CSC212
Data Structure

7% COMPUTER SCIENCE

i*;.__' 1 Ciry CoLLece oF NEw YORK

Lecture 6
Dynamic Classes and
the Law of the Big Three

Instructor: George Wolberg
Department of Computer Science
City College of New York

@ George Wolberg, 2020 1

Why Dynamic Classes

0 Limitation of our bag class

0 bag::CAPACITY constant determines the capacity of
every bag

0o wasteful and hard to reuse

0 Solution:
0 provide control over size in running time, by
O pointers and dynamic memory
0 =>dynamic arrays
0 => dynamic classes

@ George Wolberg, 2020 2

Dynamic Classes New Features (Ch 4.3-4)

0 Pointers Member Variables

0 Dynamic Memory Allocation (where and how)

0 Value Semantics (what’s new?)
0 assignment operator overloading
[0 your own copy constructor

0 Introducing Destructor
0 Conclusion: the Law of the Big Three

@ George Wolberg, 2020

Pointer Member Variable

0 The Static bag 0 The Dynamic bag

/[From bagl.h in Section 3.1
class bag

{
public:

static const size t CAPACITY = 20;

/[From bag2.h in Section 4.3
class bag

{
public:

private:
value type *data;
Size _type used;
Size type capacity;

private:
value_type data[CAPACITY];
Size_type used;

};

};

@ George Wolberg, 2020

Invariant of the Dynamic bag

0 the number of items Is In the member
variable used

0 The actual items are stored in a partially
filled array. The array Is a dynamic array,
pointed to by the pointer variable data

0 The total size of the dynamic array Is the
member variable capacity

[

@ George Wolberg, 2020

Allocate Dynamic Memory: Where?

0 In Old Member Functions
0 constructor — how big Is the initial capacity?
0 Insert — If bag Is full, how many more?
0 +/+= operators — how to combine two bags?

0 New Member Functions
0 reserve — explicitly adjust the capacity

0 constructor with default size

@ George Wolberg, 2020

Allocate Dynamic Memory: How?

/Il From bag2.h in Section 4.3 0 In constructor:

class bag

{
public:

static const size_t DEFAULT_CAPACITY = 20; 0 how?
bag(size type init_cap = DEFAULT _CAPACITY); 1 default

o specific size

0 why initialize?

private:
value type *data;
size_type used; o /l From implementation file bag2.cpp
s Size_type capacity; bag::bag(size_type init_cap)
! {

data = new value_typeJinit_cap];
capacity = init_cap;
used = 0;

}

@ George Wolberg, 2020

Value Semantics

0 Assignment operator
0 Y =X;

0 Copy constructor
0 bag y(x); // bagy = X;

Automatic assignment operator and copy constructor

0 copy all the member variables (data, used, capacity)
from object x to object y

O

@ George Wolberg, 2020

Fallure In auto assignment operator

capaC|ty used data
bag x(4), y(5); o

X.insert(18); X 4 0 984! 2 |2 |2 |?
x.insert(19); 0] [2 [3]
y=X,
x.insert(20); Yy 5|0 964 i

0] [l [2] [3] [4]

Question: What will happen after executing lines 2 — 5?

@ George Wolberg, 2020

Fallure In auto assignment operator

capaC|ty used data
bag x(4), y(5); o

x.insert(18); X 4 2 984! 18 |19 [? |?
X.insert(19); 0] [2 [3]
y=X,

x.insert(20); Yy 5|0 964 i

0] [l [2] [3] [4]

Question: What will happen after executing lines 2 — 5?

@ George Wolberg, 2020

Fallure In auto assignment operator

bag x(4), y(5);

x.insert(18);

x.insert(19);
y=X;
x.insert(20);

capa(:lty/useAcwata

X

4

2

984 !

084 ‘

Question: What will happen after executing lines 2 — 5?

@ George Wolberg, 2020

11

Fallure In auto assignment operator

bag x(4), y(5);

x.insert(18);

x.insert(19);
y=X
X.insert(20);

capa(:lty/useAcwata

X

4

3

984 !

084 ‘

Consequence: Change to x’ array will also change y’s array

@ George Wolberg, 2020

12

If we want y to have Its own
dynamic array

bag x(4), y(5);
X.insert(18);

X.insert(19);
y=X
x.insert(20);

@ George Wolberg, 2020

capa(:lty/useyata

X

4

2

984 !

064 i

18

19

?

?

0] [1] [2] [3]

?

?

?

? ?

0] [1] [2]

3] [4]

13

Dynamic memory allocation Is
needed

capaC|ty used data
bag x(4), y(5); o

X.insert(18); X 4 2 984! 18 |19 [? |?

x.insert(19); 0] [1] [2] [3]
y=X,

X.insert(20); y |[4]2 964i 18 |19 |2 |2

EREE

0] [1] [2]

Answer: overloading the assignment operator =

@ George Wolberg, 2020

Dynamic memory allocation Is

needed

bag x(4), y(5);
x.insert(18);

x.insert(19);
y=X
X.insert(20);

capa(:lty/useAcwata

X

4

2

984 !

064 i

18

19

20

O]

[1]

[2]

[3]

18

19

| ?

?

?

Answer: overloading the assignment operator =

@ George Wolberg, 2020

0]

[1]

[2]

15

/[From bag2.h in Section 4.3

class bag

{

public:
static const size t DEFAULT _CAPACITY = 20;
bag(size type init_cap = DEFAULT CAPACITY);

gnment operator

/[From implementation file bag2.cpp

private: bag::bag(size_type init_cap)
value type *data; {
size_type used; data = new value_type[init_cap];
size_type capacity; capacity = init_cap;

}; used = 0;

)
bag X,Y; // OR bag x(4), y(5); // OR....
y=X; /] y.operator=(x);

void bag::operator=(const bag& source)
// Postcondition: The bag that activated this function
has the same items and capacity as source

@ George Wolberg, 2020

Implementation of operator=

0 Y =X;
0y < *this
0 X < source

@ George Wolberg, 2020

void bag::operator =(const bag& source)
/l Library facilities used: algorithm

{

value type *new_data;

I/l Check for possible self-assignment:
if (this == &source)
return;

/[If needed, allocate an array with a different size:

if (capacity != source.capacity)

{
new_data = new value_type[source.capacity];
delete [] data; // make sure all valid before delete!!!
data = new_data;
capacity = source.capacity;

}

I/l Copy the data from the source array:
used = source.used;
copy(source.data, source.data + used, data);

The 2" part of the value semantics

copy constructor

@ George Wolberg, 2020

18

Auto Copy Constructor: shallow copy

bag x(4)
bag y(x);

x.insert(18);
x.insert(19);

The only difference with auto assignment is:

capa(:lty/useyata

X

4

0

984 !

984 ‘

y does not have its own data

@ George Wolberg, 2020

O]

[1]

[2]

[3]

19

Fallure In auto copy constructor

capaC|ty used data
bag x(4); o

bag y(x); X 4 2 984! 18 [19 |2 |2

X.insert(18); 0] [1] [2] [3]
X.insert(19);

y l4]o0 984‘

change to x also changes y

@ George Wolberg, 2020

Deep COPY. providing your own copy constructor

bag::bag(const bag& source)
/[Postcondition: The bag that has been constructed

has the same items and capacity as source

0 on Implementation ()

0 do you need to check self-copy
o bag y(x); // never have bag y(y);

0 do you need to delete old bag?

0 on Usage
0 4 different ways that copy constructor Is used

@ George Wolberg, 2020 21

Four common situations

0 Declaration
0 Declaration with Alternate Syntax
0 Returning an object from a function

0 Value parameter Is an object

@ George Wolberg, 2020

22

What’s missing?

allocate dynamic memory via new,
take care of the value semantics,

@ George Wolberg, 2020

23

De-allocation of dynamic memory

0 Return an object’s dynamic memory to the
heap when the object Is no longer In use

0 Where and How? — Two ways

0 Take care of It yourself
0 delete dynamic data of an object after you’re done
with it
0 let the program do It automatically

O

@ George Wolberg, 2020

24

bag::~bag()
{

Destructor delete [] data:
}

0 The primary purpose 1s to return an object’s
dynamic memory to the heap, and to do other
“cleanup”

0 Three unigue features of the destructor

0 The name of the destructor Is always ~ followed by the
class name;

0 No parameters, no return values;

0 Activated automatically whenever an object becomes
Inaccessible

@ George Wolberg, 2020 25

bag::~bag()
{

Destructor delete [] data:

}

0 Some common situations causing automatic
destructor activation

0 Upon function return, objects as local variables
destroyed;

0 Upon function return, objects as value parameters
destroyed;

0 when an object is explicitly deleted

@ George Wolberg, 2020

26

The Law of the Big Three

0 Using dynamic memory requires the following
three things all together
O
O
O

0 In other words, the three functions come In a set —
either you need to write all three yourself, or you
can rely on the compiler-supplied automatic
versions of all the three.

@ George Wolberg, 2020 27

What will happen If not?

If we only have a constructor and a
destructor, but do not provide a copy
constructor and an overloaded
assignment operator

@ George Wolberg, 2020 28

Importance of the Law of Big-3

/[constructor
bag::bag(size type init_cap)
bag *x, *y; {

B _ data = new value_type[init_cap];
X = nhew bag(4), capacity = init_cap;

y = new bag(5); used = 0;

}
X->insert(18);

X->insert(19); /l destructor

*y = *X; ?ag::~bag()

delete x; delete [] data;
y->insert(20); }

Question: What will happen after executing lines 1 — 8?

@ George Wolberg, 2020 29

Importance of the Law of Big-3

capaC|ty used data
bag *x, *y; o

X = new bag(4); *X 4 0| 984 ! 2 (2 [2 |2

y = new bag(5); 0] [1] [2] [3]
X->insert(18);

x->insert(19); *Y |5]0 964 |
*y:*x;)

/[From implementation file bag2.cpp
bag::bag(size type init_cap)
{

delete x;
y->insert(20);

data = new value_typeJinit_cap];
capacity = init_cap;
used = 0;

allocate memory for objects (*x, *y)
and their dynamic arrays

}

@ George Wolberg, 2020

Importance of the Law of Big-3

capaC|ty used data
bag *x, *y; o

X = new bag(4); [4 E 984! 18 [19 |2 |2

y = new bag(5); 0] 1 [2] [3]
X->insert(18);

X->insert(19); Y 5|0 964i
Yy =*X, ’ 01 [1] [2] [3] [4]
delete x;

y->insert(20);

Insert two items in the dynamic array of object *x

@ George Wolberg, 2020 31

Importance of the Law of Big-3

capaC|ty used data
bag *x, *y; o

X = new bag(4); [4 E 984! 18 [19 |2 |2

y = new bag(5); 0] 1 [2] [3]
X->insert(18);

x->insert(19); YV l4]2 984‘ |
Yy =X, ’ 0] [1] [2] [3] [4]
delete x;

y->insert(20);

automatic assignment only copies three variables
(capacity, used and data) from *x to *y

@ George Wolberg, 2020 32

Importance of the Law of Big-3

bag *x, *y;
X = new bag(4);

y = new bag(5);
X->insert(18);

x->insert(19); 42| 984 |
Yy =*X, 0] [1] [2] [3] [4]
delete x;

y->insert(20);

_ bag::~bag()
Deleting x will also delete the dynamic {

array of *x by calling the destructor delete [] data;

@ George Wolberg, 2020 }

bag *x, *y;
X = new bag(4);

y = new bag(5);

X->insert(18);

X->insert(19); Y |4]2] 984
kY = *X; o] [1] [2]
delete x;

y->insert(20);

Your program crashes: *y needs its own copy of data !!!

@ George Wolberg, 2020 34

Reading and Programming
Assignments

0 Putting pieces together
0 bag2.h, bag2.cpp both In textbook and

0 Self-test exercises
0 16 -23

0 After-class reading (string)
0 Section 4.5, Self-Test 26- 32 (within exam scope)

@ George Wolberg, 2020

35

bag2-ppt.html

