
CSC212

Data Structure

Lecture 10

Stacks and Queues

Instructor: George Wolberg

Department of Computer Science

City College of New York

Topics

Stacks (Chapter 7)

Queues (Chapter 8, Section1 - 3)

Priority Queues (Chapter 8, Section 4)

References Return Values (Chapter 8, Section 5)

Stacks and the STL stack

Definition

A stack is a data structure of ordered entries

such that entries can be inserted and removed at

only one end (call the top)

LIFO

A stack is a Last-In/First-Out data structure.

Entries are taken out of the stack in the reverse

order of their insertion

C

push in : CHAD

pop out :

Stacks and the STL stack

Definition

A stack is a data structure of ordered entries

such that entries can be inserted and removed at

only one end (call the top)

LIFO

A stack is a Last-In/First-Out data structure.

Entries are taken out of the stack in the reverse

order of their insertion

CH

push in : CHAD

pop out :

Stacks and the STL stack

Definition

A stack is a data structure of ordered entries

such that entries can be inserted and removed at

only one end (call the top)

LIFO

A stack is a Last-In/First-Out data structure.

Entries are taken out of the stack in the reverse

order of their insertion

CHA

push in : CHAD

pop out :

Stacks and the STL stack

Definition

A stack is a data structure of ordered entries

such that entries can be inserted and removed at

only one end (call the top)

LIFO

A stack is a Last-In/First-Out data structure.

Entries are taken out of the stack in the reverse

order of their insertion

CHAD

push in : CHAD

pop out :

Stacks and the STL stack

Definition

A stack is a data structure of ordered entries

such that entries can be inserted and removed at

only one end (call the top)

LIFO

A stack is a Last-In/First-Out data structure.

Entries are taken out of the stack in the reverse

order of their insertion

CHA

push in : CHAD

pop out :D

Stacks and the STL stack

Definition

A stack is a data structure of ordered entries

such that entries can be inserted and removed at

only one end (call the top)

LIFO

A stack is a Last-In/First-Out data structure.

Entries are taken out of the stack in the reverse

order of their insertion

CH

push in : CHAD

pop out :DA

Stacks and the STL stack

Definition

A stack is a data structure of ordered entries

such that entries can be inserted and removed at

only one end (call the top)

LIFO

A stack is a Last-In/First-Out data structure.

Entries are taken out of the stack in the reverse

order of their insertion

C

push in : CHAD

pop out : DAH

Stacks and the STL stack

Definition

A stack is a data structure of ordered entries

such that entries can be inserted and removed at

only one end (call the top)

LIFO

A stack is a Last-In/First-Out data structure.

Entries are taken out of the stack in the reverse

order of their insertion
push in : CHAD

pop out : DAHC

Stacks and the STL stack

The STL stack class

a container class – holding many items

a template class – stack of integers, strings, ...

How to use

#include <stack>

stack<int> s1;

Implementation it ourselves! (stack code)

fixed-size or dynamic array, or linked list?

STL typically uses dynamic array

Functions: push, pop, empty, size , top

stack-ppt.html

Queues and the STL queue

Definition

A queue is a data structure of ordered entries such that

entries can only be inserted at one end (call the rear)

and removed at the other end (call the front) – and the

entry at the front of the queue is called the first entry

FIFO

A queue is a First-In/First-Out data structure. Entries

are taken out of the queue in the same order that they

were put into the queue

DAHCput in : CHAD take out : CHAD

Queues and the STL queue

Definition

A queue is a data structure of ordered entries such that

entries can only be inserted at one end (call the rear)

and removed at the other end (call the front) – and the

entry at the front of the queue is called the first entry

FIFO

A queue is a First-In/First-Out data structure. Entries

are taken out of the queue in the same order that they

were put into the queue

DAHCput in : CHAD take out : CHAD

Queues and the STL queue

Definition

A queue is a data structure of ordered entries such that

entries can only be inserted at one end (call the rear)

and removed at the other end (call the front) – and the

entry at the front of the queue is called the first entry

FIFO

A queue is a First-In/First-Out data structure. Entries

are taken out of the queue in the same order that they

were put into the queue

DAHCput in : CHAD take out : CHAD

Queues and the STL queue

Definition

A queue is a data structure of ordered entries such that

entries can only be inserted at one end (call the rear)

and removed at the other end (call the front) – and the

entry at the front of the queue is called the first entry

FIFO

A queue is a First-In/First-Out data structure. Entries

are taken out of the queue in the same order that they

were put into the queue

DAHCput in : CHAD take out : CHAD

Queues and the STL queue

Definition

A queue is a data structure of ordered entries such that

entries can only be inserted at one end (call the rear)

and removed at the other end (call the front) – and the

entry at the front of the queue is called the first entry

FIFO

A queue is a First-In/First-Out data structure. Entries

are taken out of the queue in the same order that they

were put into the queue

DAHCput in : CHAD take out : CHAD

Queues and the STL queue

Definition

A queue is a data structure of ordered entries such that

entries can only be inserted at one end (call the rear)

and removed at the other end (call the front) – and the

entry at the front of the queue is called the first entry

FIFO

A queue is a First-In/First-Out data structure. Entries

are taken out of the queue in the same order that they

were put into the queue

DAHCput in : CHAD take out : CHAD

Queues and the STL queue

Definition

A queue is a data structure of ordered entries such that

entries can only be inserted at one end (call the rear)

and removed at the other end (call the front) – and the

entry at the front of the queue is called the first entry

FIFO

A queue is a First-In/First-Out data structure. Entries

are taken out of the queue in the same order that they

were put into the queue

DAHCput in : CHAD take out : CHAD

Queues and the STL queue

Definition

A queue is a data structure of ordered entries such that

entries can only be inserted at one end (call the rear)

and removed at the other end (call the front) – and the

entry at the front of the queue is called the first entry

FIFO

A queue is a First-In/First-Out data structure. Entries

are taken out of the queue in the same order that they

were put into the queue

DAHCput in : CHAD take out : CHAD

Queues and the STL queue

The STL queue class

a container class – holding many items

a template class – queue of integers, strings, ...

How to use

#include <queue>

queue<char> q1;

Implementation it ourselves! (queue code)

fixed-size or dynamic array, or linked list?

STL typically uses dynamic array

Functions: push, pop, empty, size, front

queue-ppt.html

Priority Queues

A priority queue is a container class that allows
entries to be retrieved according to some specified
priority levels.

The highest priority entry is removed first

Entries with equal priority can be removed according
some criterion e.g. FIFO as an queue.

STL priority_queue<Item> template class

#include <queue>

priority_queue<int> q2;

Functions push, pop, empty, size , top (not front!)

Several ways to specify priority (p. 411)

Reference Return Values for the
stack, queue, and priority queue classes

In STL, the top (for stack) and front (for queue)
functions have reference return values, e.g. in
stack class definition:

Item& top ();

const Item& top() const;

Can be used to change the top item

If we declare

stack<int> b;

const stack<int> c;

Which ones are correct? =>

1. int i = b.top();

2. b.push(i);

3. b.top() = 18;

4. c.top() = 18;

5. b.push(c.top());

V

V

V

X

V

Chapter 7 introduces the

stack data type.

Several example

applications of stacks are

given in that chapter.

This presentation shows

another use called

backtracking to solve the

N-Queens problem.

Using a Stack

Data Structures

and Other Objects

Using C++

The N-Queens Problem

Suppose you have 8

chess queens...

...and a chess board

The N-Queens Problem

Can the queens be

placed on the board so

that no two queens are

attacking each other
?

The N-Queens Problem

Two queens are not

allowed in the same

row...

The N-Queens Problem

Two queens are not

allowed in the same

row, or in the same

column...

The N-Queens Problem

Two queens are not

allowed in the same

row, or in the same

column, or along the

same diagonal.

The N-Queens Problem

The number of queens,

and the size of the board

can vary.

N Queens

N columns

How the program works

The program

uses a stack to

keep track of

where each

queen is placed.

How the program works

Each time the

program decides

to place a queen

on the board,

the position of

the new queen is

stored in a

record which is

placed in the

stack.

ROW 1, COL 1

How the program works

We also have an

integer variable

to keep track of

how many rows

have been filled

so far.
ROW 1, COL 1

1
filled

How the program works

Each time we try

to place a new

queen in the next

row, we start by

placing the

queen in the first

column... ROW 1, COL 1

1
filled

ROW 2, COL 1

How the program works

...if there is a

conflict with

another queen,

then we shift the

new queen to the

next column.
ROW 1, COL 1

1
filled

ROW 2, COL 2

How the program works

If another

conflict occurs,

the queen is

shifted rightward

again.

ROW 1, COL 1

1
filled

ROW 2, COL 3

How the program works

When there are

no conflicts, we

stop and add one

to the value of

filled.

ROW 1, COL 1

2
filled

ROW 2, COL 3

How the program works

Let's look at the

third row. The

first position we

try has a

conflict...

ROW 1, COL 1

2
filled

ROW 2, COL 3

ROW 3, COL 1

How the program works

...so we shift to

column 2. But

another conflict

arises...

ROW 1, COL 1

2
filled

ROW 2, COL 3

ROW 3, COL 2

How the program works

...and we shift to

the third column.

Yet another

conflict arises...

ROW 1, COL 1

2
filled

ROW 2, COL 3

ROW 3, COL 3

How the program works

...and we shift to

column 4.

There's still a

conflict in

column 4, so we

try to shift

rightward

again...

ROW 1, COL 1

2
filled

ROW 2, COL 3

ROW 3, COL 4

How the program works

...but there's

nowhere else to

go.

ROW 1, COL 1

2
filled

ROW 2, COL 3

ROW 3, COL 4

How the program works

When we run out of

room in a row:

pop the stack,

reduce filled by 1

and continue

working on the

previous row.

ROW 1, COL 1

1
filled

ROW 2, COL 3

How the program works

Now we

continue

working on row

2, shifting the

queen to the

right.
ROW 1, COL 1

1
filled

ROW 2, COL 4

How the program works

This position has

no conflicts, so

we can increase

filled by 1, and

move to row 3.

ROW 1, COL 1

2
filled

ROW 2, COL 4

How the program works

In row 3, we

start again at the

first column.

ROW 1, COL 1

2
filled

ROW 2, COL 4

ROW 3, COL 1

Pseudocode for N-Queens

Initialize a stack where we can keep track of our

decisions.

Place the first queen, pushing its position onto the

stack and setting filled to 0.

repeat these steps

if there are no conflicts with the queens...

else if there is a conflict and there is room to

shift the current queen rightward...

else if there is a conflict and there is no room

to shift the current queen rightward...

Pseudocode for N-Queens

repeat these steps

if there are no conflicts with the queens...

Increase filled by 1. If filled is now N, then

the algorithm is done. Otherwise, move to

the next row and place a queen in the

first column.

Pseudocode for N-Queens

repeat these steps

if there are no conflicts with the queens...

else if there is a conflict and there is room to

shift the current queen rightward...

Move the current queen rightward,

adjusting the record on top of the stack

to indicate the new position.

Pseudocode for N-Queens

repeat these steps

if there are no conflicts with the queens...

else if there is a conflict and there is room to

shift the current queen rightward...

else if there is a conflict and there is no room

to shift the current queen rightward...

Backtrack!

Keep popping the stack, and reducing filled

by 1, until you reach a row where the queen

can be shifted rightward. Shift this queen right.

Pseudocode for N-Queens

repeat these steps

if there are no conflicts with the queens...

else if there is a conflict and there is room to

shift the current queen rightward...

else if there is a conflict and there is no room

to shift the current queen rightward...

Backtrack!

Keep popping the stack, and reducing filled

by 1, until you reach a row where the queen

can be shifted rightward. Shift this queen right.

Stacks have many applications.

The application which we have shown is called

backtracking.

The key to backtracking: Each choice is recorded

in a stack.

When you run out of choices for the current

decision, you pop the stack, and continue trying

different choices for the previous decision.

Summary of stack for backtracking

Summary and Homework

Stacks (Read Chapter 7)

Self-Test: 1-5, 13-18

Queues (Read Sections 8.1 – 8.3)

Self-Test: 1-5, 10,18-21

Priority Queues (Read Section 8.4)

Self-Test: 25-27

References Return Values (Read Section 8.5 and
p. 302 in Chapter 6)

Self-Test: class note

