
CSC212

Data Structure

Lecture 20

Quadratic Sorting

Instructor: George Wolberg

Department of Computer Science

City College of New York

Chapter 13 presents several

common algorithms for

sorting an array of integers.

Two slow but simple

algorithms are

Selectionsort and

Insertionsort.

This presentation

demonstrates how the two

algorithms work.

Quadratic Sorting

Data Structures

and Other Objects

Using C++

Sorting an Array of Integers

The picture

shows an

array of six

integers that

we want to

sort from

smallest to

largest

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The Selectionsort Algorithm

Start by

finding the

smallest

entry.

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The Selectionsort Algorithm

Start by

finding the

smallest

entry.

Swap the

smallest

entry with

the first

entry.
[1] [2] [3] [4] [5] [6]

0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The Selectionsort Algorithm

Start by

finding the

smallest

entry.

Swap the

smallest

entry with

the first

entry.
[1] [2] [3] [4] [5] [6]

0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The Selectionsort Algorithm

Part of the

array is now

sorted.

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

Sorted side Unsorted side

[0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The Selectionsort Algorithm

Find the

smallest

element in

the unsorted

side.

Sorted side Unsorted side

[0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The Selectionsort Algorithm

Find the

smallest

element in

the unsorted

side.

Swap with

the front of

the unsorted

side.

Sorted side Unsorted side

[0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The Selectionsort Algorithm

We have

increased the

size of the

sorted side

by one

element.

Sorted side Unsorted side

[0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The Selectionsort Algorithm

The process

continues...

Sorted side Unsorted side

Smallest

from

unsorted

[0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The Selectionsort Algorithm

The process

continues...

Sorted side Unsorted side

[0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The Selectionsort Algorithm

The process

continues...

Sorted side Unsorted side
Sorted side

is bigger

[0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The Selectionsort Algorithm

The process

keeps adding

one more

number to the

sorted side.

The sorted side

has the smallest

numbers,

arranged from

small to large.

Sorted side Unsorted side

[0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The Selectionsort Algorithm

We can stop

when the

unsorted side

has just one

number, since

that number

must be the

largest number.

[0] [1] [2] [3] [4] [5]

Sorted side Unsorted side

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The Selectionsort Algorithm

The array is

now sorted.

We repeatedly

selected the

smallest

element, and

moved this

element to the

front of the

unsorted side. [0] [1] [2] [3] [4] [5]

The Selectionsort Algorithm

Question 1:

Can you write out the code?

Question 2:

What is the Big-O of the selectionsort algorithm?

Question 3:

Best case, worst case and average case

deterministic?

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The Insertionsort Algorithm

The

Insertionsort

algorithm

also views

the array as

having a

sorted side

and an

unsorted

side. [0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The Insertionsort Algorithm

The sorted

side starts

with just the

first

element,

which is not

necessarily

the smallest

element. [1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][0] [1] [2] [3] [4] [5]

Sorted side Unsorted side

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The Insertionsort Algorithm

The sorted

side grows

by taking the

front

element

from the

unsorted

side... 0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][0] [1] [2] [3] [4] [5]

Sorted side Unsorted side

0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The Insertionsort Algorithm

...and

inserting it

in the place

that keeps

the sorted

side

arranged

from small

to large. [1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][0] [1] [2] [3] [4] [5]

Sorted side Unsorted side

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The Insertionsort Algorithm

In this

example, the

new element

goes in front

of the

element that

was already

in the sorted

side. [1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][0] [1] [2] [3] [4] [5]

Sorted side Unsorted side

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The Insertionsort Algorithm

Sometimes

we are lucky

and the new

inserted item

doesn't need

to move at

all.

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][0] [1] [2] [3] [4] [5]

Sorted side Unsorted side

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The Insertionsort Algorithm

Sometimes

we are lucky

twice in a

row.

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][0] [1] [2] [3] [4] [5]

Sorted side Unsorted side

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

How to Insert One Element

Copy the

new element

to a separate

location.

0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]
[0] [1] [2] [3] [4] [5]

Sorted side Unsorted side

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

How to Insert One Element

Shift

elements in

the sorted

side,

creating an

open space

for the new

element.

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]
[0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

How to Insert One Element

Shift

elements in

the sorted

side,

creating an

open space

for the new

element.

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

How to Insert One Element

Continue

shifting

elements...

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

How to Insert One Element

Continue

shifting

elements...

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

How to Insert One Element

...until you

reach the

location for

the new

element.

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

How to Insert One Element

Copy the

new element

back into the

array, at the

correct

location.

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]
[0] [1] [2] [3] [4] [5]

Sorted side Unsorted side

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

How to Insert One Element

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The last

element

must also be

inserted.

Start by

copying it...

[0] [1] [2] [3] [4] [5]

Sorted side Unsorted side

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

A Quiz

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

How many shifts

will occur before

we copy this

element back into

the array?

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]
[0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

A Quiz

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

Four items

are shifted.

[0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

A Quiz

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

Four items

are shifted.

And then

the element is

copied back

into the array.

[0] [1] [2] [3] [4] [5]

The Insertionsort Algorithm

Question 1:

Can you write out the code easily?

Question 2:

What is the Big-O of the insertsort algorithm?

Question 3:

Best case, worst case and average case

deterministic?

Both Selectionsort and Insertionsort have a worst-

case time of O(n2), making them impractical for

large arrays.

But they are easy to program, easy to debug.

Insertionsort also has good performance when the

array is nearly sorted to begin with.

But more sophisticated sorting algorithms are

needed when good performance is needed in all

cases for large arrays.

Timing and Other Issues

THE END

Presentation copyright 1997 Addison Wesley Longman,

For use with Data Structures and Other Objects Using C++

by Michael Main and Walter Savitch.

Some artwork in the presentation is used with permission from Presentation Task Force

(copyright New Vision Technologies Inc) and Corel Gallery Clipart Catalog (copyright

Corel Corporation, 3G Graphics Inc, Archive Arts, Cartesia Software, Image Club

Graphics Inc, One Mile Up Inc, TechPool Studios, Totem Graphics Inc).

Students and instructors who use Data Structures and Other Objects Using C++ are welcome

to use this presentation however they see fit, so long as this copyright notice remains

intact.

