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Outline of This Lecture

p Recursive Thinking: General Form

p recursive calls and stopping cases

p Infinite Recursion 

p runs forever 

p One Level Recursion 

p guarantees to have no infinite recursion

p How to Ensure No Infinite Recursion

p if a function has multi level recursion

p Inductive Reasoning about Correctness

p using mathematical induction principle



Recursive Thinking: General Form

p Recursive Calls 

p Suppose a problem has one or more cases in which 

some of the subtasks are simpler versions of the 

original problem. These subtasks can be solved by 

recursive calls

p Stopping Cases /Base Cases

p A function that makes recursive calls must have one or 

more cases in which the entire computation is fulfilled 

without recursion. These cases are called stopping cases 

or base cases



Infinite Recursion 

p In all our examples, the series of recursive 
calls eventually reached a stopping case, i.e. 
a call that did not involve further recursion 

p If every recursive call produce another 
recursive call, then the recursion is an 
infinite recursion that will, in theory, run 
forever.

p Can you write one? 



Example: power (x,n) = xn

p Rules:

p power(3.0,2) = 3.02 = 9.0

p power(4.0, 3) = 4.03 = 64.0

p power(x, 0) = x0 = 1  if x != 0

p x-n = 1/ xn   where x<>0,  n > 0 

p power(3.0, -2) = 3.0-2 = 1/3.02= 1/9

p 0n 

p = 0 if n > 0

p invalid if n<=0  (and x == 0) 



ipower(x, n): Infinite Recursion

double ipower(double x, int n)

// Library facilities used: cassert

{

if (x == 0) 

assert(n > 0); //precondition

if (n >= 0)

{

return ipower(x,n); // postcondition 1

}

else

{

return 1/ipower(x, -n); // postcondition 2

}

}

Computes powers of the form xn



ipower(x, n): Infinite Recursion

double ipower(double x, int n)

// Library facilities used: cassert

{

if (x == 0) 

assert(n > 0); //precondition

if (n >= 0)

{

return ipower(x,n); // need to be developed into a stopping case

}

else

{

return 1/ipower(x, -n); // recursive call

}

}

Computes powers of the form xn

double product =1;

for (int i = 1; i<=n; ++i) 

product *= x;

return product;



power(x, n): One Level Recursion

double power(double x, int n)

// Library facilities used: cassert

{

double product; // The product of x with itself n times

int count;

if (x == 0) assert(n > 0);

if (n >= 0)  // stopping case

{

product = 1;

for (count = 1; count <= n; count++)

product = product * x;

return product;

}

else // recursive call

return 1/power(x, -n);

}

Computes powers of the form xn



One Level Recursion

p First general technique for reasoning about 

recursion:

p Suppose that every case is either a stopping 

case or it makes a recursive call that is a 

stopping case. Then the deepest recursive call is 

only one level deep, and no infinite recursion 

occurs.



Multi-Level Recursion

p In general recursive calls don’t stop at just one 

level deep – a recursive call does not need to reach 

a stopping case immediately.

p In the last lecture, we have shown two examples 

with multiple level recursions

p As an example to show that there is no infinite 

recursion, we are going to re-write the power

function – use a new function name pow



power(x, n) =>  pow(x,n)

double power(double x, int n)

// Library facilities used: cassert

{

double product; // The product of x with itself n times

int count;

if (x == 0) assert(n > 0);

if (n >= 0)  // stopping case

{

product = 1;

for (count = 1; count <= n; count++)

product = product * x;

return product;

}

else // recursive call

return 1/power(x, -n);

}

Computes powers of the form xn

change this into a 
recursive call based on 
the observation

xn=x xn-1 if n>0



pow (x, n): Alternate Implementation

double pow(double x, int n)

// Library facilities used: cassert

{

if (x == 0)

{   // x is zero, and n should be positive

assert(n > 0);

return 0;

}

else if (n == 0)

return 1;

else if (n > 0)

return x * pow(x, n-1);

else // x is nonzero, and n is negative

return 1/pow(x, -n);

}

Computes powers of the form xn

All of the cases:

x         n        xn

=0        <0   undefined

=0        =0   undefined

=0        > 0    0

!=0       < 0    1/x-n

!=0       = 0     1

!=0       > 0    x*xn-1



How to ensure NO Infinite Recursion 

p when the recursive calls go beyond one level deep

p You can ensure that a stopping case is eventually 

reached by defining a numeric quantity called 

variant expression - without really tracing 

through the execution

p This quantity must associate each legal recursive 

call to a single number, which changes for each 

call and eventually satisfies the condition to go to 

the stopping case



Variant Expression for pow

p The variant expression is abs(n)+1 when n is 

negative and

p the variant expression is n when n is positive

p A sequence of recursion call

p pow(2.0, -3) has a variant expression abs(n)+1, 

which is 4; it makes a recursive call of pow(2.0, 3)



Variant Expression for pow

p The variant expression is abs(n)+1 when n is 

negative and

p the variant expression is n when n is positive

p A sequence of recursion call

p pow(2.0, 3) has a variant expression n, 

which is 3; it makes a recursive call of pow(2.0, 2)



Variant Expression for pow

p The variant expression is abs(n)+1 when n is 

negative and

p the variant expression is n when n is positive

p A sequence of recursion call

p pow(2.0, 2) has a variant expression n, 

which is 2; it makes a recursive call of pow(2.0, 1)



Variant Expression for pow

p The variant expression is abs(n)+1 when n is 

negative and

p the variant expression is n when n is positive

p A sequence of recursion call

p pow(2.0, 1) has a variant expression n, 

which is 1; it makes a recursive call of pow(2.0, 0)



Variant Expression for pow

p The variant expression is abs(n)+1 when n is 

negative and

p the variant expression is n when n is positive

p A sequence of recursion call

p pow(2.0, 0) has a variant expression n, 

which is 0; this is the stopping case.



Ensuring NO Infinite Recursion

p It is enough to find a variant expression and a 
threshold with the following properties (p446):

p Between one call of the function and any succeeding 
recursive call of that function, the value of the variant 
expression decreases by at least some fixed amount.

p What is that fixed amount of pow(x,n)?

p If the function is called and the value of the variant 
expression is less than or equal to the threshold, then 
the function terminates without making any recursive 
call

p What is the threshold of pow(x,n)

p Is this general enough?  



Reasoning about the Correctness

p First show NO infinite recursion then show the 

following two conditions are also valid:

p Whenever the function makes no recursive calls, show 

that it meets its pre/post-condition contract (BASE 

STEP)

p Whenever the function is called, by assuming all the 

recursive calls it makes meet their pre-post condition 

contracts, show that the original call will also meet its 

pre/post contract (INDUCTION STEP)



Summary of 

Reason about Recursion

p First check the function always terminates 
(not infinite recursion)

p next make sure that the stopping cases work 
correctly

p finally, for each recursive case, pretending 
that you know the recursive calls will work 
correctly, use this to show that the recursive 
case works correctly



Reading, Exercises and Assignment

p Reading 

p Section 9.3

p Self-Test Exercises

p 13-17

p Assignment online

p four recursive functions

p Exam

p Come to class for reviews and discussions


