Lecture 20
 Quadratic Sorting

Instructor: George Wolberg
Department of Computer Science
City College of New York

Quadratic Sorting

\square Chapter 13 presents several common algorithms for sorting an array of integers.

- Two slow but simple algorithms are Selectionsort and Insertionsort.
\square This presentation demonstrates how the two algorithms work.

Sorting an Array of Integers

\square The picture shows an array of six integers that we want to sort from smallest to largest

The Selectionsort Algorithm

- Start by
finding the smallest entry.

The Selectionsort Algorithm

- Start by finding the smallest entry.
- Swap the smallest entry with the first entry.

The Selectionsort Algorithm

- Start by
finding the smallest entry.
- Swap the smallest entry with the first entry.

The Selectionsort Algorithm

The Selectionsort Algorithm

\square Find the smallest element in the unsorted side.

Unsorted side

The Selectionsort Algorithm

Sorted side

Unsorted side
\square Find the smallest
element in the unsorted side.

- Swap with the front of the unsorted

The Selectionsort Algorithm

The Selectionsort Algorithm

The Selectionsort Algorithm

The Selectionsort Algorithm

The Selectionsort Algorithm

\square The process keeps adding one more number to the sorted side.
\square The sorted side has the smallest numbers, arranged from small to large.

The Selectionsort Algorithm

\square We can stop when the unsorted side has just one number, since that number must be the largest number.

The Selectionsort Algorithm

\square The array is now sorted.
\square We repeatedly selected the smallest
element, and moved this element to the front of the unsorted side.

The Selectionsort Algorithm

\square Question 1:
\square Can you write out the code?
\square Question 2:
\square What is the Big-O of the selectionsort algorithm?
\square Question 3:
\square Best case, worst case and average case
\square deterministic?

The Insertionsort Algorithm

\square The
Insertionso
algorithm also views the array as having a sorted side and an unsorted side.

The Insertionsort Algorithm

Sorted side Unsorted side

\square The sorted side starts with just the first element, which is not necessarily the smallest element.

The Insertionsort Algorithm

Sorted side \quad Unsorted side

\square The sorted side grows by taking the front element from the unsorted side...

The Insertionsort Algorithm

Unsorted side

- ...and
inserting it in the place that keeps the sorted side arranged from small to large.

The Insertionsort Algorithm

\square In this
example, the new element goes in front of the element that was already in the sorted side.

The Insertionsort Algorithm

\square Sometimes we are lucky and the new inserted item doesn't need to move at all.

The Insertionsort Algorithm

\square Sometimes we are lucky twice in a row.

How to Insert One Element

\square Copy the new element to a separate location.

How to Insert One Element

\square Shift
elements in the sorted side, creating an open space for the new element.

How to Insert One Element

\square Shift
elements in the sorted side, creating an open space for the new element.

How to Insert One Element

\square Continue shifting elements...

How to Insert One Element

\square Continue shifting elements...

How to Insert One Element

- ...until you reach the location for the new element.

How to Insert One Element

\square Copy the new element back into the array, at the correct location.

How to Insert One Element

\square The last
element must also be inserted.
Start by copying it...

A Quiz

How mane y shifts will occur before we caper this element back into the array?

A Quiz

\square Four items are shifted.

A Quiz

\square Four items are shifted.
\square And then the element is copied back into the array.

The Insertionsort Algorithm

\square Question 1:
\square Can you write out the code easily?
\square Question 2:
\square What is the Big-O of the insertsort algorithm?
\square Question 3:
\square Best case, worst case and average case
\square deterministic?

Timing and Other Issues

\square Both Selectionsort and Insertionsort have a worstcase time of $\mathrm{O}\left(\mathrm{n}^{2}\right)$, making them impractical for large arrays.
\square But they are easy to program, easy to debug.

- Insertionsort also has good performance when the array is nearly sorted to begin with.
\square But more sophisticated sorting algorithms are needed when good performance is needed in all cases for large arrays.

Presentation copyright 1997 Addison Wesley Longman, For use with Data Structures and Other Objects Using C++ by Michael Main and Walter Savitch.

Some artwork in the presentation is used with permission from Presentation Task Force (copyright New Vision Technologies Inc) and Corel Gallery Clipart Catalog (copyright Corel Corporation, 3G Graphics Inc, Archive Arts, Cartesia Software, Image Club Graphics Inc, One Mile Up Inc, TechPool Studios, Totem Graphics Inc).

Students and instructors who use Data Structures and Other Objects Using C++ are welcome to use this presentation however they see fit, so long as this copyright notice remains intact.

The End

