
CSC212

Data Structure

Lecture 12

Reasoning about Recursion

Instructor: George Wolberg

Department of Computer Science

City College of New York

Outline of This Lecture

p Recursive Thinking: General Form

p recursive calls and stopping cases

p Infinite Recursion

p runs forever

p One Level Recursion

p guarantees to have no infinite recursion

p How to Ensure No Infinite Recursion

p if a function has multi level recursion

p Inductive Reasoning about Correctness

p using mathematical induction principle

Recursive Thinking: General Form

p Recursive Calls

p Suppose a problem has one or more cases in which

some of the subtasks are simpler versions of the

original problem. These subtasks can be solved by

recursive calls

p Stopping Cases /Base Cases

p A function that makes recursive calls must have one or

more cases in which the entire computation is fulfilled

without recursion. These cases are called stopping cases

or base cases

Infinite Recursion

p In all our examples, the series of recursive
calls eventually reached a stopping case, i.e.
a call that did not involve further recursion

p If every recursive call produce another
recursive call, then the recursion is an
infinite recursion that will, in theory, run
forever.

p Can you write one?

Example: power (x,n) = xn

p Rules:

p power(3.0,2) = 3.02 = 9.0

p power(4.0, 3) = 4.03 = 64.0

p power(x, 0) = x0 = 1 if x != 0

p x-n = 1/ xn where x<>0, n > 0

p power(3.0, -2) = 3.0-2 = 1/3.02= 1/9

p 0n

p = 0 if n > 0

p invalid if n<=0 (and x == 0)

ipower(x, n): Infinite Recursion

double ipower(double x, int n)

// Library facilities used: cassert

{

if (x == 0)

assert(n > 0); //precondition

if (n >= 0)

{

return ipower(x,n); // postcondition 1

}

else

{

return 1/ipower(x, -n); // postcondition 2

}

}

Computes powers of the form xn

ipower(x, n): Infinite Recursion

double ipower(double x, int n)

// Library facilities used: cassert

{

if (x == 0)

assert(n > 0); //precondition

if (n >= 0)

{

return ipower(x,n); // need to be developed into a stopping case

}

else

{

return 1/ipower(x, -n); // recursive call

}

}

Computes powers of the form xn

double product =1;

for (int i = 1; i<=n; ++i)

product *= x;

return product;

power(x, n): One Level Recursion

double power(double x, int n)

// Library facilities used: cassert

{

double product; // The product of x with itself n times

int count;

if (x == 0) assert(n > 0);

if (n >= 0) // stopping case

{

product = 1;

for (count = 1; count <= n; count++)

product = product * x;

return product;

}

else // recursive call

return 1/power(x, -n);

}

Computes powers of the form xn

One Level Recursion

p First general technique for reasoning about

recursion:

p Suppose that every case is either a stopping

case or it makes a recursive call that is a

stopping case. Then the deepest recursive call is

only one level deep, and no infinite recursion

occurs.

Multi-Level Recursion

p In general recursive calls don’t stop at just one

level deep – a recursive call does not need to reach

a stopping case immediately.

p In the last lecture, we have shown two examples

with multiple level recursions

p As an example to show that there is no infinite

recursion, we are going to re-write the power

function – use a new function name pow

power(x, n) => pow(x,n)

double power(double x, int n)

// Library facilities used: cassert

{

double product; // The product of x with itself n times

int count;

if (x == 0) assert(n > 0);

if (n >= 0) // stopping case

{

product = 1;

for (count = 1; count <= n; count++)

product = product * x;

return product;

}

else // recursive call

return 1/power(x, -n);

}

Computes powers of the form xn

change this into a
recursive call based on
the observation

xn=x xn-1 if n>0

pow (x, n): Alternate Implementation

double pow(double x, int n)

// Library facilities used: cassert

{

if (x == 0)

{ // x is zero, and n should be positive

assert(n > 0);

return 0;

}

else if (n == 0)

return 1;

else if (n > 0)

return x * pow(x, n-1);

else // x is nonzero, and n is negative

return 1/pow(x, -n);

}

Computes powers of the form xn

All of the cases:

x n xn

=0 <0 undefined

=0 =0 undefined

=0 > 0 0

!=0 < 0 1/x-n

!=0 = 0 1

!=0 > 0 x*xn-1

How to ensure NO Infinite Recursion

p when the recursive calls go beyond one level deep

p You can ensure that a stopping case is eventually

reached by defining a numeric quantity called

variant expression - without really tracing

through the execution

p This quantity must associate each legal recursive

call to a single number, which changes for each

call and eventually satisfies the condition to go to

the stopping case

Variant Expression for pow

p The variant expression is abs(n)+1 when n is

negative and

p the variant expression is n when n is positive

p A sequence of recursion call

p pow(2.0, -3) has a variant expression abs(n)+1,

which is 4; it makes a recursive call of pow(2.0, 3)

Variant Expression for pow

p The variant expression is abs(n)+1 when n is

negative and

p the variant expression is n when n is positive

p A sequence of recursion call

p pow(2.0, 3) has a variant expression n,

which is 3; it makes a recursive call of pow(2.0, 2)

Variant Expression for pow

p The variant expression is abs(n)+1 when n is

negative and

p the variant expression is n when n is positive

p A sequence of recursion call

p pow(2.0, 2) has a variant expression n,

which is 2; it makes a recursive call of pow(2.0, 1)

Variant Expression for pow

p The variant expression is abs(n)+1 when n is

negative and

p the variant expression is n when n is positive

p A sequence of recursion call

p pow(2.0, 1) has a variant expression n,

which is 1; it makes a recursive call of pow(2.0, 0)

Variant Expression for pow

p The variant expression is abs(n)+1 when n is

negative and

p the variant expression is n when n is positive

p A sequence of recursion call

p pow(2.0, 0) has a variant expression n,

which is 0; this is the stopping case.

Ensuring NO Infinite Recursion

p It is enough to find a variant expression and a
threshold with the following properties (p446):

p Between one call of the function and any succeeding
recursive call of that function, the value of the variant
expression decreases by at least some fixed amount.

p What is that fixed amount of pow(x,n)?

p If the function is called and the value of the variant
expression is less than or equal to the threshold, then
the function terminates without making any recursive
call

p What is the threshold of pow(x,n)

p Is this general enough?

Reasoning about the Correctness

p First show NO infinite recursion then show the

following two conditions are also valid:

p Whenever the function makes no recursive calls, show

that it meets its pre/post-condition contract (BASE

STEP)

p Whenever the function is called, by assuming all the

recursive calls it makes meet their pre-post condition

contracts, show that the original call will also meet its

pre/post contract (INDUCTION STEP)

Summary of

Reason about Recursion

p First check the function always terminates
(not infinite recursion)

p next make sure that the stopping cases work
correctly

p finally, for each recursive case, pretending
that you know the recursive calls will work
correctly, use this to show that the recursive
case works correctly

Reading, Exercises and Assignment

p Reading

p Section 9.3

p Self-Test Exercises

p 13-17

p Assignment online

p four recursive functions

p Exam

p Come to class for reviews and discussions

