Lecture 12
 Reasoning about Recursion

Instructor: George Wolberg Department of Computer Science City College of New York

Outline of This Lecture

\square Recursive Thinking: General Form
\square recursive calls and stopping cases
\square Infinite Recursion
\square runs forever
\square One Level Recursion
\square guarantees to have no infinite recursion
\square How to Ensure No Infinite Recursion
\square if a function has multi level recursion
\square Inductive Reasoning about Correctness
\square using mathematical induction principle

Recursive Thinking: General Form

\square Recursive Calls
\square Suppose a problem has one or more cases in which some of the subtasks are simpler versions of the original problem. These subtasks can be solved by recursive calls
\square Stopping Cases /Base Cases
\square A function that makes recursive calls must have one or more cases in which the entire computation is fulfilled without recursion. These cases are called stopping cases or base cases

Infinite Recursion

\square In all our examples, the series of recursive calls eventually reached a stopping case, i.e. a call that did not involve further recursion
\square If every recursive call produce another recursive call, then the recursion is an infinite recursion that will, in theory, run forever.
\square Can you write one?

Example: power $(\mathrm{x}, \mathrm{n})=\mathrm{x}^{\mathrm{n}}$

\square Rules:
\square power $(3.0,2)=3.0^{2}=9.0$
\square power $(4.0,3)=4.0^{3}=64.0$
$\square \operatorname{power}(\mathrm{x}, 0)=\mathrm{x}^{0}=1$ if $\mathrm{x}!=0$
$\square \mathrm{x}^{-\mathrm{n}}=1 / \mathrm{x}^{\mathrm{n}}$ where $\mathrm{x}<>0, \mathrm{n}>0$
$\neg \operatorname{power}(3.0,-2)=3.0^{-2}=1 / 3.0^{2}=1 / 9$
$\square 0{ }^{\mathrm{n}}$
$\square=0$ if $n>0$
\square invalid if $\mathrm{n}<=0$ (and $\mathrm{x}==0$)

ipower(x, n): Infinite Recursion

Computes powers of the form x^{n}

```
double ipower(double x, int n)
// Library facilities used: cassert
    {
    if ( }\textrm{x}==0\mathrm{ )
        assert(n > 0); //precondition
    if (n>=0)
    {
        return ipower(x,n); // postcondition 1
    }
    else
    {
        return 1/ipower(x, -n); // postcondition 2
    }
}
```


ipower(x, n): Infinite Recursion

Computes powers of the form x^{n}

double ipower(double x, int n)
// Library facilities used: cassert
\{
if ($x==0$)
assert(n > 0); //precondition
if $(\mathrm{n}>=0)$
\{
return ipower(x,n); // need to be developed into a stopping case
\}
else
\{
return 1/ipower(x, -n); // recursive call
\}
\}

power(x, n): One Level Recursion

Computes powers of the form x^{n}

double power(double x, int n)
// Library facilities used: cassert
\{
double product; // The product of x with itself n times
int count;
if $(x==0)$ assert $(\mathrm{n}>0)$;
if $(\mathrm{n}>=0)$ // stopping case
\{
product = 1;
for (count $=1$; count $<=\mathrm{n}$; count++)
product $=$ product ${ }^{*} x$;
return product;
\square
else // recursive call
return 1/power(x, -n);

One Level Recursion

\square First general technique for reasoning about recursion:
\square Suppose that every case is either a stopping case or it makes a recursive call that is a stopping case. Then the deepest recursive call is only one level deep, and no infinite recursion occurs.

Multi-Level Recursion

\square In general recursive calls don't stop at just one level deep - a recursive call does not need to reach a stopping case immediately.
\square In the last lecture, we have shown two examples with multiple level recursions
\square As an example to show that there is no infinite recursion, we are going to re-write the power function - use a new function name pow

$\operatorname{power}(\mathrm{x}, \mathrm{n})=>\operatorname{pow}(\mathrm{x}, \mathrm{n})$

Computes powers of the form x^{n}

double power(double x, int n)
// Library facilities used: cassert
\{
double product; // The product of x with itself n times
int count;
if $(x==0)$ assert $(\mathrm{n}>0)$;
if $(\mathrm{n}>=0)$ // stopping case
\{
product = 1;
for (count $=1$; count $<=\mathrm{n}$; count++)
product $=$ product * x;

```
change this into a
recursive call based on
the observation
```

return product;
\}
else // recursive call
return 1/power(x, -n);
$\}$

pow (x, n): Alternate Implementation

Computes powers of the form x^{n}

double pow(double x, int n)
// Library facilities used: cassert
\{
if $(x==0)$
\{ // x is zero, and n should be positive assert($\mathrm{n}>0$); return 0;
\}
else if ($\mathrm{n}==0$) return 1 ;
else if $(n>0)$ return x * $\operatorname{pow}(x, n-1)$;
else // x is nonzero, and n is negative return 1/pow(x, -n);

All of the cases:		
X	n	X^{n}
$=0$	<0	undefined
$=0$	$=0$	undefined
$=0$	>0	0
$!=0$	<0	$1 / x^{-n}$
$!=0$	$=0$	1
$!=0$	>0	$\mathrm{X}^{*} \mathrm{X}^{\mathrm{n}-1}$

How to ensure NO Infinite Recursion

\square when the recursive calls go beyond one level deep
\square You can ensure that a stopping case is eventually reached by defining a numeric quantity called variant expression - without really tracing through the execution
\square This quantity must associate each legal recursive call to a single number, which changes for each call and eventually satisfies the condition to go to the stopping case

Variant Expression for pow

\square The variant expression is abs $(\mathrm{n})+1$ when n is negative and
\square the variant expression is n when n is positive
\square A sequence of recursion call
\square pow $(2.0,-3)$ has a variant expression abs(n) +1 , which is 4 ; it makes a recursive call of pow $(2.0,3)$

Variant Expression for pow

\square The variant expression is abs $(\mathrm{n})+1$ when n is negative and
\square the variant expression is n when n is positive
\square A sequence of recursion call
\square pow(2.0, 3) has a variant expression n, which is 3 ; it makes a recursive call of pow $(2.0,2)$

Variant Expression for pow

\square The variant expression is abs $(\mathrm{n})+1$ when n is negative and
\square the variant expression is n when n is positive
\square A sequence of recursion call
\square pow(2.0, 2) has a variant expression n, which is 2 ; it makes a recursive call of pow $(2.0,1)$

Variant Expression for pow

\square The variant expression is abs $(\mathrm{n})+1$ when n is negative and
\square the variant expression is n when n is positive
\square A sequence of recursion call
\square pow(2.0, 1) has a variant expression n, which is 1 ; it makes a recursive call of pow $(2.0,0)$

Variant Expression for pow

\square The variant expression is abs $(\mathrm{n})+1$ when n is negative and
\square the variant expression is n when n is positive
\square A sequence of recursion call
\square pow(2.0, 0) has a variant expression n, which is 0 ; this is the stopping case.

Ensuring NO Infinite Recursion

\square It is enough to find a variant expression and a threshold with the following properties (p446):
\square Between one call of the function and any succeeding recursive call of that function, the value of the variant expression decreases by at least some fixed amount.
\square What is that fixed amount of pow(x, n)?
\square If the function is called and the value of the variant expression is less than or equal to the threshold, then the function terminates without making any recursive call
\square What is the threshold of pow (x, n)
\square Is this general enough?

Reasoning about the Correctness

\square First show NO infinite recursion then show the following two conditions are also valid:
\square Whenever the function makes no recursive calls, show that it meets its pre/post-condition contract (BASE STEP)
\square Whenever the function is called, by assuming all the recursive calls it makes meet their pre-post condition contracts, show that the original call will also meet its pre/post contract (INDUCTION STEP)

Summary of
 Reason about Recursion

\square First check the function always terminates (not infinite recursion)
\square next make sure that the stopping cases work correctly
\square finally, for each recursive case, pretending that you know the recursive calls will work correctly, use this to show that the recursive case works correctly

Reading, Exercises and Assignment

\square Reading
\square Section 9.3
\square Self-Test Exercises

- 13-17
\square Assignment online
\square four recursive functions
\square Exam
\square Come to class for reviews and discussions

