
CSC212 

Data Structure 

Lecture 13

Trees and Tree Traversals

Instructor:  Prof. George Wolberg

Department of Computer Science 

City College of New York



Motivation

Linear structures

arrays

dynamic arrays

linked lists

Nonlinear Structures

trees - Hierarchical Structures

Graphs 

Why???



Application: Mailing Addresses

George Wolberg, CS Dept, CCNY, New York, NY 10031, USA

6 billion = 6,000,000,000 people in the world

What kind of structure is the best for a postman to locate me?

Array ?

Linked list ?

Tree ?



A Tree for all the mailing addresses

China

Earth

USA... ...Korea

NY
... ...

... ...

NYC

MA ... ...

CCNY

G. Wolberg

Albany

... ...
... ...

... ...

... ...

CS 



Chapter 10 introduces trees.

This presentation illustrates basic 

terminology for binary trees

and focuses on 

Complete Binary Trees: the 

simplest kind of trees

Binary Tree Traversals: any kind 

of binary trees

Trees and Binary Trees

Data Structures

and Other Objects

Using C++



Binary Trees

A binary tree has nodes, similar to nodes in a 

linked list structure.

Data of one sort or another may be stored at each 

node.

But it is the connections between the nodes which 

characterize a binary tree.



Binary Trees

A binary tree has nodes, similar to nodes in a 

linked list structure.

Data of one sort or another may be stored at each 

node.

But it is the connections between the nodes which 

characterize a binary tree.
An example can

illustrate how the

connections work



A Binary Tree of States

In this example, 

the data 

contained at 

each node is 

one of the 50 

states.

Washington

Colorado

Oklahoma

Arkansas

Mass.

N
e
w

H
a
m

p
s
h
ir

e

Arizona

Nebraska



A Binary Tree of States

Each tree has a 

special node 

called its root, 

usually drawn 

at the top.



A Binary Tree of States

Each tree has a 

special node 

called its root, 

usually drawn 

at the top. The example tree

has Washington

as its root.



A Binary Tree of States

Each node is 

permitted to 

have two links 

to other nodes, 

called the left 

child and the 

right child.



A Binary Tree of States

Each node is 

permitted to 

have two links 

to other nodes, 

called the left 

child and the 

right child.



A Binary Tree of States

Children are 

usually drawn 

below a node.

The right child of

Washington is

Colorado.

The left child of

Washington is

Arkansas.



A Binary Tree of States

Some nodes 

have only one 

child.

Arkansas has a

left child, but no

right child.



A Quiz

Some nodes 

have only one 

child.

Which node has

only a right child?



A Quiz

Some nodes 

have only one 

child.

Florida has

only a right child.



A Binary Tree of States

A node with no 

children is 

called a leaf.



A Binary Tree of States

Each node is 

called the 

parent of its 

children.

Washington is the

parent of Arkansas

and Colorado.



A Binary Tree of States

Two rules about parents:

The root has no 

parent.

Every other node 

has exactly one 

parent.



A Binary Tree of States

Two nodes with 

the same parent 

are called 

siblings.

Arkansas

and Colorado

are siblings.



Complete Binary Trees

A complete 

binary tree is a 

special kind of 

binary tree 

which will be 

useful to us.



Complete Binary Trees

A complete 

binary tree is a 

special kind of 

binary tree 

which will be 

useful to us. When a complete

binary tree is built,

its first node must be

the root.



Complete Binary Trees

The second node of a 

complete binary tree 

is always the left 

child of the root...



Complete Binary Trees

The second node of a 

complete binary tree 

is always the left 

child of the root...

... and the third node 

is always the right 

child of the root.



Complete Binary Trees

The next 

nodes must 

always fill 

the next level 

from left to 

right.



Complete Binary Trees

The next 

nodes must 

always fill 

the next level 

from left to 

right.



Complete Binary Trees

The next 

nodes must 

always fill 

the next level 

from left to 

right.



Complete Binary Trees

The next 

nodes must 

always fill 

the next level 

from left to 

right.



Complete Binary Trees

The next 

nodes must 

always fill 

the next level 

from left to 

right.



Complete Binary Trees

The next 

nodes must 

always fill 

the next level 

from left to 

right.



Is This Complete?



Is This Complete?



Is This Complete?



Is This Complete?



Is This Complete?

Yes!

It is called the empty 

tree, and it has no 

nodes, not even a root.



Full Binary Trees

A full binary 

tree is a 

special kind of 

complete 

binary tree

When a full

binary tree is built,

its first node must be

the root.

FULL



Full Binary Trees

The second node of a 

full binary tree is 

always the left child 

of the root... not FULL yet



Full Binary Trees

The second node of a 

full binary tree is 

always the left child 

of the root...

... and you MUST 

have the third node 

which always the right 

child of the root.

FULL



Full Binary Trees

The next 

nodes must 

always fill 

the next level 

from left to 

right.
not FULL yet



Full Binary Trees

The next 

nodes must 

always fill 

the next level 

from left to 

right.
not FULL yet



Full Binary Trees

The next 

nodes must 

always fill 

the next level 

from left to 

right.
not FULL yet



Full Binary Trees

The next 

nodes must 

always fill the 

next level 

from left to 

right...until 

every leaf has 

the same 

depth (2)

FULL!



Full Binary Trees

The next 

nodes must 

always fill 

the next level 

from left to 

right.



Full Binary Trees

The next 

nodes must 

always fill 

the next level 

from left to 

right.



Is This Full?



Is This Full?



Is This Full?



Is This Full?



Is This Full?

Yes!

It is called the empty 

tree, and it has no 

nodes, not even a root.



Implementing a Complete Binary 

Tree

We will store the data from the nodes 

in a partially-filled array.

An array of data
We don't care what's in

this part of the array.

An integer to keep

track of how many nodes are in the tree
3



Implementing a Complete Binary 

Tree Using an Array

We will store the date from the nodes 

in a partially-filled array.

An array of data
We don't care what's in

this part of the array.

An integer to keep

track of how many nodes are in the tree
3

Read Section 10.2 to

see details of how

the entries are stored.



Implementing a Complete Binary 

Tree Using an Array

Root is at component [0]

Parent of node in [i] is at [(i-1)/2) 

Children (if exist) of node [i] is at [2i+1] 

and [2i+2]

Total node number 

20+21+22+…+2d-1+r,  r <= 2d,  d is the depth



Binary trees contain nodes.

Each node may have a left child and a right child.

If you start from any node and move upward, you 

will eventually reach the root.

Every node except the root has one parent. The 

root has no parent.

Complete binary trees require the nodes to fill in 

each level from left-to-right before starting the 

next level.

Binary Tree Summary



A binary tree is a structure in which:

Each node can have at most two children, and 
in which a unique path exists from the root to 
every other node.

The two children of a node are called the    left 
child and the right child, if they exist.

Binary Tree  Basics



A Binary Tree Exercise

Q

V

T

K S

AE 

L



How many leaf nodes?

Q

V

T

K S

AE 

L



How many descendants of Q?

Q

V

T

K S

AE 

L



How many ancestors of K?

Q

V

T

K S

AE 

L

Question: How to implement a general binary tree ?



Implementing a Binary Tree with a 

Class for Nodes

Q

V

T

K S

AE 

L

Root



Binary Tree Nodes

Each node of a binary tree is stored in an 

object of a new binary_tree_node class that 

we are going to define

Each node contains data as well as pointers 

to its children (nodes)

An entire tree is represented as a pointer to 

the root node



binary_tree_node Class

variables

functions

template <class Item>

class binary_tree_node

{

public:

......

private:

Item data_field;

binary_tree_node *left_field;

binary_tree_node *right_field;

};

bintree

//retrievals
data
left
right
//set
set_data
set_left
set_right

//boolean

is_leaf

tree-ppt.html


Creating and Manipulating Trees

Consider only two functions

Clearing a tree

Return nodes of a tree to the heap

Copying a tree

The Implementation is easier than it seems 

if we use recursive thinking



Clearing a Tree

Q

V

T

K S

AE 

L

Root

Clear LEFT SUBTREE



Clearing a Tree

V

S

A

L

Root

Clear RIGHT SUBTREE



Clearing a Tree

VRoot

Return root node to the heap



Clearing a Tree

NULL Root

Set the root pointer to NULL



Clear a Tree

key: recursive thinking

template <class Item>

void tree_clear(binary_tree_node<Item>*& root_ptr)

// Library facilities used: cstdlib

{

if (root_ptr != NULL)

{

tree_clear( root_ptr->left( ) ); // clear left sub_tree

tree_clear( root_ptr->right( ) ); // clear right sub_tree

delete root_ptr;   // return root node to the heap

root_ptr = NULL; // set root pointer to the null

}

}

bintree

tree-ppt.html


Copy a Tree

Can you implement the copy?  (p 467)
template <class Item>

binary_tree_node<Item>* tree_copy(const binary_tree_node<Item>* root_ptr)

// Library facilities used: cstdlib

{

binary_tree_node<Item> *l_ptr;

binary_tree_node<Item> *r_ptr;

if (root_ptr == NULL)

return NULL;

else

{

l_ptr = tree_copy( root_ptr->left( ) ); // copy the left sub_tree

r_ptr = tree_copy( root_ptr->right( ) ); // copy the right sub_tree

return  

new binary_tree_node<Item>( root_ptr->data( ), l_ptr, r_ptr);

}  // copy the root node and set the the root pointer

}

bintree

tree-ppt.html


Binary Tree Traversals

pre-order traversal

root (left sub_tree) (right sub_tree)

in-order traversal

(left sub_tree) root (right sub_tree)

post-order traversal

(left sub_tree) (right sub_tree) root

backward in-order traversal

(right sub_tree) root (left sub_tree)

bintree

tree-ppt.html


Preorder Traversal:   J E A H T M Y

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’ ‘Y’

tree

Print left subtree second Print right subtree last

Print first



Preorder Traversal

Example: print the contents of each node

template <class Item>

void preorder_print(const binary_tree_node<Item>* node_ptr)

// Library facilities used: cstdlib, iostream

{

if (node_ptr != NULL)

{

std::cout <<  node_ptr->data( ) << std::endl;

preorder_print(node_ptr->left( ));

preorder_print(node_ptr->right( ));

}

}



Inorder Traversal:  A E H J M T Y

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’ ‘Y’

tree

Print left subtree first Print right subtree last

Print second



Inorder Traversal

Example: print the contents of each node

template <class Item>

void inorder_print(const binary_tree_node<Item>* node_ptr)

// Library facilities used: cstdlib, iostream

{

if (node_ptr != NULL)

{

inorder_print(node_ptr->left( ));

std::cout <<  node_ptr->data( ) << std::endl;

inorder_print(node_ptr->right( ));

}

}



‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’ ‘Y’

tree

Print left subtree first Print right subtree second

Print last

Postorder Traversal:  A H E M Y T J



Postorder Traversal

Example: print the contents of each node

template <class Item>

void postorder_print(const binary_tree_node<Item>* node_ptr)

// Library facilities used: cstdlib, iostream

{

if (node_ptr != NULL)

{

postorder_print(node_ptr->left( ));

postorder_print(node_ptr->right( ));

std::cout <<  node_ptr->data( ) << std::endl;

}

}



Backward Inorder Traversal:

Y T M J H E A

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’ ‘Y’

tree

Print right subtree firstPrint left subtree last

Print second



Backward Inorder Traversal:

Y T M J H E A

Print right subtree first

Print left subtree last

Print second



A Useful Backward

Inorder Traversal

Indent each number according its depth

template <class Item, class SizeType>

void print(binary_tree_node<Item>* node_ptr, SizeType depth)

// Library facilities used: iomanip, iostream, stdlib

{

if (node_ptr != NULL)

{

print(node_ptr->right( ), depth+1);

std::cout << std::setw(4*depth) << ""; // Indent 4*depth spaces.

std::cout << node_ptr->data( ) << std::endl;

print(node_ptr->left( ),  depth+1);

}

}    

bintree

tree-ppt.html


A Challenging Question:

For the traversals we have seen, the “processing” 
was simply printing the values of the node

But we’d like to do any kind of processing

We can replace “cout” with some other form of 
“processing” 

But how about 1000 kinds?

Can template be helpful?

Solution::::::::> (pages 501 – 507)



A parameter can be a function

write one function capable of doing anything

A parameter to a function may be a function. Such 
a parameter is declared by 

the name of the function’s return type (or void), 

then the name of the parameter (i.e. the function), 

and finally a pair of parentheses (). 

Inside () is a list of parameter types of that parameter 
function

Example

int sum ( void f (int&, double), int i,...);



Preorder Traversal – print only

Example: print the contents of each node

template <class Item>

void preorder_print(const binary_tree_node<Item>* node_ptr)

// Library facilities used: cstdlib, iostream

{

if (node_ptr != NULL)

{

std::cout <<  node_ptr->data( ) << std::endl;

preorder_print(node_ptr->left( ));

preorder_print(node_ptr->right( ));

}

}



Preorder Traversal – general form

A template function for tree traversals

template <class Item>

void preorder(void f(Item&), binary_tree_node<Item>*  node_ptr)

// Library facilities used: cstdlib

{

if (node_ptr != NULL)

{

f( node_ptr->data( ) ); // node_ptr->data() return reference !

preorder(f, node_ptr->left( ));

preorder(f, node_ptr->right( ));

}

}



Preorder Traversal – how to use

Define a real function before calling

void printout(int & it)

// Library facilities used: iostream

{

std::cout <<  it << std::endl;

}

Can you print out all the node of a tree pointed by root ?

binary_tree_node<int> *root; 

....

preorder(printout, root); Yes!!!



Preorder Traversal – another functions

Can define other functions...

void assign_default(int& it)

// Library facilities used: iostream

{

it  = 0;

}  // unfortunately template does not work here for function parameters

You can assign a default value to all the node of a tree pointed by root:

binary_tree_node<int> *root; 

....

preorder(assign_default, root);



Preorder Traversal – how to use

Can the function-arguments be template?

template <class Item>

void printout(Item& it)

// Library facilities used: iostream

{

std::cout <<  it << std::endl;

}

Can you print out all the nodes of a tree pointed by root ?

binary_tree_node<string> *root; 

....

preorder(print_out, root); X ! print_out should have real types 



Preorder Traversal – how to use

The function-arguments may be template if...

template <class Item>

void printout(Item& it)

// Library facilities used: iostream

{

std::cout <<  it << std::endl;

}

Can you print out all the node of a tree pointed by root ?

binary_tree_node<string> *root; 

....

preorder(print_out<string>, root);

But you may do the 

instantiation like this



Preorder Traversal 

– a more general form

An extremely general implementation (p 505)
template <class Process, class BTNode>

void preorder(Process f, BTNode* node_ptr)

//     Note: BTNode may be a binary_tree_node or a const binary tree node.

//     Process is the type of a function f that may be called with a single

//     Item argument (using the Item type from the node),

//     as determined by the actual f in the following.

// Library facilities used: cstdlib

{

if (node_ptr != NULL)

{

f( node_ptr->data( ) );

preorder(f, node_ptr->left( ));

preorder(f, node_ptr->right( ));

}

}

bintree

tree-ppt.html


Functions as Parameters

We can define a template function X with functions as 

parameters – which are called function parameters

A function parameter can be simply written as Process f ( 

where Process is a template), and the forms and number of 

parameters for f are determined by the actual call of f 

inside the template function X 

The real function argument for f when calling the the 

template function X cannot be a template function, it must 

be instantiated in advance or right in the function call



Summary

Tree, Binary Tree, Complete Binary Tree

child, parent, sibling, root, leaf, ancestor,...

Array Representation for Complete Binary Tree

Difficult if not complete binary tree

A Class of binary_tree_node

each node with two link fields 

Tree Traversals 

recursive thinking makes things much easier

A general Tree Traversal 

A Function as a parameter of another function



THE  END

Presentation copyright 1997 Addison Wesley Longman,

For use with Data Structures and Other Objects Using C++

by Michael Main and Walter Savitch.

Some artwork in the presentation is used with permission from Presentation Task Force

(copyright New Vision Technologies Inc) and Corel Gallery Clipart Catalog (copyright

Corel Corporation, 3G Graphics Inc, Archive Arts, Cartesia Software, Image Club

Graphics Inc, One Mile Up Inc, TechPool Studios, Totem Graphics Inc).

Students and instructors who use Data Structures and Other Objects  Using C++ are welcome

to use this presentation however they see fit, so long as this copyright notice remains

intact.

Copyright from slide 2 – slide 49:


