CSC212 Data Structure

Lecture 15
 B-Trees and the Set Class

Instructor: George Wolberg
Department of Computer Science

City College of New York

Topics

\square Why B-Tree
\square The problem of an unbalanced tree
\square The B-Tree Rules
\square The Set Class ADT with B-Trees
\square Search for an Item in a B-Tree
\square Insert an Item in a B-Tree (*)
\square Remove a Item from a B-Tree (*)

The problem of an unbalanced BST

\square Maximum depth of a BST with n entries: $\mathrm{n}-1$
\square An Example:
Insert 1, 2, 3,4,5 in that order into a bag using a BST
\square Run BagTest!

Worst-Case Times for BSTs

\square Adding, deleting or searching for an entry in a BST with n entries is $\mathrm{O}(\mathrm{d})$ in the worst case, where d is the depth of the BST
\square Since d is no more than $n-1$, the operations in the worst case is ($\mathrm{n}-1$).
\square Conclusion: the worst case time for the add, delete or search operation of a BST is $\mathrm{O}(\mathrm{n})$

Solutions to the problem

\square Solution 1

- Periodically balance the search tree
\square Project 10.9, page 516
\square Solution 2
- A particular kind of tree : B-Tree
\square proposed by Bayer \& McCreight in 1972

The B-Tree Basics

\square Similar to a binary search tree (BST)
\square where the implementation requires the ability to compare two entries via a less-than operator (<)
\square But a B-tree is NOT a BST - in fact it is not even a binary tree
\square B-tree nodes have many (more than two) children
\square Another important property
\square each node contains more than just a single entry
\square Advantages:

- Easy to search, and not too deep

Applications: bag and set

\square The Difference
\square two or more equal entries can occur many times in a bag, but not in a set
\square C++ STL: set and multiset (= bag)
\square The B-Tree Rules for a Set
\square We will look at a "set formulation" of the BTree rules, but keep in mind that a "bag formulation" is also possible

The B-Tree Rules

\square The entries in a B-tree node

- B-tree Rule 1: The root may have as few as one entry (or 0 entry if no children); every other node has at least MINIMUM entries
\square B-tree Rule 2: The maximum number of entries in a node is 2* MINIMUM.
\square B-tree Rule 3: The entries of each B-tree node are stored in a partially filled array, sorted from the smallest to the largest.

The B-Tree Rules (cont.)

\square The subtrees below a B-tree node

- B-tree Rule 4: The number of the subtrees below a non-leaf node with n entries is always $\mathrm{n}+1$
- B-tree Rule 5: For any non-leaf node:
\square (a). An entry at index i is greater than all the entries in subtree number i of the node
\square (b) An entry at index i is less than all the entries in subtree number $\mathrm{i}+1$ of the node

An Example of B-Tree

subtree number 0

each entry < 93
subtree number 1
each entry $\in(93,107)$
subtree number 2
each entry > 107

The B-Tree Rules (cont.)

\square A B-tree is balanced

- B-tree Rule 6: Every leaf in a B-tree has the same depth
\square This rule ensures that a B-tree is balanced

Another Example, MINIMUM = 1

The set ADT with a B-Tree

set.h (p 528-529)

- Combine fixed size array with linked nodes
\square data[]
- * subset[]
\square number of entries vary
\square data_count
- up to 200!
\square number of children vary
- child_count
\square = data_count+1?
template <class Item> class set
\{ public:
bool insert(const Item\& entry); std::size_t erase(const ltem\& target); std::size_t count(const ltem\& target) const; private:
// MEMBER CONSTANTS
static const std::size_t MINIMUM $\equiv 200$;
static const std::size_t MAXIMUM $\equiv 2$ * MINIMUM; // MEMBER VARIABLES
std::size_t data_count; Item data[MAXIMUM+1]; // why +1? -for insert/erase std::size_t child_count;
set *subset[MAXIMUM+2]; // why +2? - one more

Invariant for the set Class

\square The entries of a set is stored in a B-tree, satisfying the six B-tree rules.
\square The number of entries in a node is stored in data_count, and the entries are stored in data[0] through data[data_count-1]

- The number of subtrees of a node is stored in child_count, and the subtrees are pointed by set pointers subset[0] through subset[child_count-1]

Search for a Item in a B-Tree

\square Prototype:

- std::size_t count(const Item\& target) const;
\square Post-condition:
\square Returns the number of items equal to the target
\square (either 0 or 1 for a set).

Searching for an Item: count

 search for 10: cout << count (10);Start at the root.

1) locate i so that!(data[i]<target)
2) If (data[i] is target) return 1;
else if (no children)
return 0;
else

return subset[i]->count (target);

Searching for an Item: count

 search for 10: cout << count (10);Start at the root.

1) locate i so that !(data[i]<target)
2) If (data[i] is target) return 1;
else if (no children)
return 0 ;
else

return subset[i]->count (target);

Searching for an Item: count

 search for 10: cout << count (10);Start at the root.

1) locate i so that!(data[i]<target)
2) If (data[i] is target) return 1;
else if (no children)
return 0;
else

subset[1]

Searching for an Item: count

 search for 10: cout << count (10);Start at the root.

1) locate i so that !(data[i]<target)
2) If (data[i] is target) return 1;
else if (no children)
return 0 ;
else

return subset[i]->count (target);

Searching for an Item: count

 search for 10: cout << count (10);Start at the root.

1) locate i so that!(data[i]<target)
2) If (data[i] is target) return 1;
else if (no children)
return 0;
else
return subset[i]->count (target);
subset[0]

Searching for an Item: count

 search for 10: cout << count (10);Start at the root.

1) locate i so that!(data[i]<target)
2) If (data[i] is target)

Insert a Item into a B-Tree

\square Prototype:
\square bool insert(const Item\& entry);
\square Post-condition:
\square If an equal entry was already in the set, the set is unchanged and the return value is false.
\square Otherwise, entry was added to the set and the return value is true.

Insert an Item in a B-Tree

 insert (11);Start at the root.

1) locate i so that!(data[i]<entry)
2) If (data[i] is entry)

return false; // no work! else if (no children) insert entry at i ; return true; else | 2 and 3 | 5 | 10 | 16 | 18 | 20 | 25 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

return subset[i]->insert (entry);

$$
\mathrm{i}=0
$$

data[i] is target !

Insert an Item in a B-Tree

 insert (11); // MIN = $1->$ MAX = 2Start at the root.

1) locate i so that!(data[i]<entry)
2) If (data[i] is entry)
return false; // no work! else if (no children) insert entry at i ; return true; else
return false;
else if (no childr
insert entry
return true;
return subset[i]->insert (entry);
```
(
```


Insert an Item in a B-Tree

 insert (11); // MIN = $1->$ MAX = 2Start at the root.

1) locate i so that!(data[i]<entry)
2) If (data[i] is entry)
return false; // no work! else if (no children)
insert entry at i;
return true; else
ork!
return subset[i]->insert (entry);

$$
\mathrm{i}=1
$$

put entry in data[1]

Insert an Item in a B-Tree

insert (1); // MIN = 1 -> MAX = 2

Start at the root.

Insert an Item in a B-Tree

insert (1); // MIN = 1 -> MAX = 2

Start at the root.

1) locate i so that !(data[i]<entry)
2) If (data[i] is entry)
return false; // no work! else if (no children)
insert entry at i;
return true; else return subset[i]->insert (entry);
a node has $M A X+1=3$ entries!

Insert an Item in a B-Tree

insert (1); // MIN = 1 -> MAX = 2

Fix the node with MAX+1 entries
\square split the node into two from the middle
\square move the middle entry up

a node has $M A X+1=3$ entries!

Insert an Item in a B-Tree

insert (1); // MIN = 1 -> MAX = 2

Fix the node with MAX +1 entries
\square split the node into two from the middle
\square move the middle entry up

Note: This shall be done recursively... the recursive function returns the middle entry to the root of the subset.

Inserting an Item into a B-Tree

\square What if the node already has MAXIMUM number of items?
\square Solution - loose insertion (p 551 - 557)
\square A loose insert may result in MAX +1 entries in the root of a subset
\square Two steps to fix the problem:
\square fix it - but the problem may move to the root of the set
\square fix the root of the set

Erasing an Item from a B-Tree

\square Prototype:

- std::size_t erase(const Item\& target);
\square Post-Condition:
\square If target was in the set, then it has been removed from the set and the return value is 1.
\square Otherwise the set is unchanged and the return value is zero.

Erasing an Item from a B-Tree

- Similarly, after "loose erase", the root of a subset may just have MINIMUM -1 entries
- Solution: (p557-562)
\square Fix the shortage of the subset root - but this may move the problem to the root of the entire set
\square Fix the root of the entire set (tree)

Summary

\square A B-tree is a tree for sorting entries following the six rules
\square B-Tree is balanced - every leaf in a B-tree has the same depth
\square Adding, erasing and searching an item in a B-tree have worst-case time $\mathrm{O}(\log \mathrm{n})$, where n is the number of entries
\square However the implementation of adding and erasing an item in a B-tree is not a trivial task.

