
CSC212

Data Structure

Lecture 16

Heaps and Priority Queues

Instructor: George Wolberg

Department of Computer Science

City College of New York

Chapter 11 has several

programming projects, including a

project that uses heaps.

This presentation shows you what

a heap is, and demonstrates two of

the important heap algorithms.

Heaps

Data Structures

and Other Objects

Using C++

Topics

Heap Definition

Heap Applications

priority queues (chapter 8), sorting (chapter 13)

Two Heap Operations – add, remove

reheapification upward and downward

why is a heap good for implementing a priority queue?

Heap Implementation

using binary_tree_node class

using fixed size or dynamic arrays

Heaps Definition

A heap is a

certain kind of

complete

binary tree.

Heaps

A heap is a

certain kind of

complete

binary tree.

When a complete

binary tree is built,

its first node must be

the root.

Root

Heaps

Complete

binary tree.

Left child

of the

root

The second node is

always the left child

of the root.

Heaps

Complete

binary tree.

Right child

of the

root

The third node is

always the right child

of the root.

Heaps

Complete

binary tree.

The next nodes

always fill the next

level from left-to-right.

Heaps

Complete

binary tree.

The next nodes

always fill the next

level from left-to-right.

Heaps

Complete

binary tree.

The next nodes

always fill the next

level from left-to-right.

Heaps

Complete

binary tree.

The next nodes

always fill the next

level from left-to-right.

Heaps

Complete

binary tree.

Heaps

A heap is a

certain kind

of complete

binary tree.

Each node in a heap

contains a key that

can be compared to

other nodes' keys.

19

4222127

23

45

35

Heaps

A heap is a

certain kind

of complete

binary tree.

The "heap property"

requires that each

node's key is >= the

keys of its children

19

4222127

23

45

35

What it is not: It is not a BST

In a binary search tree, the entries of the
nodes can be compared with a strict weak
ordering. Two rules are followed for every
node n:

The entry in node n is NEVER less than an
entry in its left subtree

The entry in the node n is less than every entry
in its right subtree.

BST is not necessarily a complete tree

What it is: Heap Definition

A heap is a binary tree where the entries of

the nodes can be compared with the less

than operator of a strict weak ordering. In

addition, two rules are followed:

The entry contained by the node is NEVER less

than the entries of the node’s children

The tree is a COMPLETE tree.

Q: where is the largest entry? → for what....

Application: Priority Queues

A priority queue is a container class that
allows entries to be retrieved according to
some specific priority levels

The highest priority entry is removed first

If there are several entries with equally high
priorities, then the priority queue’s
implementation determines which will come
out first (e.g. FIFO)

Heap is suitable for a priority queue

The Priority Queue ADT with Heaps

The entry with the highest priority is always at the
root node

Focus on two priority queue operations

adding a new entry

remove the entry with the highest priority

In both cases, we must ensure the tree structure
remains to be a heap

we are going to work on a conceptual heap without
worrying about the precise implementation

later I am going to show you how to implement...

Adding a Node to a Heap

Put the new node in the

next available spot.

Push the new node

upward, swapping with

its parent until the new

node reaches an

acceptable location.
19

4222127

23

45

35

42

Adding a Node to a Heap

Put the new node in the

next available spot.

Push the new node

upward, swapping with

its parent until the new

node reaches an

acceptable location.
19

4222142

23

45

35

27

Adding a Node to a Heap

Put the new node in the

next available spot.

Push the new node

upward, swapping with

its parent until the new

node reaches an

acceptable location.
19

4222135

23

45

42

27

Adding a Node to a Heap

The parent has a key

that is >= new node, or

The node reaches the

root.

The process of pushing

the new node upward

is called

reheapification

upward.

19

4222135

23

45

42

27

Note: we need to easily go from child to

parent as well as parent to child.

Removing the Top of a Heap

Move the last node onto

the root.

19

4222135

23

45

42

27

Removing the Top of a Heap

Move the last node onto

the root.

19

4222135

23

27

42

Removing the Top of a Heap

Move the last node onto

the root.

Push the out-of-place

node downward,

swapping with its larger

child until the new node

reaches an acceptable

location.
19

4222135

23

27

42

Removing the Top of a Heap

Move the last node onto

the root.

Push the out-of-place

node downward,

swapping with its larger

child until the new node

reaches an acceptable

location.
19

4222135

23

42

27

Removing the Top of a Heap

Move the last node onto

the root.

Push the out-of-place

node downward,

swapping with its larger

child until the new node

reaches an acceptable

location.
19

4222127

23

42

35

Removing the Top of a Heap

The children all have

keys <= the out-of-place

node, or

The node reaches the

leaf.

The process of pushing

the new node

downward is called

reheapification

downward.

19

4222127

23

42

35

Priority Queues Revisited

A priority queue is a container class that
allows entries to be retrieved according to
some specific priority levels

The highest priority entry is removed first

If there are several entries with equally high
priorities, then the priority queue’s
implementation determines which will come
out first (e.g. FIFO)

Heap is suitable for a priority queue

Adding a Node: same priority

Put the new node in the

next available spot.

Push the new node

upward, swapping with

its parent until the new

node reaches an

acceptable location.
19

4222127

23

45

35

45*

Adding a Node: same priority

Put the new node in the

next available spot.

Push the new node

upward, swapping with

its parent until the new

node reaches an

acceptable location.
19

4222145*

23

45

35

27

Adding a Node: same priority

Put the new node in the

next available spot.

Push the new node

upward, swapping with

its parent until the new

node reaches an

acceptable location.
19

4222135

23

45

45*

27

Adding a Node: same priority

The parent has a key
that is >= new node, or

The node reaches the
root.

The process of pushing
the new node upward
is called
reheapification
upward.

19

4222135

23

45

45*

27

Note: Implementation determines which 45

will be in the root, and will come out first

when popping.

Removing the Top of a Heap

The children all have
keys <= the out-of-place
node, or

The node reaches the
leaf.

The process of pushing
the new node
downward is called
reheapification
downward.

19

4222127

23

45*

35

Note: Implementation determines which 45

will be in the root, and will come out first

when popping.

Heap Implementation

Use binary_tree_node class

node implementation is for a general binary tree

but we may need to have doubly linked node

Use arrays (page 475)

A heap is a complete binary tree

which can be implemented more easily with an
array than with the node class

and do two-way links

Formulas for location children and

parents in an array representation

Root at location [0]

Parent of the node in [i] is at [(i-1)/2]

Children of the node in [i] (if exist) is at
[2i+1] and [2i+2]

Test:

complete tree of 10, 000 nodes

parent of 4999 is at (4999-1)/2 = 2499

children of 4999 is at 9999 (V) and 10,000 (X)

Implementing a Heap

We will store the

data from the

nodes in a

partially-filled

array.

An array of data

2127

23

42

35

Implementing a Heap

Data from the root

goes in the

first

location

of the

array.

An array of data

2127

23

42

35

42

Implementing a Heap

Data from the next

row goes in the

next two array

locations.

An array of data

2127

23

42

35

42 35 23

Implementing a Heap

Data from the next

row goes in the

next two array

locations.

An array of data

2127

23

42

35

42 35 23 27 21

Implementing a Heap

Data from the next

row goes in the

next two array

locations.

An array of data

2127

23

42

35

42 35 23 27 21

We don't care what's in

this part of the array.

Important Points about the

Implementation

The links between the tree's

nodes are not actually stored as

pointers, or in any other way.

The only way we "know" that

"the array is a tree" is from the

way we manipulate the data.

An array of data

2127

23

42

35

42 35 23 27 21

Important Points about the

Implementation

If you know the index of a

node, then it is easy to figure

out the indexes of that node's

parent and children. Formulas

are given in the book.

[0] [1] [2] [3] [4]

2127

23

42

35

42 35 23 27 21

Formulas for location children and

parents in an array representation

Root at location [0]

Parent of the node in [i] is at [(i-1)/2]

Children of the node in [i] (if exist) is at
[2i+1] and [2i+2]

Test:

complete tree of 10, 000 nodes

parent of 4999 is at (4999-1)/2 = 2499

children of 4999 is at 9999 (V) and 10,000 (X)

Wrap Up...

Can you implement the add and remove
with the knowledge of these formulas?

Add
put the new entry in the last location

Push the new node upward, swapping with its parent until the new

node reaches an acceptable location

Remove
move the last node to the root

Push the out-of-place node downward, swapping with its larger
child until the new node reaches an acceptable location

class heap

{

public:

....

void push(const Item& entry); // add

Item& pop(); // remove the highest

private:

Item data[CAPACITY];

size_type used;

}

Wrap Up...

Can you implement the add and remove
with the knowledge of these formulas?

Add
put the new entry in the last location

Push the new node upward, swapping with its parent until the new

node reaches an acceptable location

Remove
move the last node to the root

Push the out-of-place node downward, swapping with its larger
child until the new node reaches an acceptable location

template <class Item>

class heap

{

public:

heap () { used = 0;}

void push(const Item& entry); // add

Item& pop(); // remove the highest

size_t parent (size_t k) const { return (k-1)/2;}

size_t l_child (size_t k) const { return 2*k+1;}

size_t r_child (size_t k) const { return 2*k+2;}

private:

Item data[CAPACITY];

size_type used;

}

A heap is a complete binary tree, where the entry

at each node is greater than or equal to the entries

in its children.

To add an entry to a heap, place the new entry at

the next available spot, and perform a

reheapification upward.

To remove the biggest entry, move the last node

onto the root, and perform a reheapification

downward.

Summary

THE END

Presentation copyright 1997 Addison Wesley Longman,

For use with Data Structures and Other Objects Using C++

by Michael Main and Walter Savitch.

Some artwork in the presentation is used with permission from Presentation Task Force

(copyright New Vision Technologies Inc) and Corel Gallery Clipart Catalog (copyright

Corel Corporation, 3G Graphics Inc, Archive Arts, Cartesia Software, Image Club

Graphics Inc, One Mile Up Inc, TechPool Studios, Totem Graphics Inc).

Students and instructors who use Data Structures and Other Objects Using C++ are welcome

to use this presentation however they see fit, so long as this copyright notice remains

intact.

