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Lecture 18

Searching
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Department of Computer Science 
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Topics

Applications

Most Common Methods

Serial Search 

Binary Search

Search by Hashing (next lecture)

Run-Time Analysis

Average-time analysis

Time analysis of recursive algorithms
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Applications

Searching a list of values is a common 

computational task

Examples

database: student record, bank account record, 

credit record...

Internet – information retrieval: Google, Yahoo

Biometrics –face/ fingerprint/ iris IDs
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Most Common Methods

Serial Search 

simplest, O(n)

Binary Search

average-case O(log n)

Search by Hashing (the next lecture)

better average-case performance
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Serial Search

A serial search 

algorithm steps 

through (part 

of ) an array 

one  item a 

time, looking 

for a “desired 

item”

Pseudocode for Serial Search

// search for a desired item in an array a of size n

set i to 0  and set found to false;

while (i<n && ! found)

{

if (a[i] is the desired item) 

found = true;

else

++i;

}

if (found) 

return i; // indicating the location of the desired item

else

return –1; // indicating “not found”
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Serial Search -Analysis

Size of array: n

Best-Case: O(1)

item in [0]

Worst-Case: O(n)

item in [n-1] or not found

Average-Case

usually requires fewer than n array accesses

But, what are the average accesses?
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Average-Case Time for Serial Search

A more accurate computation:

Assume the target to be searched is in the array

and the probability of the item being in any 

array location is the same

The average accesses
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When does the best-case time 

make more sense?

For an array of n elements, the best-case 

time for serial search is just one array 

access.

The best-case time is more useful if the 

probability of the target being in the [0] 

location is the highest. 

or loosely if the target is most likely in the front 

part of the array



@ George Wolberg, 2020 9

Binary Search

If n is huge, and the item to be searched can be in 

any locations, serial search is slow on average

But if the items in an array are sorted, we can 

somehow know a target’s location earlier

Array of integers from smallest to largest

Array of strings sorted alphabetically (e.g. dictionary)

Array of students records sorted by ID numbers
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Binary Search in an Integer Array

Items are sorted

target = 16

n = 8

Go to the middle 
location i = n/2

if (a[i] is target)

done!

else if (target <a[i]) 

go to the first half

else if (target >a[i])

go to the second half

2 3 6 7 10 12 16 18

[0]    [1]   [2]   [3]   [4]   [5]   [6]   [7]

if target is in the array
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Binary Search in an Integer Array

Items are sorted

target = 16

n = 8

Go to the middle 
location i = n/2

if (a[i] is target)

done!

else if (target <a[i]) 

go to the first half

else if (target >a[i])

go to the second half

2 3 6 7 10 12 16 18

[0]    [1]   [2]   [3]   [4]   [5]   [6]   [7]

[0]   [1]   [2]   [3]          [0]   [1]   [2]

if target is in the array



@ George Wolberg, 2020 12

Binary Search in an Integer Array

Items are sorted

target = 16

n = 8

Go to the middle 
location i = n/2

if (a[i] is target)

done!

else if (target <a[i]) 

go to the first half

else if (target >a[i])

go to the second half

2 3 6 7 10 12 16 18

[0]    [1]   [2]   [3]   [4]   [5]   [6]   [7]

[0]   [1]   [2]   [3]          [0]   [1]   [2]

DONE

if target is in the array
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Binary Search in an Integer Array

Items are sorted

target = 16

n = 8

Go to the middle 
location i = n/2

if (a[i] is target)

done!

else if (target <a[i]) 

go to the first half

else if (target >a[i])

go to the second half

2 3 6 7 10 12 16 18

[0]    [1]   [2]   [3]   [4]   [5]   [6]   [7]

[0]   [1]   [2]   [3]          [0]   [1]   [2]

DONE

if target is in the array

recursive calls: what 

are the parameters?
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Binary Search in an Integer Array

Items are sorted

target = 16

n = 8

Go to the middle 
location i = n/2

if (a[i] is target)

done!

else if (target <a[i]) 

go to the first half

else if (target >a[i])

go to the second half

2 3 6 7 10 12 16 18

[0]    [1]   [2]   [3]   [4]   [5]   [6]   [7]

[0]   [1]   [2]   [3]          [0]   [1]   [2]

DONE

if target is in the array

recursive calls with parameters:

array, start, size, target

found, location // reference
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Binary Search in an Integer Array

Items are sorted

target = 17

n = 8

Go to the middle 
location i = n/2

if (a[i] is target)

done!

else if (target <a[i]) 

go to the first half

else if (target >a[i])

go to the second half

2 3 6 7 10 12 16 18

[0]    [1]   [2]   [3]   [4]   [5]   [6]   [7]

[0]   [1]   [2]   [3]          [0]   [1]   [2]

if target is not in the array
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Binary Search in an Integer Array

Items are sorted

target = 17

n = 8

Go to the middle 
location i = n/2

if (a[i] is target)

done!

else if (target <a[i]) 

go to the first half

else if (target >a[i])

go to the second half

2 3 6 7 10 12 16 18

[0]    [1]   [2]   [3]   [4]   [5]   [6]   [7]

[0]   [1]   [2]   [3]          [0]   [1]   [2]

if target is not in the array

[0]        [0]
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Binary Search in an Integer Array

Items are sorted

target = 17

n = 8

Go to the middle 
location i = n/2

if (a[i] is target)

done!

else if (target <a[i]) 

go to the first half

else if (target >a[i])

go to the second half

2 3 6 7 10 12 16 18

[0]    [1]   [2]   [3]   [4]   [5]   [6]   [7]

[0]   [1]   [2]   [3]          [0]   [1]   [2]

if target is not in the array

[0]        [0]
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Binary Search in an Integer Array

Items are sorted

target = 17

n = 8

Go to the middle 
location i = n/2

if (a[i] is target)

done!

else if (target <a[i]) 

go to the first half

else if (target >a[i])

go to the second half

2 3 6 7 10 12 16 18

[0]    [1]   [2]   [3]   [4]   [5]   [6]   [7]

[0]   [1]   [2]   [3]          [0]   [1]   [2]

if target is not in the array

[0]        [0]

the size of the first half is 0!
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Binary Search in an Integer Array

target = 17

If (n == 0 )

not found!

Go to the middle 
location i = n/2

if (a[i] is target)

done!

else if (target <a[i]) 

go to the first half

else if (target >a[i])

go to the second half

2 3 6 7 10 12 16 18

[0]    [1]   [2]   [3]   [4]   [5]   [6]   [7]

[0]   [1]   [2]   [3]          [0]   [1]   [2]

if target is not in the array

[0]        [0]

the size of the first half is 0!
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Binary Search Code

6 parameters

2 stopping 

cases

2 recursive 

call cases

void search (const int a[ ], size_t first, size_t size,

int target,

bool& found,  size_t& location)
{

size_t middle;

if (size == 0) // stopping case if not found

found = false;

else

{

middle = first + size/2;

if (target == a[middle])  // stopping case if found

{

location = middle;

found = true;

}

else if (target < a[middle]) // search the first half

search(a, first, size/2, target, found, location);

else  //search the second half

search(a, middle+1, (size-1)/2, target, found, location);

} 

}
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Binary Search - Analysis

Analysis of 
recursive 
algorithms

Analyze the 
worst-case

Assuming the 
target is in the 
array 

and we 
always go to 
the second 
half

void search (const int a[ ], size_t first, size_t size,

int target,

bool& found,  size_t& location)
{

size_t middle;

if (size == 0) // stopping case if not found

found = false;

else

{

middle = first + size/2;

if (target == a[middle])  // stopping case if found

{

location = middle;

found = true;

}

else if (target < a[middle]) // search the first half

search(a, first, size/2, target, found, location);

else  //search the second half

search(a, middle+1, (size-1)/2, target, found, location);

} 

}
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Binary Search - Analysis

Analysis of 
recursive 
algorithms

Define T(n) is 
the total 
operations 
when size=n

T(n) = 6+T(n/2)

T(1) = 6 

void search (const int a[ ], size_t first, size_t size,

int target,

bool& found,  size_t& location)
{

size_t middle;

if (size == 0) // 1 operation

found = false;

else

{

middle = first + size/2; // 1 operation

if (target == a[middle])  // 2 operations

{

location = middle; // 1 operation

found = true; // 1 operation

}

else if (target < a[middle]) // 2 operations

search(a, first, size/2, target, found, location);

else  //  T(n/2) operations for the recursive call

search(a, middle+1, (size-1)/2, target, found, location);

} // ignore the operations in parameter passing

}
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Binary Search - Analysis

How many recursive calls for the longest chain?
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Worst-Case Time for Binary Search

For an array of n elements, the worst-case time for 

binary search is logarithmic

We have given a rigorous proof

The binary search algorithm is very efficient

What is the average running time?

The average running time for actually finding a number 

is O(log n) 

Can we do a rigorous analysis????
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Summary

Most Common Search Methods

Serial Search – O(n)

Binary Search – O (log n ) 

Search by Hashing (*) – better average-case 
performance ( next lecture)

Run-Time Analysis

Average-time analysis

Time analysis of recursive algorithms
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Homework

Review Chapters 10 & 11 (Trees), and 

do the self_test exercises 

Read Chapters 12 & 13, and 

do the self_test exercises 

Homework/Quiz (on Searching):

Self-Test 12.7, p 590 (binary search re-coding)


