
contains ASCII and Latin-1 as a subset, with their usual numeric values.
But since QString is 16-bit, it can represent thousands of other characters for
writing most of the world’s languages. See Chapter 17 for more information
about Unicode.

When using QString, we don’t need to worry about such arcane details as allo-
cating enough memory or ensuring that the data is \0’-terminated. Conceptu-
ally, @Strings can be thought of as a vector of QChars. A QString can embed \0’
characters. The length() function returns the size of the entire string, includ-
ing embedded \0’ characters.

QString provides a binary + operator to concatenate two strings and a += oper-
ator to append one string to another. Because QString automatically preallo-
cates memory at the end of the string data, building up a string by repeatedly
appending characters is very fast. Here’s an example that combines + and +=:

QString str = "User:
str += userName + "\n";

There is also a QString::append() function that does the same thing as the
+= operator:

str = "User:
str.append (userName);
str.append("\n");

A completely different way of combining strings is to use QString’s sprintf ()
function:

str.sprintf ("%s %.1f%%", "perfect competition", 100.0);

This function supports the same format specifiers as the C++library’s sprintf ()
function. In the example above, str is assigned “perfect competition 100.0%”.

Yet another way of building a string from other strings or from numbers is to
use arg():

266 11. Container Classes

str = QString("%1 %2 (%3s-%4s)")
.arg("permissive").arg("society").arg(1950) .arg(1970);

In this example, “%1” is replaced by “permissive”, “%2” is replaced by “society”,
“%3” is replaced by “1950”, and “%4” is replaced by “1970”. The result is
“permissive society (1950s-1970s)”. There are arg() overloads to handle vari-
ous data types. Some overloads have extra parameters for controlling the field
width, the numerical base, or the floating-point precision. In general, arg() is
a much better solution than sprintf (), because it is type-safe, fully supports
Unicode, and allows translators to reorder the “%n” parameters.

QString can convert numbers into strings using the QString: :number () static
function:

str = QString::number (59.6);
Or using the setNum () function:
str.setNum(59.6);

The reverse conversion, from a string to a number, is achieved using toInt(),
toLonglong (), toDouble (), and so on. For example:

bool ok;
double d = str.toDouble (&0Kk);

These functions accept an optional pointer to a bool variable and set the
variable to true or false depending on the success of the conversion. If the
conversion fails, these functions return zero.

Once we have a string, we often want to extract parts of it. The mid() function
returns the substring starting at a given position (the first argument) and of
up to a given length (the second argument). For example, the following code
prints “pays” to the console:*

QString str = "polluter pays principle";
gDebug () << str.mid(9, 4);

If we omit the second argument, nid() returns the substring starting at the
given position and ending at the end of the string. For example, the following
code prints “pays principle” to the console:

QString str = "polluter pays principle";
gDebug () << str.mid(9);

There are also left() and right() functions that perform a similar job. Both
accept a number of characters, n, and return the first or last n characters
of the string. For example, the following code prints “polluter principle” to
the console:

QString str = "polluter pays principle";

*The convenient qDebug () << arg syntax used here requires the inclusion of the <atDebug> header file,
while the gDebug("...", arg) syntax is available in any file that includes at least one Qt header.

Strings, Byte Arrays, and Variants 267

gDebug () << str.left(8) << " " KL str.right(9);

If we want to find out if a string contains a particular character, substring, or
regular expression, we can use one of QString’s index0f () functions:

QString str = "the middle bit";
int 1 = str.index0f ("middle");

This will set i to 4. The index0f () function returns -1 on failure, and accepts an
optional start position and case-sensitivity flag.

If we just want to check whether a string starts or ends with something, we
can use the startsWith() and endsWith() functions:

if (url.startsWith("http:") && url.endsWith(".png"))

This is both simpler and faster than this:
if (url.left(5) == "http:" && url.right(4) == ".png")

String comparison with the == operator is case sensitive. If we are comparing
user-visible strings, localeAwareCompare () is usually the right choice, and if
we want to make the comparisons case-insensitive, we can use toUpper () or
toLower (). For example:

if (fileName.toLower() == "readme.txt")

If we want to replace a certain part of a string by another string, we can use
replace():

QString str = "a cloudy day";
str.replace(2, 6, "sunny");

The result is “a sunny day”. The code can be rewritten to use remove() and
insert():

str.remove (2, 6);
str.insert(2, "sunny");

First, we remove six characters starting at position 2, resulting in the string
“a day” (with two spaces), then we insert “sunny” at position 2.

There are overloaded versions of replace () that replace all occurrences of their
first argument with their second argument. For example, here’s how to replace
all occurrences of “&” with “&” in a string:

str.replace("&", "&");

One very frequent need is to strip the whitespace (such as spaces, tabs, and
newlines) from a string. QString has a function that eliminates whitespace
from both ends of a string:

QString str = " BOB \t THE \nDOG \n";

268 11. Container Classes

gDebug () << str.trimmed();

String str can be depicted as

L[[IslolB] Iw] [TIHIE] [[wn[DIOIG] |wn]

The string returned by trimmed() is

[BIo[B] Iw[[TIHIE] | T\wn[D[O]G]

When handling user input, we often also want to replace every sequence of one
or more internal whitespace characters with single spaces, in addition to strip-
ping whitespace from both ends. This is what the simplified() function does:

QString str = " BOB \t THE \nDOG \n";
gDebug () << str.simplified();

The string returned by simplified() is

[Blo[B] [T[H[E] [D[o]g]

A string can be split into a QStringList of substrings using QString::split():

QString str = "polluter pays principle";
QStringlList words = str.split(" ");

In the example above, we split the string “polluter pays principle” into three
substrings: “polluter”, “pays”, and “principle”. The split() function has an
optional third argument that specifies whether empty substrings should be

kept (the default) or discarded.

The items in a QStringlList can be joined to form a single string using join().
The argument to join() is inserted between each pair of joined strings. For
example, here’s how to create a single string that is composed of all the
strings contained in a QStringlList sorted into alphabetical order and separated
by newlines:

words.sort();
str = words.join("\n");

When dealing with strings, we often need to determine whether a string is
empty or not. Thisis done by calling isEmpty () or by checking whether length ()
is 0.

The conversion from const char * strings to QString is automatic in most cases,
for example:

str += " (1870)";

Here we add a const char = to a QString without formality. To explicitly convert
a const char * to a QString, simply use a QString cast, or call fromAscii() or
fromLatin1(). (See Chapter 17 for an explanation of handling literal strings in
other encodings.)

Strings, Byte Arrays, and Variants 269

To convert a QString to a const char *, use toAscii() or toLatin1(). These
functions return a QByteArray, which can be converted into a const char * using
QByteArray::data() or QByteArray::constData(). For example:

printf ("User: %s\n", str.toAscii().data());

For convenience, Qt provides the gPrintable () macro that performs the same
as the sequence toAscii() .constData():

printf ("User: %s\n", gPrintable(str));

When we call data() or constData() on a QByteArray, the returned string is
owned by the QByteArray object. This means that we don’t need to worry about
memory leaks; Qt will reclaim the memory for us. On the other hand, we must
be careful not to use the pointer for too long. If the QByteArray is not stored in
a variable, it will be automatically deleted at the end of the statement.

The QByteArray class has a very similar API to QString. Functions like left(),
right (),mid (), toLower (), toUpper (), trimmed (), and simplified() existin QByteAr-
ray with the same semantics as their 0String counterparts. QByteArray is useful
for storing raw binary data and 8-bit encoded text strings. In general, we rec-
ommend using QString for storing text rather than QByteArray because QString
supports Unicode.

For convenience, QByteArray automatically ensures that the “one past the last”
byte is always \0’, making it easy to pass a QByteArray to a function taking a
const char =. QByteArray also supports embedded \0’ characters, allowing us to
use it to store arbitrary binary data.

In some situations, we need to store data of different types in the same vari-
able. One approach is to encode the data as a QByteArray or a QString. For exam-
ple, a string could hold a textual value or a numeric value in string form. These
approaches give complete flexibility, but do away with some of C++’s benefits,
in particular type safety and efficiency. Qt provides a much cleaner way of
handling variables that can hold different types: Qvariant.

The Qvariant class can hold values of many Qt types, including QBrush, QColor,
QCursor, QDateTime, QFont, QKeySequence, QPalette, QPen, QPixmap, QPoint, QRect,
QRegion, QSize, and QString, as well as basic C++ numeric types like double
and int. The Qvariant class can also hold containers: QMap<QString, QvVariant>,
QStringlList, and QList<Qvariant>.

Variants are used extensively by the item view classes, the database module,
and QSettings, allowing us to read and write item data, database data, and
user preferences for any Qvariant-compatible type. We have already seen an
example of this in Chapter 3, where we passed a QRect, a QStringList, and a
couple of bools as variants to QSettings::setValue(), and retrieved them later
as variants.

It is possible to create arbitrarily complex data structures using Qvariant by
nesting values of container types:

270 11. Container Classes

QMap<QString, QVariant> pearMap;
pearMap["Standard"] = 1.95;
pearMap["Organic"] = 2.25;

QMap<QString, QVariant> fruitMap;
fruitMap["Orange"] = 2.10;
fruitMap["Pineapple"] = 3.85;
fruitMap["Pear"] = pearMap;

Here we have created a map with string keys (product names) and values that
are either floating-point numbers (prices) or maps. The top-level map contains
three keys: “Orange”, “Pear”, and “Pineapple”. The value associated with the
“Pear” key is a map that contains two keys (“Standard” and “Organic”). When
iterating over a map that holds variant values, we need to use type () to check
the type that a variant holds so that we can respond appropriately.

Creating data structures like this can be very seductive since we can organize
the data in any way we like. But the convenience of Qvariant comes at the
expense of efficiency and readability. As a rule, it is usually worth defining a
proper C++ class to store our data whenever possible.

Qvariant is used by Qt’s meta-object system and is therefore part of the @tCore
module. Nonetheless, when we link against the @¢Gui module, Qvariant can
store GUI-related types such as QColor, QFont, QIcon, QImage, and QPixmap:

QIcon icon("open.png");
Qvariant variant = icon;

To retrieve the value of a GUI-related type from a Qvariant, we can use the
Qvariant::value<T> () template member function as follows:

QIcon icon = variant.value<QIcon>();

The value<T> () function also works for converting between non-GUI data types
and QVariant, but in practice we normally use the to... () conversion functions
(for example, toString()) for non-GUI types.

Qvariant can also be used to store custom data types, assuming they provide
a default constructor and a copy constructor. For this to work, we must first
register the type using the Q_DECLARE_METATYPE () macro, typically in a header
file below the class definition:

Q_DECLARE_METATYPE (BusinessCard)

This enables us to write code like this:

BusinessCard businessCard;
QVariant variant = QVariant::fromValue (businessCard);

if (variant.canConvert<BusinessCard>()) {
BusinessCard card = variant.value<BusinessCard>();

Strings, Byte Arrays, and Variants 271

Because of a compiler limitation, these template member functions are not
available for MSVC 6. If you need to use this compiler, use the qvariantFromval-
ue (), gvariantValue<T> (), and gqvariantCanConvert<T>() global functions instead.

If the custom data type has << and >> operators for writing to and reading
from a QDataStream, we can register them using qregisterMetaTypeStreamOpera-
tors<T> (). This makes it possible to store preferences of custom data types us-
ing QSettings, among other things. For example:

gRegisterMetaTypeStreamOperators<BusinessCard> ("BusinessCard");

This chapter has focused on the Qt containers, as well as on QString, QByteAr-
ray, and QVariant. In addition to these classes, Qt also provides a few other con-
tainers. One is QPair<T1, 72>, which simply stores two values and is similar to
std::pair<T1, T2>. Another is QBitArray, which we will use in the first section
of Chapter 19. Finally, there is QvarLengthArray<T, Prealloc>, a low-level alter-
native to QVector<T>. Because it preallocates memory on the stack and isn’t
implicitly shared, its overhead is less than that of Qvector<T>, making it more
appropriate for tight loops.

Qt’s algorithms, including a few not covered here such as qCopyBackward () and
qEqual (), are described in Qt’s documentation at http://doc.trolltech.com/4.1/
algorithms.html. And for more details of Qt’s containers, including information
on their time complexity and growth strategies, see http://doc.trolltech.com/
4.1/containers.html.

Reading and Writing Binary Data
Reading and Writing Text
Traversing Directories

Embedding Resources

* ¢ 6 o o

Inter-Process Communication

12. Input/Output

The need to read from or write to files or other devices is common to almost
every application. Qt provides excellent support for I/O through Qi0ODevice,
a powerful abstraction that encapsulates “devices” capable of reading and
writing blocks of bytes. Qt includes the following QI0Device subclasses:

QFile Accesses files in the local file system and in embedded resources

QTemporaryFile | Creates and accesses temporary files in the local file system

QBuffer Reads data from or writes data to a QByteArray

QProcess Runs external programs and handles inter-process communication
QTcpSocket Transfers a stream of data over the network using TCP
QUdpSocket Sends or receives UDP datagrams over the network

QProcess, QTcpSocket, and QUdpSocket are sequential devices, meaning that the
data can only be accessed once, starting from the first byte and progressing
serially to the last byte. QFile, QTemporaryFile, and QBuffer are random-access
devices, so bytes can be read any number of times from any position; they
provide the QI0Device: :seek () function for repositioning the file pointer.

In addition to the device classes, Qt also provides two higher-level stream
classes that we can use to read from and write to any I/O device: QDataStream
for binary data and QTextStream for text. These classes take care of issues such
as byte ordering and text encodings, ensuring that Qt applications running
on different platforms or in different countries can read and write each oth-
er’s files. This makes Qt’s I/O classes much more convenient than the corre-
sponding Standard C++ classes, which leave these issues to the application pro-
grammer.

QFile makes it easy to access individual files, whether they are in the file sys-
tem or embedded in the application’s executable as resources. For applications
that need to identify whole sets of files to work on, Qt provides the aDir and

273

274 12. Input/Output

QFileInfo classes, which handle directories and provide information about the
files inside them.

The QProcess class allows us to launch external programs and to communicate
with them through their standard input, standard output, and standard error
channels (cin, cout, and cerr). We can set the environment variables and work-
ing directory that the external application will use. By default,communication
with the process is asynchronous (non-blocking), but it is also possible to block
on certain operations.

Networking and reading and writing XML are such substantial topics that
they are covered separately in their own dedicated chapters (Chapter 14 and
Chapter 15).

Reading and Writing Binary Data

The simplest way to load and save binary data with Qt is to instantiate a
QFile, to open the file, and to access it through a QDataStream object. QDataStream
provides a platform-independent storage format that supports basic C++ types
like int and double, and many Qt data types, including QByteArray, QFont, QImage,
QPixmap, QString, and QVariant, as well as Qt container classes such as QList<T>
and QMap<k, T>.

Here’s how we would store an integer, a QImage, and a QMap<QString, QColor> in
a file called facts.dat:

QImage image("philip.png");

QMap<QString, QColor> map;
map.insert("red", Qt::red);
map.insert ("green", Qt::green);
map.insert ("blue", Qt::blue);

QFile file("facts.dat");
if (Ifile.open(QIODevice::WriteOnly)) {
cerr << "Cannot open file for writing: "
<< gPrintable(file.errorString()) << endl;
return;

}

QDataStream out(&file);
out.setVersion(QDataStream::Qt_4_1);

out << quint32(0x12345678) << image << map;

If we cannot open the file, we inform the user and return. The gPrintable ()
macro returns a const char * for a QString. (Another approach would have been
touseQString::toStdString (), which returns a std: : string, for which <iostream>
has a << overload.)

If the file is opened successfully, we create a QDataStream and set its version
number. The version number is an integer that influences the way Qt data

Reading and Writing Binary Data 275

types are represented (basic C++ data types are always represented the same
way). In Qt 4.1, the most comprehensive format is version 7. We can either
hard-code the constant 7 or use the QDataStream: :Qt_4_1 symbolic name.

To ensure that the number 0x12345678 is written as an unsigned 32-bit integer
on all platforms, we cast it to quint32, a data type that is guaranteed to be exact-
ly 32 bits. To ensure interoperability, QDataStream standardizes on big-endian
by default; this can be changed by calling setByteOrder ().

We don’t need to explicitly close the file since this is done automatically when
the QFile variable goes out of scope. If we want to verify that the data has
actually been written, we can call flush() and check its return value (true
on success).

The code to read back the data mirrors the code we used to write it:

quint32 n;
QImage image;
QMap<QString, QColor> map;

QFile file("facts.dat");
if (!file.open(QIODevice::ReadOnly)) {
cerr << "Cannot open file for reading: "
<< gPrintable(file.errorString()) << endl;
return;

}

QDataStream in(&file);
in.setVersion(QDataStream::Qt_4_1);

in >> n >> image >> map;

The QDataStream version we use for reading is the same as the one we used for
writing. This must always be the case. By hard-coding the version number, we
guarantee that the application can always read and write the data (assuming
it is compiled with Qt 4.1 or any later Qt version).

QDataStream stores data in such a way that we can read it back seamlessly. For
example, a QByteArray is represented as a 32-bit byte count followed by the
bytes themselves. QDataStream can also be used to read and write raw bytes,
without any byte count header, using readRawBytes () and writeRawBytes().

Error handling when reading from a QDataStrean is fairly easy. The stream
has a status() value that can be QDataStream::0k, QDataStream::ReadPastEnd,
or QDataStream::ReadCorruptData. Once an error has occurred, the >> operator
always reads zero or empty values. This means that we can often simply read
an entire file without worrying about potential errors and check the status ()
value at the end to see if what we read was valid.

QDataStream handles a variety of C++ and Qt data types; the complete list is
available at http://doc.trolltech.com/4.1/datastreanformat.html. We can also
add support for our own custom types by overloading the << and >> operators.
Here’s the definition of a custom data type that can be used with QDataStream:

276 12. Input/Output

class Painting
{
public:
Painting() { myYear = 0; }
Painting(const QString &title, const QString &artist, int year) {
myTitle = title;
myArtist = artist;
myYear = year;
}

void setTitle(const QString &title) { myTitle = title; }
QString title() const { return myTitle; }

private:
QString myTitle;
QString myArtist;
int myYear;

h

QDataStream &operator<<(QDataStream &out, const Painting &painting);
QDataStream &operator>>(QDataStream &in, Painting &painting);

Here’s how we would implement the << operator:

QDataStream &operator<<(QDataStream &out, const Painting &painting)
{
out << painting.title() << painting.artist()
<< quint32(painting.year());
return out;

}

To output a Painting, we simply output two QStrings and a quint32. At the end
of the function, we return the stream. Thisis a common C++ idiom that allows
us to use a chain of << operators with an output stream. For example:

out << paintingl << painting2 << painting3;
The implementation of operator>> () is similar to that of operator<<():

QDataStream &operator>>(QDataStream &in, Painting &painting)
{

QString title;

QString artist;

quint32 year;

in >> title >> artist >> year;
painting = Painting(title, artist, year);
return in;

}

There are several benefits to providing streaming operators for custom data
types. One of them is that it allows us to stream containers that use the custom
type. For example:

QList<Painting> paintings = ...;

Reading and Writing Binary Data 277

out << paintings;
We can read in containers just as easily:

QList<Painting> paintings;
in >> paintings;

This would result in a compiler error if Painting didn’t support << or >>. An-
other benefit of providing streaming operators for custom types is that we can
store values of these types as Qvariants, which makes them more widely usable,
for example by QSettings. This works provided that we register the type using
gregisterMetaTypeStreamOperators<T> () beforehand, as explained in Chapter 11
(p. 270).

When we use QDataStream, Qt takes care of reading and writing each type,
including containers with an arbitrary number of items. This relieves us from
the need to structure what we write and from performing any kind of parsing
on what we read. Our only obligation is to ensure that we read all the typesin
exactly the same order as we wrote them, leaving Qt to handle all the details.

QDataStream is useful both for our own custom application file formats and for
standard binary formats. We can read and write standard binary formats
using the streaming operators on basic types (like quint16 or float) or using
readRawBytes () and writeRawBytes (). If the QDataStream is being used purely to
read and write basic C++ data types, we don’t even need to call setVersion().

So far, we loaded and saved data with the stream’s version hard-coded as
QDataStream::Qt_4_1. This approach is simple and safe, but it does have one
small drawback: We cannot take advantage of new or updated formats. For
example, if a later version of Qt added a new attribute to QFont (in addition
to its point size, family, etc.) and we hard-coded the version number to Qt_4_1,
that attribute wouldn’t be saved or loaded. There are two solutions. The first
approach is to embed the QDataStream version number in the file:

QDataStream out (&file);
out << quint32(MagicNumber) << quint16(out.version());

(MagicNumber is a constant that uniquely identifies the file type.) This approach
ensures that we always write the data using the most recent version of
QDataStream, whatever that happens to be. When we come to read the file, we
read the stream version:

quint32 magic;
quint16 streamVersion;

QDataStream in(&file);
in >> magic >> streamVersion;

if (magic !'= MagicNumber) {
cerr << "File is not recognized by this application" << endl;
} else if (streamVersion > in.version()) {
cerr << "File is from a more recent version of the application”
<< endl;

278 12. Input/Output

return false;

}
in.setVersion(streamVersion);

We can read the data as long as the stream version is less than or equal to the
version used by the application; otherwise, we report an error.

If the file format contains a version number of its own, we can use it to deduce
the stream version number instead of storing it explicitly. For example, let’s
suppose that the file format is for version 1.3 of our application. We might then
write the data as follows:

QDataStream out(&file);
out.setVersion(QDataStream::Qt_4_1);
out << quint32(MagicNumber) << quint16(0x0103);

When we read it back, we determine which QDataStream version to use based on
the application’s version number:

QDataStream in(&file);
in >> magic >> appVersion;

if (magic != MagicNumber) {
cerr << "File is not recognized by this application" << endl;
return false;
} else if (appVersion > 0x0103) {
cerr << "File is from a more recent version of the application”
<< endl;
return false;
}

if (appVersion < 0x0103) {
in.setVersion(QDataStream::Qt_3_0);
} else {
in.setVersion(QDataStream::Qt_4_1);
}

In this example, we specify that any file saved with versions prior to 1.3 of
the application uses data stream version 4 (Qt_3_0), and that files saved with
version 1.3 of the application use data stream version 7 (Qt_4_1).

In summary, there are three policies for handling QDataStream versions: hard-
coding the version number, explicitly writing and reading the version number,
and using different hard-coded version numbers depending on the applica-
tion’s version. Any of these policies can be used to ensure that data written by
an old version of an application can be read by a new version, even if the new
version links against a more recent version of Qt. Once we have chosen a policy
for handling QDataStream versions, reading and writing binary data using Qt is
both simple and reliable.

If we want to read or write a file in one go, we can avoid using QDataStream
altogether and instead use QI0Device’s write() and readAll() functions. For
example:

Reading and Writing Binary Data 279

bool copyFile(const QString &source, const QString &dest)

QFile sourceFile(source);
if (!sourceFile.open(QIODevice::ReadOnly))
return false;

QFile destFile(dest);
if (!destFile.open(QIODevice::WriteOnly))
return false;

destFile.write(sourceFile.readAll());

return sourcefFile.error() == QFile::NoError
&& destFile.error() == QFile::NoError;

}

In the line where readAl1() is called, the entire contents of the input file is read
into a QByteArray, which is then passed to the write () function to be written to
the output file. Having all the data in a QByteArray requires more memory than
reading item by item, but it offers some advantages. For example, we can then
use qCompress () and guncompress () to compress and uncompress the data.

There are other scenarios where accessing QI0Device directly is more appropri-
ate than using QDataStream. QI0Device provides a peek () function that returns
the next data bytes without moving the device position as well as an unget-
Char () function that “unreads” a byte. This works both for random-access de-
vices (such as files) and for sequential devices (such as network sockets). There
is also a seek () function that sets the device position, for devices that support
random access.

Binary file formats provide the most versatile and most compact means of
storing data, and QDataStream makes accessing binary data easy. In addition
to the examples in this section, we have already seen the use of QDataStream
in Chapter 4 to read and write Spreadsheet files, and we will see it again in
Chapter 19, where we use it to read and write Windows cursor files.

Reading and Writing Text

While binary file formats are typically more compact than text-based formats,
they are not human-readable or human-editable. In cases where this is an
issue, we can use text formats instead. Qt provides the QTextStream class for
reading and writing plain text files and for files using other text formats, such
as HTML, XML, and source code. Handling XML files is covered separately in
Chapter 15.

QTextStream takes care of converting between Unicode and the system’s local
encoding or any other encoding, and transparently handles the different line-
ending conventions used by different operating systems (“\r\n” on Windows,
“An” on Unix and Mac OS X). QTextStream uses the 16-bit QChar type as its funda-
mental unit of data. In addition to characters and strings, QTextStream supports

280 12. Input/Output

C++s basic numeric types, which it converts to and from strings. For example,
the following code writes “Thomas M. Disch: 334\n” to the file sf-book. txt:

QFile file("sf-book.txt");
if (!file.open(QIODevice::Write0Only)) {
cerr << "Cannot open file for writing: "
<< gPrintable(file.errorString()) << endl;
return;

}

QTextStream out(&file);
out << "Thomas M. Disch: " << 334 << endl;

Writing text is very easy, but reading text can be challenging, because textual
data (unlike binary data written using QDataStreanm) is fundamentally ambigu-
ous. Let’s consider the following example:

out << "Norway" << "Sweden";

If out is a QTextStream, the data that actually gets written is the string
“NorwaySweden”. We can’t really expect the following code to read back the
data correctly:

in >> stri1 >> str2;

In fact, what happens is that str1 gets the whole word “NorwaySweden”, and
str2 gets nothing. This problem doesn’t occur with QDataStream because it
stores the length of each string in front of the character data.

For complex file formats, a full-blown parser might be required. Such a parser
might work by reading the data character-by-character using >> on a QChar, or
line by line using QTextStream: :readLine (). At the end of this section, we present
two small examples, one that reads an input file line by line, and another that
reads it character by character. For parsers that work on an entire text, we
could read the complete file in one go using QTextStream: :readAll () if we are not
concerned about memory usage, or if we know the file will be small.

By default, QTextStream uses the system’s local encoding (for example,
ISO 8859-1 or ISO 8859-15 in America and much of Europe) for reading and
writing. This can be changed using setCodec () as follows:

stream.setCodec ("UTF-8");

The UTF-8 encoding used in the example is a popular ASCII-compatible encod-
ing that can represent the entire Unicode character set. For more information
about Unicode and QTextStream’s support for encodings, see Chapter 17 (Inter-
nationalization).

QTextStream has various options modeled after those offered by <iostream>.
These can be set by passing special objects, called stream manipulators, on
the stream to alter its state. The following example sets the showbase, upper-
casedigits, and hex options before it outputs the integer 12345678, producing
the text “0xBC614E”:

Reading and Writing Text

281

out << showbase <<

uppercasedigits << hex << 12345678;

Options can also be set using member functions:

out.setNumberFlags

out.setIntegerBase
out << 12345678;

(QTextStream:: ShowBase
| QTextStream::UppercaseDigits);
(16);

setIntegerBase (int)
0 Auto-detect based on prefix (when reading)
2 Binary
8 Octal

10 Decimal

16 Hexadecimal

setNumberFlags (NumberFlags)

ShowBase Show a prefix if the base is 2 (“0b”), 8 (“0”), or 16 (“0x”)
ForceSign Always show the sign in real numbers

ForcePoint Always put the decimal separator in numbers
UppercaseBase Use uppercase versions of base prefixes (“0X”, “0B”)
UppercaseDigits Use uppercase letters in hexadecimal numbers

setRealNumberNotation

(RealNumberNotation)

FixedNotation Fixed-point notation (e.g., “0.000123")
ScientificNotation Scientific notation (e.g., “1.234568e-04")
SmartNotation Fixed-point or scientific notation, whichever is most compact

setRealNumberPrecisio

n(int)

Sets the maximum number of digits that should be generated (6 by default)

setFieldWidth(int)

Sets the minimum size of a field (0 by default)

setFieldAlignment (Fie

1dAlignment)

AlignLeft Pad on the right side of the field
AlignRight Pad on the left side of the field
AlignCenter Pad on both sides of the field
AlignAccountingStyle | Pad between the sign and the number
setPadChar (QChar)

Sets the character used for padding fields (space by default)

Figure

12.1. Functions to set QTextStream’s options

282 12. Input/Output

Like QDataStream, QTextStream operates on a QIODevice subclass, which can be
a QFile, a QTemporaryFile, a QBuffer, a QProcess, a QTcpSocket, or a QUdpSocket. In
addition, it can be used directly on a QString. For example:

QString str;
QTextStream(&str) << oct << 31 <K " " << dec << 25 <K endl;

This makes the contents of str “37 25\n”, since the decimal number 31 is
expressed as 37 in octal. In this case, we don’t need to set an encoding on the
stream, since QString is always Unicode.

Let’s look at a simple example of a text-based file format. In the Spreadsheet
application described in Part I, we used a binary format for storing Spread-
sheet data. The data consisted of a sequence of (row, column, formula) triples,
one for every non-empty cell. Writing the data as text is straightforward; here
is an extract from a revised version of Spreadsheet::writeFile():

QTextStream out (&file);
for (int row = 0; row < RowCount; ++row) {
for (int column = 0; column < ColumnCount; ++column) {
QString str = formula(row, column);
if (!str.isEmpty())
out << row << " " < column <K " " <L str <K endl;

}

We have used a simple format, with each line representing one cell and with
spaces between the row and the column and between the column and the
formula. The formula can contain spaces, but we can assume that it contains
no \n’ (which we use to terminate lines). Now let’s look at the corresponding
reading code:

QTextStream in(&file);
while (lin.atEnd()) {
QString line = in.readlLine();
QStringlList fields = line.split(' ');
if (fields.size() >= 3) {
int row = fields.takeFirst().toInt();
int column = fields.takeFirst().toInt();
setFormula(row, column, fields.join(' '));

}

We read in the Spreadsheet data one line at a time. The readLine() function
removes the trailing \n’. QString::split () returns a string list, having split its
string wherever the separator it is given appears. For example, the line “5 19
Total value” results in the four-item list [“5”, “19”, “Total”, “value”].

If we have at least three fields, we are ready to extract the data. The QString-
List::takeFirst() function removes the first item in a list and returns the
removed item. We use it to extract the row and column numbers. We don’t
perform any error checking; if we read a non-integer row or column value,

Reading and Writing Text 283

QString::toInt () will return 0. When we call setFormula (), we must concatenate
the remaining fields back into a single string.

In our second QTextStream example, we will use a character by character
approach to implement a program that reads in a text file and outputs the
same text but with trailing spaces removed from lines and all tabs replaced by
spaces. The program’s work is done by the tidyFile() function:

void tidyFile(QIODevice *inDevice, QIODevice =outDevice)
{

QTextStream in(inDevice);

QTextStream out (outDevice);

const int TabSize = 8;
int endlCount = 0;

int spaceCount = 0;
int column = 0;

QChar ch;
while (lin.atEnd()) {
in >> ch;
if (ch == "\n") {
++endlCount;
spaceCount = 0;
column = 0;

} else if (ch == '\t") {
int size = TabSize - (column % TabSize);
spaceCount += size;
column += size;
} else if (ch =="") {
++spaceCount;
++column;
} else {
while (endlCount > 0) {
out << endl;
--endlCount;
column = 0;

}

while (spaceCount > 0) {
out < ' ',
--spaceCount;
++column;

}

out << ch;

++column;

}

}
out << endl;
}

We create an input and an output QTextStream based on the QI0ODevices that
are passed to the function. We maintain three elements of state: one counting
newlines, one counting spaces, and one marking the current column position
in the current line (for converting the tabs to the correct number of spaces).

284 12. Input/Output

The parsing is done in a while loop that iterates over every character in the in-
put file, one at a time. The code is a bit subtle in places. For example, although
we set TabSize to 8, we replace tabs with precisely enough spaces to pad to the
next tab boundary, rather than crudely replacing each tab with eight spaces.
If we get a newline, tab, or space, we simply update the state data. Only when
we get another kind of character do we produce any output, and before writing
the character we write any pending newlines and spaces (to respect blank lines
and to preserve indentation) and update the state.

int main()

{
QFile inFile;
QFile outFile;

inFile.open(stdin, QFile::ReadOnly);
outFile.open(stdout, QFile::WriteOnly);

tidyFile(&inFile, &outFile);

return 0;

}

For this example, we don’t need a QApplication object, because we are only
using Qt’s tool classes. See http://doc.trolltech.com/4.1/tools.html for the
list of all tool classes. We have assumed that the program is used as a filter,
for example:

tidy < cool.cpp > cooler.cpp

It would be easy to extend it to be able to handle file names given on the
command line if they are given, and to filter cin to cout otherwise.

Since this is a console application, it has a slightly different .pro file from those
we have seen for GUI applications:

TEMPLATE = app

QT = core
CONFIG += console
CONFIG = app_bundle
SOURCES = tidy.cpp

We only link against @¢Core since we don’t use any GUI functionality. Then we
specify that we want to enable console output on Windows and that we don’t
want the application to live in a bundle on Mac OS X.

For reading and writing plain ASCII files or ISO 8859-1 (Latin-1) files, it is
possible to use QIODevice’s API directly instead of using a QTextStream. It is
rarely wise to do this since most applications need support for other encodings
at some point or other, and only QTextStream provides seamless support for
these. If you still want to write text directly to a QI0Device, you must explicitly
specify the QIODevice: :Text flag to the open () function, for example:

file.open(QIODevice::WriteOnly | QIODevice::Text);

Reading and Writing Text 285

When writing, this flag tells QIODevice to convert \n’ characters into “\r\n”
sequences on Windows. When reading, this flag tells the device to ignore \r’
characters on all platforms. We can then assume that the end of each line is
signified with a ‘n’ newline character regardless of the line-ending convention
used by the operating system.

Traversing Directories

The QDir class provides a platform-independent means of traversing directories
and retrieving information about files. To see how QDir is used, we will write a
small console application that calculates the space consumed by all the images
in a particular directory and all its subdirectories to any depth.

The heart of the application is the imageSpace () function, which recursively
computes the cumulative size of a given directory’s images:

glonglong imageSpace (const QString &path)

{
QDir dir(path);
glonglong size = 0;
QStringlList filters;
foreach (QByteArray format, QImageReader::supportedImageFormats())
filters += "x." + format;
foreach (QString file, dir.entryList(filters, QDir::Files))
size += QFileInfo(dir, file).size();
foreach (QString subDir, dir.entryList(QDir::Dirs
| QDir::NoDotAndDotDot))
size += imageSpace(path + QDir::separator() + subDir);
return size;
}

We begin by creating a QDir object using the given path, which may be relative
to the current directory or absolute. We pass the entryList () function two
arguments. The first is a list of file name filters. These can contain * and
? wildcard characters. In this example, we are filtering to include only file
formats that QImage can read. The second argument specifies what kind of
entries we want (normal files, directories, drives, etc.).

We iterate over the list of files, accumulating their sizes. The QFileInfo class
allows us to access a file’s attributes, such as the file’s size, permissions, owner,
and timestamps.

The second entryList() call retrieves all the subdirectories in this directory.
We iterate over them (excluding . and ..) and recursively call imageSpace () to
ascertain their accumulated image sizes.

To create each subdirectory’s path, we combine the current directory’s path
with the subdirectory name, separating them with a slash. QDir treats ¢/’ as a

286 12. Input/Output

directory separator on all platforms, in addition to recognizing ‘\’ on Windows.
When presenting paths to the user, we can call the static function QDir::con-
vertSeparators() to convert slashes to the correct platform-specific separator.

Let’s add a main() function to our small program:

int main(int argc, char =argv[])

{
QCoreApplication app(argc, argv);
QStringlList args = app.arguments();

QString path = QDir::currentPath();
if (args.count() > 1)
path = args[1];

cout << "Space used by images in " << gPrintable(path)
<< " and its subdirectories is " << (imageSpace (path) / 1024)
< " KB" <K endl;

return 0;

}

We use QDir::currentPath() to initialize the path to the current directory.
Alternatively, we could have used QDir::homePath() to initialize it to the user’s
home directory. If the user has specified a path on the command line, we use
that instead. Finally, we call our imageSpace () function to calculate how much
space is consumed by images.

The QDir class provides other file- and directory-related functions, including
entryInfoList () (which returns a list of QFileInfo objects), rename (), exists(),
mkdir (), and rmdir (). The QFile class provides some static convenience func-
tions, including remove () and exists().

Embedding Resources

So far in this chapter we have talked about accessing data in external devices,
but with Qt it is also possible to embed binary data or text inside the applica-
tion’s executable. This is achieved using Qt’s resource system. In other chap-
ters, we used resource files to embed images in the executable, but it is possible
to embed any kind of file. Embedded files can be read using QFile just like nor-
mal files in the file system.

Resources are converted into C++ code by rcc, Qt’s resource compiler. We can
tell gmake to include special rules to run rcc by adding this line to the .pro file:

RESOURCES = myresourcefile.qgrc

The myresourcefile.qrc file is an XML file that lists the files to embed in
the executable.

Let’simagine that we are writing an application that keeps contact details. For
the convenience of our users, we want to embed the international dialing codes

Embedding Resources 287

in the executable. If the file is in the datafiles directory in the application’s
build directory, the resource file might look like this:

<IDOCTYPE RCC><RCC version="1.0">

<gresource>
<file>datafiles/phone-codes.dat</file>

</qresource>

</RCC>

From the application, resources are identified by the :/ path prefix. In this
example, the dialing codes file has the path :/datafiles/phone-codes.dat and
can be read just like any other file using QFile.

Embedding data in the executable has the advantage that it cannot get lost
and makes it possible to create truly stand-alone executables (if static linking
is also used). Two disadvantages are that if the embedded data needs changing
the whole executable must be replaced, and the size of the executable will be
larger because it must accommodate the embedded data.

Qt’s resource system provides more features than we presented in this example,
including support for file name aliases and for localization. These facilities are
documented at http://doc.trolltech.com/4.1/resources.html.

Inter-Process Communication

The QProcess class allows us to run external programs and to interact with
them. The class works asynchronously, doing its work in the background so
that the user interface remains responsive. QProcess emits signals to notify us
when the external process has data or has finished.

We will review the code of a small application that provides a user interface for
an external image conversion program. For this example, we rely on the Im-
ageMagick convert program, which is freely available for all major platforms.

ees Image Converter
Source File: JUsers [Anya,/Picture l.gif (Browse)
Target Format: | PNG | :}

Options

@ Enhance [Monochrome

File /Users/Anya/Picture l.png created

(" “Convert) £ Quit—)

i
T

Figure 12.2. The Image Converter application

288 12. Input/Output

The user interface was created in Q¢ Designer. The .ui file is on the CD that
accompanies this book. Here, we will focus on the subclass that inherits from
the uic-generated Ui::ConvertDialog class, starting with the header:

#ifndef CONVERTDIALOG_H
#define CONVERTDIALOG_H

#include <QDialog>
#include <QProcess>

#include "ui_convertdialog.h"

class ConvertDialog : public QDialog, public Ui::ConvertDialog
{
Q_OBJECT

public:
ConvertDialog(QWidget xparent = 0);

private slots:
void on_browseButton_clicked();
void on_convertButton_clicked();
void updateOutputTextEdit();
void processFinished(int exitCode, QProcess::ExitStatus exitStatus);
void processError (QProcess::ProcessError error);

private:
QProcess process;
QString targetFile;
b

#endif

The header follows the familiar pattern for subclasses of @t Designer forms.
Thanks to @t Designer’s automatic connection mechanism (p. 28), the on_
browseButton_clicked() and on_convertButton_clicked() slots are automatically
connected to the Browse and Convert buttons’ clicked() signals.

ConvertDialog::ConvertDialog(QWidget =parent)
: QDialog(parent)
{

setupli (this);

connect (&process, SIGNAL (readyReadStandardError()),
this, SLOT (updateOutputTextEdit()));
connect (&process, SIGNAL (finished(int, QProcess::ExitStatus)),
this, SLOT(processFinished(int, QProcess::ExitStatus)));
connect (&process, SIGNAL (error (QProcess::ProcessError)),
this, SLOT(processError (QProcess::Processkrror)));

}

The setupUi () call creates and lays out all the form’s widgets, establishes the
signal—slot connections for the on_objectName_signalName () slots, and connects
the Quit button to QDialog::accept (). After that, we manually connect three
signals from the QProcess object to three private slots. Whenever the external
process has data on its cerr, we will handle it in updateOutputTextEdit ().

Inter-Process Communication 289

void ConvertDialog::on_browseButton_clicked()
{
QString initialName = sourceFileEdit->text();
if (initialName.isEmpty())
initialName = QDir::homePath();
QString fileName =
QFileDialog::getOpenFileName (this, tr("Choose File"),
initialName);
fileName = QDir::convertSeparators(fileName);
if (!fileName.isEmpty()) {
sourceFileEdit->setText (fileName);
convertButton->setEnabled (true);

}

The Browse button’s clicked() signal is automatically connected to the on_
browseButton_clicked() slot by setupUi(). If the user has previously selected
a file, we initialize the file dialog with that file’s name; otherwise, we use the
user’s home directory.

void ConvertDialog::on_convertButton_clicked()
{
QString sourcefFile = sourceFileEdit->text();
targetFile = QFileInfo(sourceFile).path() + QDir::separator ()
+ QFileInfo(sourceFile) .baseName() + "."
+ targetFormatComboBox->currentText () .toLower ();
convertButton->setEnabled(false);
outputTextEdit->clear ();

QStringlList args;

if (enhanceCheckBox->isChecked())
args << "-enhance";

if (monochromeCheckBox->isChecked())
args << "-monochrome";

args << sourcefile << targetFile;

process.start ("convert", args);

}

When the user clicks the Convert button, we copy the source file’s name and
change the extension to match the target file format. We use the platform-
specific directory separator (/’ or \’, available as QDir: :separator ()) instead of
hard-coding slashes because the file name will be visible to the user.

We then disable the Convert button to avoid the user accidentally launching
multiple conversions, and we clear the text edit that we use to show status in-
formation.

To initiate the external process, we call QProcess: :start () with the name of the
program we want to run (convert) and any arguments it requires. In this case
we pass the -enhance and -monochrome flags if the user checked the appropriate
options, followed by the source and target file names. The convert program
infers the required conversion from the file extensions.

290 12. Input/Output

void ConvertDialog::updateOutputTextEdit ()

{
QByteArray newData = process.readAllStandardError();
QString text = outputTextEdit->toPlainText ()
+ QString::fromLocal8Bit (newData);
outputTextEdit->setPlainText (text);
}

Whenever the external process writes to cerr, the updateOutputTextEdit () slot
is called. We read the error text and add it to the QTextEdit’s existing text.

void ConvertDialog::processFinished(int exitCode,
QProcess::ExitStatus exitStatus)

{
if (exitStatus == QProcess::CrashExit) {
outputTextEdit->append(tr ("Conversion program crashed"));
} else if (exitCode != 0) {
outputTextEdit->append(tr ("Conversion failed"));
} else {
outputTextEdit->append(tr("File %1 created").arg(targetFile));
}
convertButton->setEnabled (true);
}

When the process has finished, we let the user know the outcome and enable
the Convert button.

void ConvertDialog::processError (QProcess::ProcessError error)
{
if (error == QProcess::FailedToStart) {
outputTextEdit->append(tr ("Conversion program not found"));
convertButton->setEnabled(true);

}

If the process cannot be started, QProcess emits error () instead of finished().
We report any error and enable the Click button.

In this example, we have performed the file conversions asynchronously—that
is, we have told QProcess to run the convert program and to return control to
the application immediately. This keeps the user interface responsive while
the processing occurs in the background. But in some situations we need the
external process to complete before we can go any further in our application,
and in such cases we need QProcess to operate synchronously.

One common example where synchronous behavior is desirable is for applica-
tions that support plain text editing using the user’s preferred text editor. This
is straightforward to implement using QProcess. For example, let’s assume that
we have the plain text in a QTextEdit, and provide an Edit button that the user
can click, connected to an edit () slot.

void ExternalEditor::edit()

{

QTemporaryFile outFile;

Inter-Process Communication 291

if (loutFile.open())
return;

QString fileName = outFile.fileName();
QTextStream out (&outFile);

out << textEdit->toPlainText();
outFile.close();

QProcess::execute (editor, QStringList() << options << fileName);

QFile inFile(fileName);
if (linFile.open(QIODevice::ReadOnly))
return;

QTextStream in(&inFile);
textEdit->setPlainText (in.readAll());
}

We use QTemporaryFile to create an empty file with a unique name. We don’t
specify any arguments to QTemporaryFile::open() since it conveniently defaults
to opening in read/write mode. We write the contents of the text edit to the
temporary file, and then we close the file because some text editors cannot
work on already open files.

The QProcess::execute () static function runs an external process and blocks
until the process has finished. The editor argument is a QString holding the
name of an editor executable (for example, “gvim”). The options argument is a
QStringList (containing one item, “-f”, if we are using gvim).

After the user has closed the text editor, the process finishes and the execute ()
call returns. We then open the temporary file and read its contents into the
QTextEdit. QTemporaryFile automatically deletes the temporary file when the
object goes out of scope.

Signal-slot connections are not needed when QProcess is used synchronously.
If finer control is required than provided by the static execute () function, we
can use an alternative approach. This involves creating a QProcess object and
calling start () on it, and then forcing it to block by calling QProcess: :waitFor-
Started(), and if that is successful, calling QProcess: :waitForFinished(). See the
QProcess reference documentation for an example that uses this approach.

In this section, we used QProcess to give us access to preexisting functionality.
Using applications that already exist can save development time and can
insulate us from the details of issues that are of marginal interest to our main
application’s purpose. Another way to access preexisting functionality is to
link against a library that provides it. But where no suitable library exists,
wrapping a console application using QProcess can work well.

Another use of QProcess is to launch other GUI applications, such as a web
browser or an email client. However, if our aim is communication between
applications rather than simply running one from another, we might be better
off having them communicate directly, using Qt’s networking classes or the
ActiveQt extension on Windows.

¢ Connecting and Querying
¢ Presenting Data in Tabular Form

¢ Implementing Master—Detail Forms

13. Databases

The ®tSql module provides a platform- and database-independent interface
for accessing SQL databases. This interface is supported by a set of classes
that use Qt’s model/view architecture to provide database integration with the
user interface. This chapter assumes familiarity with Qt’s model/view classes,
covered in Chapter 10.

A database connection is represented by a QSqlDatabase object. Qt uses drivers
to communicate with the various database APIs. The Qt Desktop Edition
includes the following drivers:

Driver Database
QDbB2 IBM DB2 version 7.1and later
QIBASE Borland InterBase
QMyYsQL | MySQL
QOCI Oracle (Oracle Call Interface)
QODBC ODBC (includes Microsoft SQL Server)
QPSQL PostgreSQL versions 6.x and 7.x
QSQLITE | SQLite version 3 and later
QSQLITE2 | SQLite version 2
QTDS Sybase Adaptive Server

Due to license restrictions, not all of the drivers are provided with the Qt Open
Source Edition. When configuring Qt, we can choose between including the
SQL drivers inside Qt itself and building them as plugins. Qt is supplied with
the SQLite database, a public domain in-process database.

For users who are comfortable with SQL syntax, the aSqlQuery class provides
a means of directly executing arbitrary SQL statements and handling their
results. For users who prefer a higher-level database interface that avoids
SQL syntax, QSqlTableModel and QSqlRelationalTableModel provide suitable
abstractions. These classes represent an SQL table in the same way as Qt’s
other model classes (covered in Chapter 10). They can be used stand-alone to

293

294 13. Databases

traverse and edit data in code, or they can be attached to views through which
end-users can view and edit the data themselves.

Qt also makes it straightforward to program the common database idioms,
such as master—detail and drill-down, as some of the examples in this chapter
will demonstrate.

Connecting and Querying

To execute SQL queries, we must first establish a connection with a database.
Typically, database connections are set up in a separate function that we call
at application startup. For example:

bool createConnection()
{
QSglDatabase db = QSqlDatabase::addDatabase ("QMYSQL");
db.setHostName ("mozart.konkordia.edu");
db.setDatabaseName ("musicdb");
db.setUserName ("gbatstone");
db.setPassword("T17av44");
if (!db.open()) {
QMessageBox::critical (8, QObject::tr("Database Error"),
db.lastError().text());
return false;

}

return true;

}

First, we call QSqlDatabase: :addDatabase () to create a QSqlDatabase object. The
first argument to addDatabase () specifies which database driver Qt must use to
access the database. In this case, we use MySQL.

Next, we set the database host name, the database name, the user name,
and the password, and we open the connection. If open() fails, we show an
error message.

Typically, we would call createConnection () in main():

int main(int argc, char =*argv[])

{
QApplication app(argc, argv);
if (lcreateConnection())
return 1;
return app.exec();
}

Once a connection is established, we can use 0SglQuery to execute any SQL
statement that the underlying database supports. For example, here’s how to
execute a SELECT statement:

QSglQuery query;
query.exec ("SELECT title, year FROM cd WHERE year >= 1998");

Connecting and Querying 295

After the exec () call, we can navigate through the query’s result set:

while (query.next()) {

QString title = query.value(0).toString();

int year = query.value(1).toInt();

cerr << gPrintable(title) << ": " << year << endl;
}

We call next () once to position the 0SqlQuery on the first record of the result set.
Subsequent calls to next () advance the record pointer by one record each time,
until the end is reached, at which point next () returns false. If the result set is
empty (or if the query failed), the first call to next () will return false.

The value () function returns the value of a field as a Qvariant. The fields are
numbered from 0 in the order given in the SELECT statement. The Qvariant class
can hold many C++ and Qt types, including int and 0String. The different types
of data that can be stored in a database are mapped into the c