
@ George Wolberg, 2020 1

CSC212

Data Structure

Lecture 18

Searching

Instructor: George Wolberg

Department of Computer Science

City College of New York

@ George Wolberg, 2020 2

Topics

Applications

Most Common Methods

Serial Search

Binary Search

Search by Hashing (next lecture)

Run-Time Analysis

Average-time analysis

Time analysis of recursive algorithms

@ George Wolberg, 2020 3

Applications

Searching a list of values is a common

computational task

Examples

database: student record, bank account record,

credit record...

Internet – information retrieval: Google, Yahoo

Biometrics –face/ fingerprint/ iris IDs

@ George Wolberg, 2020 4

Most Common Methods

Serial Search

simplest, O(n)

Binary Search

average-case O(log n)

Search by Hashing (the next lecture)

better average-case performance

@ George Wolberg, 2020 5

Serial Search

A serial search

algorithm steps

through (part

of) an array

one item a

time, looking

for a “desired

item”

Pseudocode for Serial Search

// search for a desired item in an array a of size n

set i to 0 and set found to false;

while (i<n && ! found)

{

if (a[i] is the desired item)

found = true;

else

++i;

}

if (found)

return i; // indicating the location of the desired item

else

return –1; // indicating “not found”

@ George Wolberg, 2020 6

Serial Search -Analysis

Size of array: n

Best-Case: O(1)

item in [0]

Worst-Case: O(n)

item in [n-1] or not found

Average-Case

usually requires fewer than n array accesses

But, what are the average accesses?

3 2 4 6 5 1 8 7

3 6 7 9

@ George Wolberg, 2020 7

Average-Case Time for Serial Search

A more accurate computation:

Assume the target to be searched is in the array

and the probability of the item being in any

array location is the same

The average accesses

2

)1(2/)1(...321 +
=

+
=

++++ n

n

nn

n

n

@ George Wolberg, 2020 8

When does the best-case time

make more sense?

For an array of n elements, the best-case

time for serial search is just one array

access.

The best-case time is more useful if the

probability of the target being in the [0]

location is the highest.

or loosely if the target is most likely in the front

part of the array

@ George Wolberg, 2020 9

Binary Search

If n is huge, and the item to be searched can be in

any locations, serial search is slow on average

But if the items in an array are sorted, we can

somehow know a target’s location earlier

Array of integers from smallest to largest

Array of strings sorted alphabetically (e.g. dictionary)

Array of students records sorted by ID numbers

@ George Wolberg, 2020 10

Binary Search in an Integer Array

Items are sorted

target = 16

n = 8

Go to the middle
location i = n/2

if (a[i] is target)

done!

else if (target <a[i])

go to the first half

else if (target >a[i])

go to the second half

2 3 6 7 10 12 16 18

[0] [1] [2] [3] [4] [5] [6] [7]

if target is in the array

@ George Wolberg, 2020 11

Binary Search in an Integer Array

Items are sorted

target = 16

n = 8

Go to the middle
location i = n/2

if (a[i] is target)

done!

else if (target <a[i])

go to the first half

else if (target >a[i])

go to the second half

2 3 6 7 10 12 16 18

[0] [1] [2] [3] [4] [5] [6] [7]

[0] [1] [2] [3] [0] [1] [2]

if target is in the array

@ George Wolberg, 2020 12

Binary Search in an Integer Array

Items are sorted

target = 16

n = 8

Go to the middle
location i = n/2

if (a[i] is target)

done!

else if (target <a[i])

go to the first half

else if (target >a[i])

go to the second half

2 3 6 7 10 12 16 18

[0] [1] [2] [3] [4] [5] [6] [7]

[0] [1] [2] [3] [0] [1] [2]

DONE

if target is in the array

@ George Wolberg, 2020 13

Binary Search in an Integer Array

Items are sorted

target = 16

n = 8

Go to the middle
location i = n/2

if (a[i] is target)

done!

else if (target <a[i])

go to the first half

else if (target >a[i])

go to the second half

2 3 6 7 10 12 16 18

[0] [1] [2] [3] [4] [5] [6] [7]

[0] [1] [2] [3] [0] [1] [2]

DONE

if target is in the array

recursive calls: what

are the parameters?

@ George Wolberg, 2020 14

Binary Search in an Integer Array

Items are sorted

target = 16

n = 8

Go to the middle
location i = n/2

if (a[i] is target)

done!

else if (target <a[i])

go to the first half

else if (target >a[i])

go to the second half

2 3 6 7 10 12 16 18

[0] [1] [2] [3] [4] [5] [6] [7]

[0] [1] [2] [3] [0] [1] [2]

DONE

if target is in the array

recursive calls with parameters:

array, start, size, target

found, location // reference

@ George Wolberg, 2020 15

Binary Search in an Integer Array

Items are sorted

target = 17

n = 8

Go to the middle
location i = n/2

if (a[i] is target)

done!

else if (target <a[i])

go to the first half

else if (target >a[i])

go to the second half

2 3 6 7 10 12 16 18

[0] [1] [2] [3] [4] [5] [6] [7]

[0] [1] [2] [3] [0] [1] [2]

if target is not in the array

@ George Wolberg, 2020 16

Binary Search in an Integer Array

Items are sorted

target = 17

n = 8

Go to the middle
location i = n/2

if (a[i] is target)

done!

else if (target <a[i])

go to the first half

else if (target >a[i])

go to the second half

2 3 6 7 10 12 16 18

[0] [1] [2] [3] [4] [5] [6] [7]

[0] [1] [2] [3] [0] [1] [2]

if target is not in the array

[0] [0]

@ George Wolberg, 2020 17

Binary Search in an Integer Array

Items are sorted

target = 17

n = 8

Go to the middle
location i = n/2

if (a[i] is target)

done!

else if (target <a[i])

go to the first half

else if (target >a[i])

go to the second half

2 3 6 7 10 12 16 18

[0] [1] [2] [3] [4] [5] [6] [7]

[0] [1] [2] [3] [0] [1] [2]

if target is not in the array

[0] [0]

@ George Wolberg, 2020 18

Binary Search in an Integer Array

Items are sorted

target = 17

n = 8

Go to the middle
location i = n/2

if (a[i] is target)

done!

else if (target <a[i])

go to the first half

else if (target >a[i])

go to the second half

2 3 6 7 10 12 16 18

[0] [1] [2] [3] [4] [5] [6] [7]

[0] [1] [2] [3] [0] [1] [2]

if target is not in the array

[0] [0]

the size of the first half is 0!

@ George Wolberg, 2020 19

Binary Search in an Integer Array

target = 17

If (n == 0)

not found!

Go to the middle
location i = n/2

if (a[i] is target)

done!

else if (target <a[i])

go to the first half

else if (target >a[i])

go to the second half

2 3 6 7 10 12 16 18

[0] [1] [2] [3] [4] [5] [6] [7]

[0] [1] [2] [3] [0] [1] [2]

if target is not in the array

[0] [0]

the size of the first half is 0!

@ George Wolberg, 2020 20

Binary Search Code

6 parameters

2 stopping

cases

2 recursive

call cases

void search (const int a[], size_t first, size_t size,

int target,

bool& found, size_t& location)
{

size_t middle;

if (size == 0) // stopping case if not found

found = false;

else

{

middle = first + size/2;

if (target == a[middle]) // stopping case if found

{

location = middle;

found = true;

}

else if (target < a[middle]) // search the first half

search(a, first, size/2, target, found, location);

else //search the second half

search(a, middle+1, (size-1)/2, target, found, location);

}

}

@ George Wolberg, 2020 21

Binary Search - Analysis

Analysis of
recursive
algorithms

Analyze the
worst-case

Assuming the
target is in the
array

and we
always go to
the second
half

void search (const int a[], size_t first, size_t size,

int target,

bool& found, size_t& location)
{

size_t middle;

if (size == 0) // stopping case if not found

found = false;

else

{

middle = first + size/2;

if (target == a[middle]) // stopping case if found

{

location = middle;

found = true;

}

else if (target < a[middle]) // search the first half

search(a, first, size/2, target, found, location);

else //search the second half

search(a, middle+1, (size-1)/2, target, found, location);

}

}

@ George Wolberg, 2020 22

Binary Search - Analysis

Analysis of
recursive
algorithms

Define T(n) is
the total
operations
when size=n

T(n) = 6+T(n/2)

T(1) = 6

void search (const int a[], size_t first, size_t size,

int target,

bool& found, size_t& location)
{

size_t middle;

if (size == 0) // 1 operation

found = false;

else

{

middle = first + size/2; // 1 operation

if (target == a[middle]) // 2 operations

{

location = middle; // 1 operation

found = true; // 1 operation

}

else if (target < a[middle]) // 2 operations

search(a, first, size/2, target, found, location);

else // T(n/2) operations for the recursive call

search(a, middle+1, (size-1)/2, target, found, location);

} // ignore the operations in parameter passing

}

@ George Wolberg, 2020 23

Binary Search - Analysis

How many recursive calls for the longest chain?

6log6

)1(6

66...66

)2/(6...66

...

)2/(66

)2/(6

)(

2

2

1

+=

+=

++++=

++++=

=

++=

+=

n

m

nT

nT

nT

nT

m

original call

1st recursion, 1 six

2nd recursion, 2 six

mth recursion, m six

and n/2m = 1 – target found

depth of the recursive call

m = log2n

@ George Wolberg, 2020 24

Worst-Case Time for Binary Search

For an array of n elements, the worst-case time for

binary search is logarithmic

We have given a rigorous proof

The binary search algorithm is very efficient

What is the average running time?

The average running time for actually finding a number

is O(log n)

Can we do a rigorous analysis????

@ George Wolberg, 2020 25

Summary

Most Common Search Methods

Serial Search – O(n)

Binary Search – O (log n)

Search by Hashing (*) – better average-case
performance (next lecture)

Run-Time Analysis

Average-time analysis

Time analysis of recursive algorithms

@ George Wolberg, 2020 26

Homework

Review Chapters 10 & 11 (Trees), and

do the self_test exercises

Read Chapters 12 & 13, and

do the self_test exercises

Homework/Quiz (on Searching):

Self-Test 12.7, p 590 (binary search re-coding)

