
kd-Trees
CMSC 420

kd-Trees

• Invented in 1970s by Jon Bentley

• Name originally meant “3d-trees, 4d-trees, etc”
where k was the # of dimensions

• Now, people say “kd-tree of dimension d”

• Idea: Each level of the tree compares against 1
dimension.

• Let’s us have only two children at each node
(instead of 2d)

kd-trees

• Each level has a “cutting
dimension”

• Cycle through the dimensions
as you walk down the tree.

• Each node contains a point
P = (x,y)

• To find (x’,y’) you only
compare coordinate from the
cutting dimension

- e.g. if cutting dimension is x,
then you ask: is x’ < x?

x

y

x

y

x

10,12

35,45

kd-tree example

x

y

x

y

5,25

50,30

70,70

30,40

(30,40)

(5,25)

(70,70)

(10,12)

(50,30)

(35,45)

insert: (30,40), (5,25), (10,12), (70,70), (50,30), (35,45)

insert(Point x, KDNode t, int cd) {
 if t == null
 t = new KDNode(x)
 else if (x == t.data)
 // error! duplicate
 else if (x[cd] < t.data[cd])
 t.left = insert(x, t.left, (cd+1) % DIM)
 else
 t.right = insert(x, t.right, (cd+1) % DIM)
 return t
}

Insert Code

FindMin in kd-trees

• FindMin(d): find the point with the smallest value in
the dth dimension.

• Recursively traverse the tree

• If cutdim(current_node) = d, then the minimum
can’t be in the right subtree, so recurse on just the
left subtree

- if no left subtree, then current node is the min for tree
rooted at this node.

• If cutdim(current_node) ≠ d, then minimum could
be in either subtree, so recurse on both subtrees.

- (unlike in 1-d structures, often have to explore several
paths down the tree)

FindMin

60,80

70,70

50,501,10

35,90

x

y

x

y

10,30

25,40

51,75

(51,75)

55,1(25,40)

(10,30)

(55,1)
(1,10)

(70,70)

(60,80)
(35,90)

FindMin(x-dimension):

(50,50)

FindMin

60,80

70,70

50,501,10

35,90

x

y

x

y

10,30

25,40

51,75

(51,75)

55,1(25,40)

(10,30)

(55,1)
(1,10)

(70,70)

(60,80)
(35,90)

FindMin(y-dimension):

1,10

55,1
(50,50)

FindMin

60,80

70,70

50,501,10

35,90

x

y

x

y

10,30

25,40

51,75

(51,75)

55,1(25,40)

(10,30)

(55,1)
(1,10)

(70,70)

(60,80)

(50,50)

(35,90)

FindMin(y-dimension): space searched

Point findmin(Node T, int dim, int cd):
 // empty tree
 if T == NULL: return NULL

 // T splits on the dimension we’re searching
 // => only visit left subtree
 if cd == dim:
 if t.left == NULL: return t.data
 else return findmin(T.left, dim, (cd+1)%DIM)

 // T splits on a different dimension
 // => have to search both subtrees
 else:
 return minimum(
 findmin(T.left, dim, (cd+1)%DIM),
 findmin(T.right, dim, (cd+1)%DIM)
 T.data
)

FindMin Code

Delete in kd-trees

Q P

A

Want to delete node A.
Assume cutting

dimension of A is cd

In BST, we’d
findmin(A.right).

Here, we have to
findmin(A.right, cd)

cd

cd B
Everything in Q has

cd-coord < B, and
everything in P has cd-

coord ≥ B

Delete in kd-trees --- No Right Subtree

• What is right subtree is
empty?

• Possible idea: Find the max
in the left subtree?

- Why might this not
work?

• Suppose I findmax(T.left)
and get point (a,b):

Q

(x,y)x

cd (a,b)
(a,c)

It’s possible that T.left
contains another point
with x = a.

Now, our equal
coordinate invariant is
violated!

No right subtree --- Solution

• Swap the subtrees of node to
be deleted

• B = findmin(T.left)

• Replace deleted node by B

Q

(x,y)x

cd (a,b)

(a,c)

Now, if there is another
point with x=a, it
appears in the right
subtree, where it should

Point delete(Point x, Node T, int cd):
 if T == NULL: error point not found!
 next_cd = (cd+1)%DIM

 // This is the point to delete:
 if x = T.data:
 // use min(cd) from right subtree:
 if t.right != NULL:
 t.data = findmin(T.right, cd, next_cd)
 t.right = delete(t.data, t.right, next_cd)
 // swap subtrees and use min(cd) from new right:
 else if T.left != NULL:
 t.data = findmin(T.left, cd, next_cd)
 t.right = delete(t.data, t.left, next_cd)
 else
 t = null // we’re a leaf: just remove

 // this is not the point, so search for it:
 else if x[cd] < t.data[cd]:
 t.left = delete(x, t.left, next_cd)
 else
 t.right = delete(x, t.right, next_cd)

 return t

Nearest Neighbor Searching in kd-trees

• Nearest Neighbor Queries are very common: given a point Q find the
point P in the data set that is closest to Q.

• Doesn’t work: find cell that would contain Q and return the point it
contains.

- Reason: the nearest point to P in space may be far from P in the
tree:

- E.g. NN(52,52):

60,80

70,70

50,501,10

35,9010,30

25,40

51,75

55,1

(51,75)

(25,40)

(10,30)

(55,1)
(1,10)

(70,70)

(60,80)(35,90)

(50,50)

kd-Trees Nearest Neighbor

• Idea: traverse the whole tree, BUT make two
modifications to prune to search space:

1. Keep variable of closest point C found so far.
Prune subtrees once their bounding boxes say
that they can’t contain any point closer than C

2. Search the subtrees in order that maximizes the
chance for pruning

Nearest Neighbor: Ideas, continued

dQuery
Point Q

TBounding box
of subtree

rooted at T

If d > dist(C, Q), then no
point in BB(T) can be
closer to Q than C.
Hence, no reason to search
subtree rooted at T.

Recurse, but start with the subtree “closer” to Q:
First search the subtree that would contain Q if we were
inserting Q below T.

Update the best point so far, if T is better:
if dist(C, Q) > dist(T.data, Q), C := T.data

Nearest Neighbor, Code

def NN(Point Q, kdTree T, int cd, Rect BB):

 // if this bounding box is too far, do nothing
 if T == NULL or distance(Q, BB) > best_dist: return

 // if this point is better than the best:
 dist = distance(Q, T.data)
 if dist < best_dist:
 best = T.data
 best_dist = dist
 // visit subtrees is most promising order:
 if Q[cd] < T.data[cd]:
 NN(Q, T.left, next_cd, BB.trimLeft(cd, t.data))
 NN(Q, T.right, next_cd, BB.trimRight(cd, t.data))
 else:
 NN(Q, T.right, next_cd, BB.trimRight(cd, t.data))
 NN(Q, T.left, next_cd, BB.trimLeft(cd, t.data))

Following Dave Mount’s Notes (page 77)

best, best_dist are global var
(can also pass into function calls)

Nearest Neighbor Facts

• Might have to search close to the whole tree in the
worst case. [O(n)]

• In practice, runtime is closer to:
- O(2d + log n)
- log n to find cells “near” the query point
- 2d to search around cells in that neighborhood

• Three important concepts that reoccur in range /
nearest neighbor searching:
- storing partial results: keep best so far, and update
- pruning: reduce search space by eliminating irrelevant trees.
- traversal order: visit the most promising subtree first.

Feature-Based Data Fusion
for 3D Photography

 Prof. George Wolberg

Dept. of Computer Science
City College of New York

58

Feature Matching (1)

Two images and their matched feature points

59

Feature Matching (2)

• To match features extracted between two photos, we need to
search for the smallest Euclidean distance among features.

• Exact solution requires an exhaustive O(dn2) search, where d
is the feature descriptor dimension and n is the number of
extracted features from each photo.

• Typically, d is 128 or 64 and n is 5,000-30,000. This brute-
force search is very expensive. For example, when n=5000
and d =128, the # computations for all matches is 3.2 billion.

60

Feature Matching (3)

To speed up the exhaustive search, we use the
Approximate Nearest Neighbor (ANN) method.

- If we allow a small error to be made, the search time can be

significantly reduced.
- Since the input data contains errors anyway, this will not

greatly impair matching quality.
- We use the ANN-library by David M. Mount and Sunil Arya.

The underlying search method is based on the Kd-tree.
- The query time is in order of O(d log n). For example, when n

= 5000 and d = 128, the # computations for all matches is
2367340. The matching performance is improved by 1000.

K-D Tree Construction Example

g
i

d
h

e

b
a

f

c

x

y

K-D Tree Construction Example

g
i

d
h

e

b
a

f

c

x

y

s1

x

s1

K-D Tree Construction Example

g
i

d
h

e

b
a

f

c

x

y

s1

x

s1

s2

y

s2

K-D Tree Construction Example

g
i

d
h

e

b
a

f

c

x

y

s1

x

s1

s2

y

s2

s3

x

s3

K-D Tree Construction Example

g
i

d
h

e

b
a

f

c

x

y

s1

x

s1

s2

y

s2

s3

x

s3

a

K-D Tree Construction Example

g
i

d
h

e

b
a

f

c

x

y

s1

x

s1

s2

y

s2

s3

x

s3

a b

K-D Tree Construction Example

g
i

d
h

e

b
a

f

c

x

y

s1

x

s1

s2

y

s2

s3

x

s3

a b

s4

y

s4

K-D Tree Construction Example

g
i

d
h

e

b
a

f

c

x

y

s1

x

s1

s2

y

s2

s3

x

s3

a b

s4

y

s4

s5

x

s5

K-D Tree Construction Example

g
i

d
h

e

b
a

f

c

x

y

s1

x

s1

s2

y

s2

s3

x

s3

a b

s4

y

s4

s5

x

s5

d

K-D Tree Construction Example

g
i

d
h

e

b
a

f

c

x

y

s1

x

s1

s2

y

s2

s3

x

s3

a b

s4

y

s4

s5

x

s5

d e

K-D Tree Construction Example

g
i

d
h

e

b
a

f

c

x

y

s1

x

s1

s2

y

s2

s3

x

s3

a b

s4

y

s4

s5

x

s5

d e

g

K-D Tree Construction Example

g
i

d
h

e

b
a

f

c

x

y

s1

x

s1

s2

y

s2

s3

x

s3

a b

s4

y

s4

s5

x

s5

d e

e

s6 y

s6

K-D Tree Construction Example

g
i

d
h

e

b
a

f

c

x

y

s1

x

s1

s2

y

s2

s3

x

s3

a b

s4

y

s4

s5

x

s5

d e

g

s6 y

s6

s7

x

s7

K-D Tree Construction Example

g
i

d
h

e

b
a

f

c

x

y

s1

x

s1

s2

y

s2

s3

x

s3

a b

s4

y

s4

s5

x

s5

d e

g

s6 y

s6

s7

x

s7

c

K-D Tree Construction Example

g
i

d
h

e

b
a

f

c

x

y

s1

x

s1

s2

y

s2

s3

x

s3

a b

s4

y

s4

s5

x

s5

d e

g

s6 y

s6

s7

x

s7

c f

K-D Tree Construction Example

g
i

d
h

e

b
a

f

c

x

y

s1

x

s1

s2

y

s2

s3

x

s3

a b

s4

y

s4

s5

x

s5

d e

g

s6 y

s6

s7

x

s7

c f

y

s8

s8

K-D Tree Construction Example

g
i

d
h

e

b
a

f

c

x

y

s1

x

s1

s2

y

s2

s3

x

s3

a b

s4

y

s4

s5

x

s5

d e

g

s6 y

s6

s7

x

s7

c f

y

s8

s8

h

K-D Tree Construction Example

g
i

d
h

e

b
a

f

c

x

y

s1

x

s1

s2

y

s2

s3

x

s3

a b

s4

y

s4

s5

x

s5

d e

g

s6 y

s6

s7

x

s7

c f

y

s8

s8

h i

K-D Tree Construction

• First sort the points in each dimension:
•O(dn log n) time and dn storage.
•These are stored in A[1..d,1..n]

• Finding the widest spread and equally
dividing into two subsets can be done in
O(dn) time.
• Constructing the k-d tree can be done in
O(dn logn) and dn storage

K-D Tree Construction

A node has 5 fields
• axis (splitting axis)
• value (splitting value)
• left (left subtree)
• right (right subtree)
• point (leaf node if left and right children are null)

K-D Tree Nearest Neighbor Search

r

node.value q(node.axis)

Search right

q(node.axis) + r > node.value
Means the circle overlaps
 the right subtree.

r

node.value q(node.axis)

Search left

q(node.axis) – r < node.value
Means the circle overlaps
 the left subtree.

K-D Tree Nearest Neighbor Search

g
i

d
h

e

b
a

f

c

x

y

s1

x

s1

s2

y

s2

s3

x

s3

a b

s4

y

s4

s5

x

s5

d e

g

s6 y

s6

s7

x

s7

c f

y

s8

s8

h i

Examine nearby points first: Explore the branch of the tree that
is closest to the query point first.

K-D Tree Nearest Neighbor Search

g
i

d
h

e

b
a

f

c

x

y

s1

x

s1

s2

y

s2

s3

x

s3

a b

s4

y

s4

s5

x

s5

d e

g

s6 y

s6

s7

x

s7

c f

y

s8

s8

h i

K-D Tree Nearest Neighbor Search

g
i

d
h

e

b
a

f

c

x

y

s1

x

s1

s2

y

s2

s3

x

s3

a b

s4

y

s4

s5

x

s5

d e

g

s6 y

s6

s7

x

s7

c f

y

s8

s8

h i

K-D Tree Nearest Neighbor Search

g
i

d
h

e

b
a

f

c

x

y

s1

x

s1

s2

y

s2

s3

x

s3

a b

s4

y

s4

s5

x

s5

d e

g

s6 y

s6

s7

x

s7

c f

y

s8

s8

h i

r

When we reach a leaf node: compute the distance to point in
the node.

K-D Tree Nearest Neighbor Search

g
i

d
h

e

b
a

f

c

x

y

s1

x

s1

s2

y

s2

s3

x

s3

a b

s4

y

s4

s5

x

s5

d e

g

s6 y

s6

s7

x

s7

c f

y

s8

s8

h i

r

Then we can backtrack and try the other branch at each node
visited.

K-D Tree Nearest Neighbor Search

g
i

d
h

e

b
a

f

c

x

y

s1

x

s1

s2

y

s2

s3

x

s3

a b

s4

y

s4

s5

x

s5

d e

g

s6 y

s6

s7

x

s7

c f

y

s8

s8

h i

r

K-D Tree Nearest Neighbor Search

g
i

d
h

e

b
a

f

c

x

y

s1

x

s1

s2

y

s2

s3

x

s3

a b

s4

y

s4

s5

x

s5

d e

g

s6 y

s6

s7

x

s7

c f

y

s8

s8

h i

r

Each time a new closest node is found, we can update the
distance bounds.

K-D Tree Nearest Neighbor Search

g
i

d
h

e

b
a

f

c

x

y

s1

x

s1

s2

y

s2

s3

x

s3

a b

s4

y

s4

s5

x

s5

d e

g

s6 y

s6

s7

x

s7

c f

y

s8

s8

h i

r

K-D Tree Nearest Neighbor Search

g
i

d
h

e

b
a

f

c

x

y

s1

x

s1

s2

y

s2

s3

x

s3

a b

s4

y

s4

s5

x

s5

d e

g

s6 y

s6

s7

x

s7

c f

y

s8

s8

h i

r

K-D Tree Nearest Neighbor Search

g
i

d
h

e

b
a

f

c

x

y

s1

x

s1

s2

y

s2

s3

x

s3

a b

s4

y

s4

s5

x

s5

d e

g

s6 y

s6

s7

x

s7

c f

y

s8

s8

h i

r

K-D Tree Nearest Neighbor Search

g
i

d
h

e

b
a

f

c

x

y

s1

x

s1

s2

y

s2

s3

x

s3

a b

s4

y

s4

s5

x

s5

d e

g

s6 y

s6

s7

x

s7

c f

y

s8

s8

h i

r

K-D Tree Nearest Neighbor Search

g
i

d
h

e

b
a

f

c

x

y

s1

x

s1

s2

y

s2

s3

x

s3

a b

s4

y

s4

s5

x

s5

d e

g

s6 y

s6

s7

x

s7

c f

y

s8

s8

h i

r

K-D Tree Nearest Neighbor Search

g
i

d
h

e

b
a

f

c

x

y

s1

x

s1

s2

y

s2

s3

x

s3

a b

s4

y

s4

s5

x

s5

d e

g

s6 y

s6

s7

x

s7

c f

y

s8

s8

h i

r

K-D Tree Nearest Neighbor Search

g
i

d
h

e

b
a

f

c

x

y

s1

x

s1

s2

y

s2

s3

x

s3

a b

s4

y

s4

s5

x

s5

d e

g

s6 y

s6

s7

x

s7

c f

y

s8

s8

h i

r

g
i

d
h

e

b
a

f

c

x

y

s1

x

s1

s2

y

s2

s3

x

s3

a b

s4

y

s4

s5

x

s5

d e

g

s6 y

s6

s7

x

s7

c f

y

s8

s8

h i

r

K-D Tree Nearest Neighbor Search

K-D Tree Nearest Neighbor Search

g
i

d
h

e

b
a

f

c

x

y

s1

x

s1

s2

y

s2

s3

x

s3

a b

s4

y

s4

s5

x

s5

d e

g

s6 y

s6

s7

x

s7

c f

y

s8

s8

h i

r

K-D Tree Nearest Neighbor Search

g
i

d
h

e

b
a

f

c

x

y

s1

x

s1

s2

y

s2

s3

x

s3

a b

s4

y

s4

s5

x

s5

d e

g

s6 y

s6

s7

x

s7

c f

y

s8

s8

h i

r

Using the distance bounds and the bounds of the data below each node, we
can prune parts of the tree that could NOT include the nearest neighbor.

Approximate Nearest Neighbor (ANN)

• Given the query point q, we begin by locating the leaf
cell containing the query point in O(log n) time by a
simple descent through the tree. Next, we begin
enumerating the leaf cells in increasing order of
distance from the query point. We call this priority
search. When a cell is visited, the distance from q to
the point associated with this cell is computed. We
keep track of the closest point seen so far. Each cell
has been numbered according to its distance from the
query point.

Approximate Nearest Neighbor (ANN)

• Let p denote the closest point seen so far. As soon as the
distance from q to the current leaf cell exceeds dist(q, p)=(1 + ε)
(dotted circle) it follows that the search can be terminated, and p
can be reported as an approximate nearest neighbor to q. The
reason is that any point located in a subsequently visited cell
cannot be close enough to q to violate p's claim to be an
approximate nearest neighbor. In the example shown, the search
terminates just prior to visiting cell 9. The priority search can be
performed in time O(d log n) times by using an auxiliary heap.

CS106L
Spring 2014

Handout #04
May 15, 2014

Assignment 3: KDTree

Due June 4, 11:59 PM

Over the past seven weeks, we've explored a wide array of STL container classes. You've seen the
linear vector and deque, along with the associative map and set. One property common to all
these containers is that they are exact. An element is either in a set or it isn't. A value either ap-
pears at a particular position in a vector or it does not. For most applications, this is exactly what
we want. However, in some cases we may be interested not in the question “is X in this container,”
but rather “what value in the container is X most similar to?” Queries of this sort often arise in data
mining, machine learning, and computational geometry. In this assignment, you will implement a
special data structure called a kd-tree (short for “k-dimensional tree”) that efficiently supports this
operation.

At a high level, a kd-tree is a generalization of a binary search tree that stores points in k-dimen-
sional space. That is, you could use a kd-tree to store a collection of points in the Cartesian plane, in
three-dimensional space, etc. You could also use a kd-tree to store biometric data, for example, by
representing the data as an ordered tuple, perhaps (height, weight, blood pressure, cholesterol).
However, a kd-tree cannot be used to store collections of other data types, such as strings. Also
note that while it's possible to build a kd-tree to hold data of any dimension, all of the data stored in
a kd-tree must have the same dimension. That is, you can't store points in two-dimensional space
in the same kd-tree as points in four-dimensional space.

It's easiest to understand how a kd-tree works by seeing an example. Below is a kd-tree that stores
points in three-dimensional space:

Notice that in each level of the kd-tree, a certain component of each node has been bolded. If we ze -
ro-index the components (i.e. the first component is component zero, the second component is
component one, etc.), in level n of the tree, the (n % 3)rd component of each node is shown in bold.
The reason that these values are bolded is because each node acts like a binary search tree node
that discriminates only along the bolded component. For example, the first component of every
node in the left subtree is less than the first component of the root of the tree, while the first com -

- 1 -

(3, 1, 4)

(2, 3, 7) (4, 3, 4)

(2, 1, 3) (2, 4, 5) (6, 1, 4)

(5, 2, 5)(1, 4, 4) (0, 5, 7)

(4, 0, 6) (7, 1, 6)

ponent of every node in the right subtree has a first component at least as a large as the root node's.
Similarly, consider the kd-tree's left subtree. The root of this tree has the value (2, 3, 7), with the
three in bold. If you look at all the nodes in its left subtree, you'll notice that the second component
has a value strictly less than three. Similarly, in the right subtree the second component of each
node is at least three. This trend continues throughout the tree.

Given how kd-trees store their data, we can efficiently query whether a given point is stored in a
kd-tree as follows. Given a point P, start at the root of the tree. If the root node is P, return the root
node. If the first component of P is strictly less than the first component of the root node, then look
for P in the left subtree, this time comparing the second component of P. Otherwise, then the first
component of P is at least as large as the first component of the root node, and we descend into the
right subtree and next time compare the second component of P. We continue this process, cycling
through which component is considered at each step, until we fall off the tree or find the node in
question. Inserting into a kd-tree is similarly analogous to inserting into a regular BST, except that
each level only considers one part of the point.

The Geometric Intuition Behind kd-Trees

You might be wondering why kd-trees store their data as they do. After all, it's not immediately ob -
vious why you'd compare a different coordinate at each level of the tree. It turns out that there is a
beautiful geometric meaning behind this setup, and by exploiting this structure it's possible to per-
form nearest-neighbor lookups extremely efficiently (in time better than O(n)) using a kd-tree.

In order to make the intuition behind the coordinate-by-coordinate comparison clear, we'll quickly
return to the standard binary search tree formulation you're familiar with to explore an aspect of
BSTs that you may not have immediately noticed. Consider a BST where each node holds a real
number. In this discussion, we'll use this tree as a reference:

2

-1 4

-2 0 63

Because the BST holds a collection of real numbers, we can overlay this BST with the number line.
This is shown below:

2

-1 4

-2 0 63

0

- 2 -

Now, suppose that we traverse the BST looking for zero. We begin at the root and check whether
the root node has the value we're looking for. Since it doesn't, we determine which of the two sub-
trees to descend into, then recursively look in that subtree for zero. Mathematically, this is equiva -
lent to splitting the real number line into two regions – numbers less than two and numbers greater
than to two. This is shown here:

Notice that all of the nodes in the left subtree are in the left partition and all the nodes in the right
subtree are in the right partition. Since 0 < 2, we know that if zero is contained in this tree at all, it
must be in the left partition. This immediately rules out the possibility that zero is in the right sub -
tree, and so we can recursively descend into the left subtree without worrying about missing the
node for zero.

The above discussion highlights the key insight that makes binary search trees possible. Each node
defines some partition of the real line into two segments, and each of the node's subtrees is fully
contained within one of the segments. Searching a BST can thus be thought of as continuously split-
ting space in half, then continuing the search only in the half that contains the value in question.

The main reason for mentioning this line of reasoning is that it is possible to scale this up to data of
higher dimensions. Suppose, for example, that we have the following collection of points in the
plane:

Suppose that we want to build a binary search tree out of these points. If we use the familiar defini -
tion of a BST, we would pick some node as the root, then build a subtree out of the remaining nodes
that are “less than” the root node and one subtree out of the values that are “greater than” the root
node. Unfortunately, there isn't a particularly good definition of what it means for a point in space

- 3 -

2

-1 4

-2 0 63

0

Values less than two Values greater than two

to be less than another. But let's instead consider the view of a BST we discussed above. In a BST,
each point naturally split the entire real line into two regions. In two dimensions, we can split the
plane into two regions around a point by drawing a line through that point. For example, if we
draw the following line through the indicated point:

Then we've split the plane into two distinct regions, one above the line and one below this line.
This observation gives us a way to build a binary search tree in multiple dimensions. First, pick an
arbitrary point in space and draw a line (chosen however you'd like) through it. Next, separate the
remaining points into points to one side of the line and points on the other. Finally, recursively con-
struct binary search trees out of those points. This technique is known as binary space partitioning
(since each step splits space into two regions), and trees generated this way are known as binary
space partitioning trees or BSP trees.

But BSP trees are not restricted to just the two-dimensional plane; the same technique works in ar-
bitrarily many dimensions. In three dimensions, we could partition space into two regions by draw-
ing a plane through a point, then taking the regions above and below the plane as the two half-re-
gions. When working with BSP trees, one often uses the term splitting hyperplane to refer to the ob-
ject passing through a point that splits space in half. In two dimensions, a hyperplane is a line,
while in three it's a plane. In a standard binary search tree, this “hyperplane” is just a point.

What does any of this discussion have to do with kd-trees? To answer that question, let's return to
our original collection of points in two-dimensional space, as shown here:

Suppose that we want to build a kd-tree out of these data points. We begin by choosing some node
(which we'll say is at (x0, y0) for notational simplicity) and splitting the data set into two groups, one
of points whose x components are less than the splitting node's, and one of points whose x compo-
nents are at least as large as the splitting node's. We can visualize the split like this:

- 4 -

Notice that this is essentially equivalent to running a splitting hyperplane through one of the points.
In that sense, a kd-tree is a special case of a BSP tree with a special rule that determines which split-
ting hyperplanes to use. However, we've done so without needing to write any code that manipu-
lates hyperplanes or half-spaces. All of the complex geometry is taken care of implicitly.

Let's continue building this kd-tree. We recursively build a kd-tree in the right half-space (the
points to the right of the central node) by picking the some point and splitting the data horizontally
through it, as seen here:

If we continue this construction to completion, our resulting kd-tree will look like this:

Here, the gold node is the root, nodes one level down are red, nodes two levels deep are green, and
nodes three levels deep are blue.

- 5 -

x < x
0

x ≥ x
0

 y ≥ y
1

 y < y
1

To give you a better sense for the geometric intuition behind this kd-tree, let's trace through what
happens when we try looking up whether a given point is in the kd-tree. In particular, let's see
what happens as we try to look up the node in the bottom-right corner of the kd-tree. We begin at
the root of the kd-tree and consider whether our node's x coordinate is less than or greater than the
root node's x coordinate. This is equivalent to splitting the plane vertically at the root node, then
asking which half-space our node is in. Our node happens to be in the right half-space, and so we
can ignore all of the nodes in the left half-space and recursively explore the right. This is shown
graphically below, where the grayed-out region corresponds to parts of the plane we will never
look in:

Now, we check whether our node is above or below the red node, which is the root of the tree in
this half-space. Our node is below it, so we can discard the top half-space and look in the bottom.
This is shown here:

Next, we check whether we're to the left or the right of the green node that's the root of this region
of space. We're to the right, so we discard the sliver of a half-space to the left of that node and con -
tinue on:

- 6 -

At this point, we have reached the node we're looking for, and the search algorithm terminates.

Nearest-Neighbor Lookup in kd-Trees

Now that you have a better geometric intuition for the kd-tree, we can talk about the most interest-
ing operation on the kd-tree: nearest-neighbor lookup. This query works as follows: given a kd-tree
and a point in space (called the test point), which point in the kd-tree is closest to the test point?
(The point in the data set closest to the test point is called its nearest neighbor). Before we discuss
the actual algorithm for doing nearest-neighbor lookup, we'll discuss the intuition behind the algo-
rithm. Suppose that we have a guess of what we think the nearest neighbor to the test point is. For
example, suppose that the test point is indicated by the star and that we think the nearest neighbor
is the point connected to the star by the dashed line:

Given our guess of what the nearest neighbor is, we can make a crucial observation. If there is a
point in this data set that is closer to the test point that our current guess, it must lie in the circle
centered at the test point that passes through the current guess. This circle is shown here:

Although in this example this region is a circle, in three dimensions it would be a sphere, and in
general we call it the candidate hypersphere.

The reason that this observation is so important is that it lets us prune which parts of the tree might
hold the true nearest neighbor. In particular, notice that this circle is entirely to the right of the
splitting hyperplane running vertically through the root of the tree. Consequently, any point to the
left of the root of the tree cannot possibly be in the candidate hypersphere, and consequently can't
be any better than our current guess. In other words, once we have a guess about where the near-
est neighbor is, we can start eliminating parts of the tree where the actual answer cannot be. This
general technique of searching a large space and pruning options based on partial results is called
branch-and-bound.

- 7 -

From the picture it's clear that the circle of possible nearest neighbors does not cross the middle
splitting hyperplane, but how can we determine this mathematically? In general, given a circle and
a line (or, more generally, a hypersphere and a a hyperplane), it's a bit tricky to determine whether
that circle intersects the line. Fortunately, though, the fact that we've chosen all of the splitting hy -
perplanes to be axis-aligned greatly simplifies this task. Below is an arbitrary line and two circles,
one of which crosses the line and one of which does not:

Now, consider the distance from the centers of these circles to the line y = y 0. This is simply the ab-
solute value of the difference between the circles' y coordinates and y0, as seen here:

y = y
0

(x
1
, y

1
)

(x
2
, y

2
)

 r 1

 r 2

 |y
1
 - y

0
|

|y
2
 – y

0
|

Notice that the distance |y1 – y0| from the center of the blue circle to the line is greater than the ra-
dius of the circle, and so the circle does not cross the line. On the other hand, the distance from the
center of the red circle to the line is less than the radius of the circle, and so some part of that circle
does cross the line. This gives a general criterion for determining whether a candidate hypersphere
crosses a particular splitting hyperplane. In particular, given a kd-tree node holding point (a0, a1, a2,
..., ak) and hypersphere of radius r centered at (b0, b1, b2, ..., bk), if the node partitions points based on
their ith component, then the hypersphere crosses the node's splitting plane only if |bi – ai| < r.

To recap:

• Given a guess about which node is the nearest neighbor, we can construct a candidate hy-
persphere centered at the test point and running through the guess point. The nearest
neighbor to the test point must lie inside this hypersphere.

• If this hypersphere is fully to one side of a splitting hyperplane, then all points on the other
side of the splitting hyperplane cannot be contained in the sphere and thus cannot be the
nearest neighbor.

- 8 -

y = y
0

(x
1
, y

1
)

(x
2
, y

2
)

 r 1

 r 2

• To determine whether the candidate hypersphere crosses a splitting hyperplane that com-
pares coordinate i, we check whether |bi – ai| < r.

These observations, taken together, suggest the following algorithm for finding the nearest neigh-
bor to a test point:

Let the test point be (a0, a1, ..., ak).

Maintain a global best estimate of the nearest neighbor, called 'guess.'
Maintain a global value of the distance to that neighbor, called 'bestDist'

Set 'guess' to NULL.
Set 'bestDist' to infinity.

Starting at the root, execute the following procedure:
 if curr == NULL
 return

 /* If the current location is better than the best known location,
 * update the best known location.
 */
 if distance(curr, guess) < bestDist
 bestDist = distance(curr, guess)
 guess = curr

 /* Recursively search the half of the tree that contains the test point. */
 if ai < curri

 recursively search the left subtree on the next axis
 else
 recursively search the right subtree on the next axis

 /* If the candidate hypersphere crosses this splitting plane, look on the
 * other side of the plane by examining the other subtree.
 */
 if |curri – ai| < bestDist
 recursively search the other subtree on the next axis

Intuitively, this procedure works by walking down to the leaf of the kd-tree as if we were searching
the tree for the test point. As we start unwinding the recursion and walking back up the tree, we
check whether each node is better than the best estimate we have so far. If so, we update our best
estimate to be the current node. Finally, we check whether the candidate hypersphere based on
our current guess could cross the splitting hyperplane of the current node. If it doesn't, then we can
eliminate all points on the other side of the splitting hyperplane from consideration and walk back
up to the next node in the tree. Otherwise, we must look in that side of the tree to see if there are
any closer points.

This algorithm can be shown to run in O(log n) time on a balanced kd-tree with n data points pro-
vided that those points are randomly distributed. In the worst case, though, the entire tree might
have to be searched. However, in low-dimensional spaces, such as the Cartesian plane or three-di-
mensional space, this is rarely the case.

- 9 -

k-Nearest Neighbor Searches and Bounded Priority Queues

In this discussion, we've only considered the problem of finding the single nearest neighbor to a test
point. A more interesting question is, given a test point and some number k, to find the k-near-
est-neighbors of that point. This search is often referred to as a k-NN search. It turns out that the
previous algorithm can easily be adapted to do a k-NN search instead of a 1-NN search. The algo-
rithm is almost identical, except that instead of maintaining just the best point, we maintain a list of
the k best points we've seen so far.

Before describing the algorithm, we'll introduce a special data structure called a bounded priority
queue (or BPQ for short). A bounded priority queue is similar to a regular priority queue, except
that there is a fixed upper bound on the number of elements that can be stored in the BPQ. When-
ever a new element is added to the queue, if the queue is at capacity, the element with the highest
priority value is ejected from the queue. For example, suppose that we have a BPQ with maximum
size five that holds the following elements:

Value A B C D E

Priority 0.1 0.25 1.33 3.2 4.6

Suppose that we want to insert the element F with priority 0.4 into this bounded priority queue.
Because this BPQ has maximum size five, this will insert the element F, but then evict the low -
est-priority element (E), yielding the following BPQ:

Value A B F C D

Priority 0.1 0.25 0.4 1.33 3.2

Now suppose that we wish to insert the element G with priority 4.0 into this BPQ. Because G's pri -
ority value is greater than the maximum-priority element in the BPQ, upon inserting G it will imme-
diately be evicted. In other words, inserting an element into a BPQ with priority greater than the
maximum-priority element of the BPQ has no effect. Given access to a BPQ, we can perform a k-NN
search in a kd-tree as follows:

- 10 -

Let the test point be P = (y0, y1, ..., yk).

Maintain a BPQ of the candidate nearest neighbors, called 'bpq'
Set the maximum size of 'bpq' to k

Starting at the root, execute the following procedure:
 if curr == NULL
 return

 /* Add the current point to the BPQ. Note that this is a no-op if the
 * point is not as good as the points we've seen so far.
 */
 enqueue curr into bpq with priority distance(curr, P)

 /* Recursively search the half of the tree that contains the test point. */
 if yi < curri

 recursively search the left subtree on the next axis
 else
 recursively search the right subtree on the next axis

 /* If the candidate hypersphere crosses this splitting plane, look on the
 * other side of the plane by examining the other subtree.
 */
 if:
 bpq isn't full
 -or-
 |curri – yi| is less than the priority of the max-priority elem of bpq
 then
 recursively search the other subtree on the next axis

There are two minor changes to this algorithm that differentiate it from the initial 1-NN search al-
gorithm. First, when determining whether to look on the opposite side of the splitting plane, we
use as the radius of the candidate hypersphere the distance from the test point to the maxi -
mum-priority point in the BPQ. The rationale behind this is that when finding the k nearest neigh-
bors, our candidate hypersphere for the k nearest points needs to encompass all k of those neigh-
bors, not just the closest. The other main change is that when we consider whether to look on the
opposite side of the splitting plane, our decision takes into account whether the BPQ contains at
least k points. This is extremely important! If we prune out parts of the tree before we have made
at least k guesses, we might accidentally throw out one of the closest points. Consider the following
setup:

Suppose that we wish to perform a 2-NN lookup for the test point indicated by the star. We recur -
sively check the left subtree of the splitting plane, and find the point indicated in blue as a candidate
nearest neighbor. Since we haven't found two nearest neighbors yet, we still need to look on the
other side of the splitting plane for more neighbors, even though the candidate hypersphere does
not cross the splitting hyperplane.

- 11 -

The Assignment

Your assignment is to implement a class representing a kd-tree, which we'll call KDTree, that allows
clients to build kd-trees, query kd-trees for membership, and execute k-NN lookups on them. In the
course of doing so, you'll gain experience with class implementation, const-correctness, templates,
copy functions, operator overloading, and exception-handling. Additionally, you'll get to experience
firsthand the power of k-NN lookups by seeing applications that build off of your KDTree class. The
amount of code that you actually need to write is not too great – on the order of two hundred lines –
though it will require you to have a solid understanding of the language features we've explored
over the past weeks.

To make it easier to complete the assignment, I've broken the program down into a series of five
smaller steps. I advise completing the assignment in this order, but you're free to implement
KDTree as you see fit.

Step Zero: Set up the Project

Unlike Evil Hangman, this assignment has a fair amount of starter code, mostly for the sample appli-
cations. Set it up like you would any other QT project.

Step One: Implement Basic Functionality

Now that you've gotten the project set up, it's time to start implementing KDTree. The KDTree im-
plementation you'll be writing is actually a slight variant on the kd-tree structure described earlier
in this handout that associates auxiliary data with each point. In a sense, your KDTree will act like a
fancy map from points in space to values. For example, you could use a KDTree to map from longi-
tude/latitude pairs to cities, from biometric data to disease prognosis, or from images to labels on
those images.

Below is a partial specification of the KDTree class, highlighting the functions you'll need to write to
get basic functionality working.

Basic (incomplete) KDTree interface
template <size_t N, typename ElemType> class KDTree {
public:

KDTree();
~KDTree();

size_t dimension() const;
size_t size() const;
bool empty() const;

void insert(const Point<N>& pt, const ElemType& value);

bool contains(const Point<N>& pt) const;
 ElemType& operator[] (const Point<N>& pt);
 ElemType& at(const Point<N>& pt);
 const ElemType& at(const Point<N>& pt) const;
};

You may have noticed that KDTree has an unusual template signature:

- 12 -

 template <size_t N, typename ElemType> class KDTree

You did not misread that – the KDTree implementation is parameterized over a size_t as well as a
type. We have not discussed integer template arguments before, but they behave just like regular
type template arguments. If you want to create a KDTree that maps from points in three-dimen-
sional space to strings, you could declare it as

 KDTree<3, string> myKDTree;

The keys in the KDTree are objects of type Point<N>, where N is the dimension of the KDTree. That
is, a KDTree<3, string> uses Point<3>s as keys, a KDTree<2, cityT> would use Point<2>s as
keys, etc. I've provided a fully-working implementation of Point in the starter code; it behaves like
a fixed-size STL vector<double>. For example:

 Point<3> pt;
 pt[0] = 137.0;
 pt[1] = 42.0;
 pt[2] = 2.71828;

I advise looking over the Point.h header file to see what other functionality exists. You're free to
extend this class however you feel, but you shouldn't need to do so for this assignment.

Given this detail about the KDTree and Point types, you should begin the assignment by imple-
menting the following member functions on KDTree:

KDTree(); Constructs a new, empty KDTree.

~KDTree(); Destroys the KDTree and deallocates all its resources.

size_t dimension() const; Returns the dimension of the points stored in the
KDTree. (This is the value of the template parameter N).

size_t size() const;
bool empty() const;

Returns the number of elements stored in the KDTree
and whether or not it is empty, respectively.

void
insert (const Point<N>& pt,
 const ElemType& value);

Inserts the specified point into the KDTree with
associated value value. If the point already exists in the
KDTree, the old value is overwritten.

bool
contains(const Point<N>& pt) const;

Returns whether the specified Point is contained in the
KDTree.

ElemType&
operator[] (const Point<N>& pt);

Returns a reference to the value associated with the
point pt. If the point does not exist in the KDTree, it is
added with the default value of ElemType as its value,
and a reference to this new value is returned. This is the
same behavior as the STL map's operator[].

Note that this function does not have a const overload
because the function may mutate the tree.

- 13 -

ElemType&
at(const Point<N>& pt);

const ElemType&
at(const Point<N>& pt) const;

Returns a reference to the value associated with the
point pt, if it exists. If the point is not in the tree, then
this function throws an out_of_range exception.

This function is const-overloaded, since it does not
change the tree.

Notice that the last four functions (contains, operator[], and the two versions of at) all do some
search of the KDTree looking for a particular value, differing only in their behavior when the point
is not contained in the tree. contains returns false, operator[] adds a new element, and at
throws an out_of_range exception. Rather than writing the code to traverse the tree four times
and customizing the behavior when an element isn't found, I strongly suggest writing a helper func-
tion that searches the tree for a particular point, then returns a pointer to the node containing it.
You can then implement these functions on top of this common subroutine. As an example, here's a
simple implementation of contains that assumes the existence of a helper function findNode:

 template <size_t N, typename ElemType>
 bool KDTree<N, ElemType>::contains(const Point<N>& pt) const {
 return findNode(pt) != NULL;
 }

To check whether you have your code working, you can run the first set of tests from the project
test-harness. If these report any errors, be sure to correct them before moving on. You may also
want to add tests of your own.

Step Two: Implement Nearest-Neighbor Lookup

Now that you have the basic functionality ready, it's time to implement k-NN searches. Your next
task is to implement the kNNValue function, which looks like this:

Extended (still incomplete) KDTree interface
template <size_t N, typename ElemType> class KDTree {
public:

KDTree();
~KDTree();

size_t dimension() const;
size_t size() const;
bool empty() const;

void insert(const Point<N>& pt, const ElemType& value);

bool contains(const Point<N>& pt) const;
 ElemType& operator[] (const Point<N>& pt);
 ElemType& at(const Point<N>& pt);
 const ElemType& at(const Point<N>& pt) const;

 ElemType kNNValue(const Point<N>& pt) const;
};

This function takes in a point in space and a number of neighbors. It should then do a k-NN search
in the kd-tree using pt as the test point. After doing so, it will have found a collection of the k near-

- 14 -

est points in space, along with the ElemType values associated with them. The return value of this
function should be the most-frequently-occurring value associated with the k-nearest-neighbors of
the test point. In the event of a tie, you can return any of the strings that tied for most frequent. For
example, given the following collection of points (labeled with strings) and the indicated test
point:

Y

N Y

N

N

N

Y Y N

N

Y

N

Y

If we did a 3-NN lookup, the kNNValue function should return "Y".

The algorithm for doing a k-NN lookup assumes the existence of a bounded priority queue, and to
make this assignment easier to complete I've provided you a BoundedPQueue class which does just
that. You may want to look over its interface before starting work on this part of the assignment.
You might be wondering why this function returns the most common label of the nearby points
rather than the points themselves. This is mostly because the sample applications bundled with
this project all use the k-NN search in the manner exported by this function and I didn't feel like
needlessly duplicating code. ☺

The test harness contains two functions which test this function. Enable them and confirm that
your code works before moving on to the next section.

Step Four: Implement Copy Functions

As written, the KDTree class has a destructor but no copy constructor or assignment operator. This
means that C++ will provide the class default versions of these functions, which will cause a crash -
es. To prevent this, you will need to implement a copy constructor and assignment operator for the
KDTree class. This results in the final interface of the KDTree class:

Complete KDTree interface
template <size_t N, typename ElemType> class KDTree {
public:

KDTree();
~KDTree();

 KDTree(const KDTree& other);
 KDTree& operator= (const KDTree& other);

size_t dimension() const;
size_t size() const;
bool empty() const;

void insert(const Point<N>& pt, const ElemType& value);

bool contains(const Point<N>& pt) const;

- 15 -

 ElemType& operator[] (const Point<N>& pt);
 ElemType& at(const Point<N>& pt);
 const ElemType& at(const Point<N>& pt) const;

 ElemType kNNValue(const Point<N>& pt) const;
};

You are free to implement these functions as you see fit, but I strongly encourage you to read over
Chapter 11 in the course reader before doing so. It is surprisingly easy to get these functions
wrong, and you will want to ensure that you understand what to watch out for before you start cod-
ing them up.

The testing harness contains two tests that exercise the copy functions, one checking the basic func-
tionality and one exclusively checking edge cases. Make sure that your implementation passes the
tests before moving on.

Step Four: Run Sample Applications

Congratulations! You've just completed your KDTree. Take some time to play around with the
sample applications that have been bundled with the starter code. There are three applications you
can check out, each of which is described here:

• Map Lookup. This program presents a map of the world and lets you click on various loca -
tions. It then uses a 1-NN lookup to determine which country the selected location is in,
along with the state/province within that country the location is in. The program uses offi-
cial US government data from the National Geospatial-Intelligence Agency and US Geologi-
cal Survey. If you'd like to retrieve the raw data files on which the data for this program is
based, check out the following links:

ftp://ftp.nga.mil/pub2/gns_data/geonames_dd_dms_date_20100503.zip
http://geonames.usgs.gov/docs/stategaz/NationalFile_20091002.zip
http://earth-info.nga.mil/gns/html/GEOPOLITICAL_CODES.xls

• Color Naming. Randall Munroe, author of the webcomic xkcd, ran a survey in which partic-

ipants were shown a random color and asked to name that color. The results of the color
survey were then released to the general public on his blag (http://blag.xkcd.com). The
data set contains three million pairs of colors (encoded as RGB triplets) and the respon-
dents' names for those colors. The Color Naming application pulls up the system color
chooser dialog, lets clients choose colors, then reports the 3-NN name of that color based on
a reduced subset of that data. If you'd like the raw data files I used to build the data set, you
can find it online at the link below. Be warned – the data has not been filtered and some of
the color names are certainly NSFW.

http://xkcd.com/color/colorsurvey.tar.gz

• Digit Classification. Earlier in the quarter we made a brief foray into machine learning by
writing a perceptron classifier that could recognize handwritten digits. An alternative
means for performing this classification uses the k-NN algorithm. The Digit Classifier appli-
cation presents you a canvas on which you can draw a digit between 0 and 9, then uses
k-NN to guess what the digit you wrote was. The program has very good accuracy, though it

- 16 -

http://xkcd.com/color/colorsurvey.tar.gz
http://blag.xkcd.com/
http://www.xkcd.com/
http://earth-info.nga.mil/gns/html/GEOPOLITICAL_CODES.xls
http://geonames.usgs.gov/docs/stategaz/NationalFile_20091002.zip
ftp://ftp.nga.mil/pub2/gns_data/geonames_dd_dms_date_20100503.zip

does make the occasional mistake. The raw data for this program was obtained from the
MNIST database at

http://yann.lecun.com/exdb/mnist/

When running these sample programs, I suggest compiling them with optimization turned on and
debugging turned off. Loading and processing megabytes of data takes time, and the overhead from
debugging instrumentation can make the programs take a very long time to load. Even with opti-
mization turned on, the programs can still take a while to load – the Color Naming program takes an
especially long time to load since it has to build a kd-tree out of two million data points. Also, be
aware that these programs will use a lot of RAM!

Advice, Tips, and Tricks

Here are a few specific pointers that might make your life a lot easier as you go through this assign-
ment:

• Don't hesitate to ask questions! This assignment uses many of the C++ techniques we've
seen over the past few weeks. If you're having trouble getting your code to compile, or can't
remember what keyword you're supposed to be using somewhere, email the staff list (106l-
staff@cs.stanford.edu), me, or go to the LaIR and I can try to point you in the right direction.

• This assignment is not as hard as it may seem. This handout is fairly dense, but the actual
amount of code you need to write is not that great. You are only responsible for implement -
ing a few functions, some of which can be implemented in a single line of code. If you take
the time to think through how all the functions are related to one another, you can save
yourself much coding effort by implementing the functions in terms of each other.

• Watch out for typename weirdness when implementing functions. Your implementation
of KDTree will require the use of a nested type to represent nodes in the tree. If you write
any private helper functions that return objects of this type, you will need to use the type-
name keyword when implementing those functions. For example, suppose that you define a
helper struct called Node and then define a function that returns a Node*, as shown here:

 private:
 struct Node {
 /* ... */
 };
 Node* findNode(const Point<N>& pt);

The implementation of this function would then have this signature:

 template <size_t N, typename ElemType>
 typename KDTree<N, ElemType>::Node*
 KDTree<N, ElemType>::findNode(const Point<N>& pt);

That's a real mouthful, and unfortunately it's the only way to communicate to the compiler
what you're trying to implement. Make sure you understand the use of typename, along
with why the template arguments are duplicated in two places.

- 17 -

mailto:106l-staff@cs.stanford.edu
mailto:106l-staff@cs.stanford.edu
http://yann.lecun.com/exdb/mnist/

• Be careful about const-correctness. If you create any private member functions to assist
in the implementations of the KDTree public interface, make sure those member functions
are marked const where appropriate. In particular, contains, at, and kNNValue are con-
st, so if they call any member functions, those functions must be marked const as well. You
will get some fairly ferocious compiler errors if you try calling a non-const member func-
tion from a const member function, so be wary.

• Use fabs instead of abs. The <cmath> header file exports two similar-sounding functions
to compute absolute value, abs and fabs. In this assignment, you should not use the abs
function. abs works on integral values, so if you pass in a double, the returned value will
be incorrectly rounded to an int. fabs is designed to work on floats and doubles, and is
a much more appropriate function.

• Remember the const_cast/static_cast trick. The KDTree contains two functions
named at that differ only in their constness. Rather than writing two copies of the same
code, you can use the const_cast/static_cast trick to implement the non-const ver-
sion in terms of the const version. Look over the lecture code for the Vector class for
more details.

Extensions

If you're interested in sharpening your C++ skills, want to do more advanced operations on the kd-
tree, or feel like spending a lazy Sunday coding away furiously, why not add some extensions to
your KDTree? Below is a list of possible extension ideas, some of which are straightforward, while
others will require significant time and effort. If you end up completing any of these, let me know
and I'd be glad to look over what you've written!

• Build the kd-tree more intelligently. Traditionally, kd-trees are not built one element at a
time, but rather from a complete data set all at once. To ensure that the tree is balanced, the
elements are sorted by their first component, the median is used as the root of the tree, and
the remaining elements are then recursively subdivided into children of the root node. Im -
plement a new constructor for the KDTree class to build up the tree in this fashion.

• Add support for other distance metrics. When doing nearest-neighbor lookup, we use
Euclidean distance as a measure of “closeness” between two points and try to find a point in
the kd-tree with the least Euclidean distance to the test point. However, it's possible to use
all sorts of other distance metrics, such as Manhattan distance or the maximum norm. Add
support to KDTree to try out these new distance metrics. How does the behavior of the sam-
ple applications change?

• Choose axes more intelligently. The current kd-tree implementation cycles through
which axis it splits on with each level of the tree. A more clever idea would be to split along
the longest axis of the data set with the goal of spreading the points out more evenly. Up -
date the KDTree class to use this functionality.

• Add support for range searches. One common operations on kd-trees is a range search,
where the input is a rectangle in space and the output is the set of points in the kd-tree con-
tained in that rectangle. This gives a much better algorithm for the CityFinder program

- 18 -

than the one we wrote earlier in the quarter. Research how to implement this function,
then add it to KDTree.

• Add support for element removal. The KDTree you've written can have new elements
added, but cannot remove existing elements. Develop an algorithm to remove arbirary
points from a kd-tree, then update your KDTree interface to support this.

• Be creative! Think of any clever uses for a kd-tree? How about something you could do to
make the kd-tree more efficient? If you have any ideas you'd like to try out, by all means go
for it and I'd love to see what you come up with.

Deliverables

To submit the assignment, upload your updated KDTree.h file, along with any other files you might
have edited, to paperless. If you've added any extensions or special features I should be aware of,
let your grader know in your comments. I would also appreciate it if you offered some feedback on
this assignment as well as the class as a whole – was it interesting? Too easy? Too hard? Just right?
Finally, pat yourself on the back – you've just completed the last assignment of CS106L and are now
a veteran C++ programmer. Congratulations!

Good luck!

- 19 -

	KdTree1.pdf
	Feature-Based Data Fusion�for 3D Photography�� Prof. George Wolberg�Dept. of Computer Science�City College of New York�
	Agenda
	Background
	Texture Map Animation
	Applications
	Year 1 Milestones
	Year 2 Milestones
	Year 3 Milestones
	Publications
	Traditional 3D Geometry Acquisition
	Comparison
	Heavyweight Models
	Lightweight 3D Model
	Extension:�Year 1 Milestones
	Extension:�Year 2 Milestones
	Publications
	Slide Number 18
	Slide Number 19
	PhotoSketch
	Slide Number 21
	Slide Number 22
	Camera Calibration
	Pinhole Camera Model
	Intrinsic Parameters
	Radial Lens Distortion (1)
	Radial Lens Distortion (2)
	Radial Lens Distortion (3)
	Calibration Procedure (1)
	Calibration Procedure (2)
	Camera Calibration Guidelines
	Problematic Images
	Recovered Parameters
	Slide Number 34
	Guidelines (1)
	Guidelines (2)
	Guidelines (3)
	Guidelines (4)
	Parallax (1)
	Parallax (2)
	Guidelines (5)
	Guidelines (6)
	Guidelines (7)
	Slide Number 44
	Camera Pose Recovery (1)
	Camera Pose Recovery (2)
	Camera Pose Recovery (3)
	Camera Pose Recovery (4)
	Technology
	Multiview Geometry
	Extrinsic Parameters (1)
	Extrinsic Parameters (2)
	Feature Extraction (1)
	Feature Extraction (2)
	Feature Extraction (3)
	Feature Extraction (4)
	Feature Extraction (5)
	Feature Matching (1)
	Feature Matching (2)
	Feature Matching (3)
	K-D Tree Construction Example
	K-D Tree Construction Example
	K-D Tree Construction Example
	K-D Tree Construction Example
	K-D Tree Construction Example
	K-D Tree Construction Example
	K-D Tree Construction Example
	K-D Tree Construction Example
	K-D Tree Construction Example
	K-D Tree Construction Example
	K-D Tree Construction Example
	K-D Tree Construction Example
	K-D Tree Construction Example
	K-D Tree Construction Example
	K-D Tree Construction Example
	K-D Tree Construction Example
	K-D Tree Construction Example
	K-D Tree Construction Example
	K-D Tree Construction
	K-D Tree Construction
	K-D Tree Nearest Neighbor Search
	K-D Tree Nearest Neighbor Search
	K-D Tree Nearest Neighbor Search
	K-D Tree Nearest Neighbor Search
	K-D Tree Nearest Neighbor Search
	K-D Tree Nearest Neighbor Search
	K-D Tree Nearest Neighbor Search
	K-D Tree Nearest Neighbor Search
	K-D Tree Nearest Neighbor Search
	K-D Tree Nearest Neighbor Search
	K-D Tree Nearest Neighbor Search
	K-D Tree Nearest Neighbor Search
	K-D Tree Nearest Neighbor Search
	K-D Tree Nearest Neighbor Search
	K-D Tree Nearest Neighbor Search
	K-D Tree Nearest Neighbor Search
	K-D Tree Nearest Neighbor Search
	K-D Tree Nearest Neighbor Search
	Approximate Nearest Neighbor (ANN)
	Approximate Nearest Neighbor (ANN)
	Pose and Structure Recovery
	Slide Number 102
	Multiview Example
	Multiview Example
	Multiview Example
	Multiview Example
	Multiview Example
	Technology
	Floor Alignment
	Coplanar Point Correspondence
	Coplanar Point Correspondence
	Unordered Camera Pose Recovery
	Unordered Camera Pose Recovery
	Unordered Camera Pose Recovery
	Unordered Camera Pose Recovery
	Unordered Camera Pose Recovery
	Unordered Camera Pose Recovery
	Unordered Camera Pose Recovery
	Unordered Camera Pose Recovery
	Unordered Camera Pose Recovery
	Unordered Camera Pose Recovery
	Unordered Camera Pose Recovery
	Unordered Camera Pose Recovery
	Unordered Camera Pose Recovery
	Unordered Camera Pose Recovery
	Unordered Camera Pose Recovery
	Unordered Camera Pose Recovery
	Unordered Camera Pose Recovery
	Unordered Camera Pose Recovery
	Recovered Camera Poses and Point Cloud
	Recovered Camera Poses and Point Cloud
	Slide Number 132
	Unordered Camera Pose Recovery
	Recovered Camera Poses and Point Cloud
	Recovered Camera Poses and Point Cloud
	Slide Number 136
	Slide Number 137
	Slide Number 138
	Slide Number 139
	Slide Number 140
	Slide Number 141
	Technology
	Sketch Footprints
	Technology
	Push-Pull Interface:�Extrusion Operations
	Push-Pull Interface:�Taper Operations
	Technology
	Advanced Texture Mapping:�Real-Time Occlusion Detection
	Model Georeferencing
	Model Georeferencing
	Street View Imagery (1)
	Street View Imagery (2)
	Street View Imagery (3)
	Street View Imagery (4)
	Street View Imagery (5)
	Street View Imagery (6)
	Match Photo
	Disadvantages of Match Photo (1)
	Disadvantages of Match Photo (2)
	Disadvantages of Match Photo (2)
	Disadvantages of Match Photo (2)
	Advantages of PhotoSketch
	Future Work
	Multiview Texture Mapping (1)
	Multiview Texture Mapping (2)
	Multiview Texture Mapping (3)
	Diminished Reality (1)
	Diminished Reality (2)
	Diminished Reality (3)
	Example (1)
	Example (2)
	Inpainting
	Fast Feature Matching of Unordered Photos
	Hybrid Camera Pose Recovery (1)
	Hybrid Camera Pose Recovery (2)
	Depth-from-Focus
	Sketchup API Wish List�(Notes to SketchUp Development Team)
	Comparison
	Lightweight 3D Modeling of�Urban Buildings From Range Data�� Prof. George Wolberg�Dept. of Computer Science�City College of New York�
	Outline
	Introduction
	Input: Dense 3D Point Cloud
	Uniform Volumetric Slabs
	Extraction of 2D Slices (1)
	Extraction of 2D Slices (2)
	Extracted 2D Slices
	Vectorized Keyslices
	Extruded Keyslices
	Taper Detection
	Taper Detection
	Textured Model
	Overview
	Flow Diagram
	3D Data Generation and Acquisition
	3D Point Cloud Preprocessing
	Major Plane Detection
	2D Slice Extraction
	2D Slice Extraction and Enhancement
	Dataset Segmentation
	Dataset Segmentation
	Dataset Segmentation
	Lightweight 3D Reconstruction
	Window and Door Detection
	Keyslice Detection
	Boundary Vectorization
	Tapering Detection
	Model Generation
	Window and Door Installation
	Experimental Results
	Experimental Results
	Experimental Results
	Experimental Results
	Experimental Results
	Performance Evaluation
	Parameter and Error Estimation
	Model Comparison
	Limitations
	Thank you !
	Contact Info

