
@ George Wolberg, 2020 1

CSC212

Data Structure

Lecture 15

B-Trees and the Set Class

Instructor: George Wolberg

Department of Computer Science

City College of New York

@ George Wolberg, 2020 2

Topics

Why B-Tree

The problem of an unbalanced tree

The B-Tree Rules

The Set Class ADT with B-Trees

Search for an Item in a B-Tree

Insert an Item in a B-Tree (*)

Remove a Item from a B-Tree (*)

@ George Wolberg, 2020 3

The problem of an unbalanced BST

Maximum depth of a BST with n entries: n-1

An Example:

Insert 1, 2, 3,4,5 in

that order into a bag

using a BST

Run BagTest!

1

2

3

4

5

@ George Wolberg, 2020 4

Worst-Case Times for BSTs

Adding, deleting or searching for an entry in

a BST with n entries is O(d) in the worst

case, where d is the depth of the BST

Since d is no more than n-1, the operations

in the worst case is (n-1).

Conclusion: the worst case time for the add,

delete or search operation of a BST is O(n)

@ George Wolberg, 2020 5

Solutions to the problem

Solution 1

Periodically balance the search tree

Project 10.9, page 516

Solution 2

A particular kind of tree : B-Tree

proposed by Bayer & McCreight in 1972

@ George Wolberg, 2020 6

The B-Tree Basics

Similar to a binary search tree (BST)

where the implementation requires the ability to
compare two entries via a less-than operator (<)

But a B-tree is NOT a BST – in fact it is not even
a binary tree

B-tree nodes have many (more than two) children

Another important property

each node contains more than just a single entry

Advantages:

Easy to search, and not too deep

@ George Wolberg, 2020 7

Applications: bag and set

The Difference

two or more equal entries can occur many times

in a bag, but not in a set

C++ STL: set and multiset (= bag)

The B-Tree Rules for a Set

We will look at a “set formulation” of the B-

Tree rules, but keep in mind that a “bag

formulation” is also possible

@ George Wolberg, 2020 8

The B-Tree Rules

The entries in a B-tree node

B-tree Rule 1: The root may have as few as
one entry (or 0 entry if no children); every other
node has at least MINIMUM entries

B-tree Rule 2: The maximum number of
entries in a node is 2* MINIMUM.

B-tree Rule 3: The entries of each B-tree node
are stored in a partially filled array, sorted from
the smallest to the largest.

@ George Wolberg, 2020 9

The B-Tree Rules (cont.)

The subtrees below a B-tree node

B-tree Rule 4: The number of the subtrees below

a non-leaf node with n entries is always n+1

B-tree Rule 5: For any non-leaf node:

(a). An entry at index i is greater than all the entries in

subtree number i of the node

(b) An entry at index i is less than all the entries in

subtree number i+1 of the node

@ George Wolberg, 2020 10

An Example of B-Tree

93 and 107

subtree

number 0 subtree

number 1

subtree

number 2

[0] [1]

each entry

< 93 each entry

 (93,107)

each entry

> 107

What kind traversal can print a sorted list?

@ George Wolberg, 2020 11

The B-Tree Rules (cont.)

A B-tree is balanced

B-tree Rule 6: Every leaf in a B-tree has the

same depth

This rule ensures that a B-tree is balanced

@ George Wolberg, 2020 12

Another Example, MINIMUM = 1

Can you verify that all 6 rules are satisfied?

2 and 4

6

7 and 8

9

10531

@ George Wolberg, 2020 13

The set ADT with a B-Tree

Combine fixed size

array with linked

nodes

data[]

*subset[]

number of entries

vary

data_count

up to 200!

number of children

vary

child_count

= data_count+1?

set.h (p 528-529) template <class Item>

class set

{

public:

... ...

bool insert(const Item& entry);

std::size_t erase(const Item& target);

std::size_t count(const Item& target) const;

private:

// MEMBER CONSTANTS

static const std::size_t MINIMUM = 200;

static const std::size_t MAXIMUM = 2 * MINIMUM;

// MEMBER VARIABLES

std::size_t data_count;

Item data[MAXIMUM+1]; // why +1? -for insert/erase

std::size_t child_count;

set *subset[MAXIMUM+2]; // why +2? - one more

};

set.html

@ George Wolberg, 2020 14

Invariant for the set Class

The entries of a set is stored in a B-tree, satisfying

the six B-tree rules.

The number of entries in a node is stored in

data_count, and the entries are stored in data[0]

through data[data_count-1]

The number of subtrees of a node is stored in

child_count, and the subtrees are pointed by set

pointers subset[0] through subset[child_count-1]

@ George Wolberg, 2020 15

Search for a Item in a B-Tree

Prototype:

std::size_t count(const Item& target) const;

Post-condition:

Returns the number of items equal to the target

(either 0 or 1 for a set).

@ George Wolberg, 2020 16

Searching for an Item: count

Start at the root.

1) locate i so that !(data[i]<target)

2) If (data[i] is target)

return 1;

else if (no children)

return 0;

else

return subset[i]->count (target);

19 and 22

6 and 17

2 and 3

4

25165 10

12

2018

search for 10: cout << count (10);

@ George Wolberg, 2020 17

Searching for an Item: count

Start at the root.

1) locate i so that !(data[i]<target)

2) If (data[i] is target)

return 1;

else if (no children)

return 0;

else

return subset[i]->count (target);

19 and 22

6 and 17

2 and 3

4

25165 10

12

2018

search for 10: cout << count (10);

i = 1

@ George Wolberg, 2020 18

Searching for an Item: count

Start at the root.

1) locate i so that !(data[i]<target)

2) If (data[i] is target)

return 1;

else if (no children)

return 0;

else

return subset[i]->count (target);

19 and 22

6 and 17

2 and 3

4

25165 10

12

2018

search for 10: cout << count (10);

i = 1

subset[1]

@ George Wolberg, 2020 19

Searching for an Item: count

Start at the root.

1) locate i so that !(data[i]<target)

2) If (data[i] is target)

return 1;

else if (no children)

return 0;

else

return subset[i]->count (target);

19 and 22

6 and 17

2 and 3

4

25165 10

12

2018

search for 10: cout << count (10);

i = 0

@ George Wolberg, 2020 20

Searching for an Item: count

Start at the root.

1) locate i so that !(data[i]<target)

2) If (data[i] is target)

return 1;

else if (no children)

return 0;

else

return subset[i]->count (target);

19 and 22

6 and 17

2 and 3

4

25165 10

12

2018

search for 10: cout << count (10);

i = 0

subset[0]

@ George Wolberg, 2020 21

Searching for an Item: count

Start at the root.

1) locate i so that !(data[i]<target)

2) If (data[i] is target)

return 1;

else if (no children)

return 0;

else

return subset[i]->count (target);

19 and 22

6 and 17

2 and 3

4

25165 10

12

2018

search for 10: cout << count (10);

i = 0

data[i] is target !

@ George Wolberg, 2020 22

Insert a Item into a B-Tree

Prototype:

bool insert(const Item& entry);

Post-condition:

If an equal entry was already in the set, the set
is unchanged and the return value is false.

Otherwise, entry was added to the set and the
return value is true.

@ George Wolberg, 2020 23

Insert an Item in a B-Tree

Start at the root.

1) locate i so that !(data[i]<entry)

2) If (data[i] is entry)

return false; // no work!

else if (no children)

insert entry at i;

return true;

else

return subset[i]->insert (entry);

19 and 22

6 and 17

2 and 3

4

25165 10

12

2018

insert (11);

i = 0

data[i] is target !

i = 0

i = 1

@ George Wolberg, 2020 24

Insert an Item in a B-Tree

Start at the root.

1) locate i so that !(data[i]<entry)

2) If (data[i] is entry)

return false; // no work!

else if (no children)

insert entry at i;

return true;

else

return subset[i]->insert (entry);

19 and 22

6 and 17

2 and 3

4

25165 10

12

2018

insert (11); // MIN = 1 -> MAX = 2

i = 1

data[0] < entry !

i = 0

i = 1

@ George Wolberg, 2020 25

Insert an Item in a B-Tree

Start at the root.

1) locate i so that !(data[i]<entry)

2) If (data[i] is entry)

return false; // no work!

else if (no children)

insert entry at i;

return true;

else

return subset[i]->insert (entry);

insert (11); // MIN = 1 -> MAX = 2

19 and 22

6 and 17

2 and 3

4

25165 10 & 11

12

2018

i = 1

put entry in data[1]

i = 0

i = 1

@ George Wolberg, 2020 26

Insert an Item in a B-Tree

Start at the root.

1) locate i so that !(data[i]<entry)

2) If (data[i] is entry)

return false; // no work!

else if (no children)

insert entry at i;

return true;

else

return subset[i]->insert (entry);

insert (1); // MIN = 1 -> MAX = 2

19 and 22

6 and 17

2 and 3

4

25165 10 & 11

12

2018

i = 0 => put entry in data[0]

i = 0

i = 0

@ George Wolberg, 2020 27

Insert an Item in a B-Tree

Start at the root.

1) locate i so that !(data[i]<entry)

2) If (data[i] is entry)

return false; // no work!

else if (no children)

insert entry at i;

return true;

else

return subset[i]->insert (entry);

insert (1); // MIN = 1 -> MAX = 2

a node has MAX+1 = 3 entries!

19 and 22

6 and 17

1, 2 and 3

4

25165 10 & 11

12

2018

i = 0

i = 0

i = 0

@ George Wolberg, 2020 28

Insert an Item in a B-Tree

Fix the node with MAX+1

entries

split the node into two

from the middle

move the middle entry

up

insert (1); // MIN = 1 -> MAX = 2

a node has MAX+1 = 3 entries!

19 and 22

6 and 17

1, 2 and 3

4

25165 10 & 11

12

2018

@ George Wolberg, 2020 29

Insert an Item in a B-Tree

Fix the node with MAX+1

entries

split the node into two

from the middle

move the middle entry

up

insert (1); // MIN = 1 -> MAX = 2

Note: This shall be done recursively... the recursive function

returns the middle entry to the root of the subset.

19 and 22

6 and 17

3

2 and 4

25165 10 & 11

12

20181

@ George Wolberg, 2020 30

Inserting an Item into a B-Tree

What if the node already has MAXIMUM
number of items?

Solution – loose insertion (p 551 – 557)

A loose insert may result in MAX +1 entries in the
root of a subset

Two steps to fix the problem:

fix it – but the problem may move to the root of the set

fix the root of the set

@ George Wolberg, 2020 31

Erasing an Item from a B-Tree

Prototype:

std::size_t erase(const Item& target);

Post-Condition:

If target was in the set, then it has been

removed from the set and the return value is 1.

Otherwise the set is unchanged and the return

value is zero.

@ George Wolberg, 2020 32

Erasing an Item from a B-Tree

Similarly, after “loose erase”, the root of a

subset may just have MINIMUM –1 entries

Solution: (p557 – 562)

Fix the shortage of the subset root – but this may

move the problem to the root of the entire set

Fix the root of the entire set (tree)

@ George Wolberg, 2020 33

Summary

A B-tree is a tree for sorting entries following the
six rules

B-Tree is balanced - every leaf in a B-tree has the
same depth

Adding, erasing and searching an item in a B-tree
have worst-case time O(log n), where n is the
number of entries

However the implementation of adding and
erasing an item in a B-tree is not a trivial task.

