
@ George Wolberg, 2020 1

CSC212

Data Structure

Lecture 6

Dynamic Classes and

the Law of the Big Three

Instructor: George Wolberg

Department of Computer Science

City College of New York

@ George Wolberg, 2020 2

Why Dynamic Classes

Limitation of our bag class

bag::CAPACITY constant determines the capacity of

every bag

wasteful and hard to reuse

Solution:

provide control over size in running time, by

pointers and dynamic memory

=> dynamic arrays

=> dynamic classes

@ George Wolberg, 2020 3

Dynamic Classes New Features (Ch 4.3–4)

Pointers Member Variables

Dynamic Memory Allocation (where and how)

Value Semantics (what’s new?)

assignment operator overloading

your own copy constructor

Introducing Destructor

Conclusion: the Law of the Big Three

@ George Wolberg, 2020 4

Pointer Member Variable

The Static bag The Dynamic bag

// From bag1.h in Section 3.1

class bag

{

public:

static const size_t CAPACITY = 20;

...

private:

value_type data[CAPACITY];

size_type used;

};

// From bag2.h in Section 4.3

class bag

{

public:

...

private:

value_type *data;

size_type used;

size_type capacity;

};

@ George Wolberg, 2020 5

Invariant of the Dynamic bag

the number of items is in the member

variable used

The actual items are stored in a partially

filled array. The array is a dynamic array,

pointed to by the pointer variable data

The total size of the dynamic array is the

member variable capacity

Invariant is about rules of implementation...

@ George Wolberg, 2020 6

Allocate Dynamic Memory: Where?

In Old Member Functions

constructor – how big is the initial capacity?

insert – if bag is full, how many more?

+/+= operators – how to combine two bags?

New Member Functions

reserve – explicitly adjust the capacity

Example

constructor with default size

@ George Wolberg, 2020 7

Allocate Dynamic Memory: How?

In constructor:

why initialize?

how?

default

specific size

// From bag2.h in Section 4.3

class bag

{

public:

static const size_t DEFAULT_CAPACITY = 20;

bag(size_type init_cap = DEFAULT_CAPACITY);

...

private:

value_type *data;

size_type used;

size_type capacity;

};

// From implementation file bag2.cpp

bag::bag(size_type init_cap)

{

data = new value_type[init_cap];

capacity = init_cap;

used = 0;

}

@ George Wolberg, 2020 8

Value Semantics

Assignment operator

y = x;

Copy constructor

bag y(x); // bag y = x;

Automatic assignment operator and copy constructor

copy all the member variables (data, used, capacity)
from object x to object y

but our days of easy contentment are done!

@ George Wolberg, 2020 9

Failure in auto assignment operator

x

bag x(4), y(5);

x.insert(18);

x.insert(19);

y=x;

x.insert(20);

4 0 984

capacity used data

y 5 0 964

? ? ? ?

? ? ? ? ?

[0] [1] [2] [3]

[0] [1] [2] [3] [4]

Question: What will happen after executing lines 2 – 5?

@ George Wolberg, 2020 10

Failure in auto assignment operator

x

bag x(4), y(5);

x.insert(18);

x.insert(19);

y=x;

x.insert(20);

4 2 984

capacity used data

y 5 0 964

18 19 ? ?

? ? ? ? ?

[0] [1] [2] [3]

[0] [1] [2] [3] [4]

Question: What will happen after executing lines 2 – 5?

@ George Wolberg, 2020 11

Failure in auto assignment operator

x

bag x(4), y(5);

x.insert(18);

x.insert(19);

y=x;

x.insert(20);

4 2 984

capacity used data

y 4 2 984

18 19 ? ?

? ? ? ? ?

[0] [1] [2] [3]

[0] [1] [2] [3] [4]

Question: What will happen after executing lines 2 – 5?

lost memory

@ George Wolberg, 2020 12

Failure in auto assignment operator

x

bag x(4), y(5);

x.insert(18);

x.insert(19);

y=x;

x.insert(20);

4 3 984

capacity used data

y 4 2 984

18 19 20 ?

? ? ? ? ?

[0] [1] [2] [3]

[0] [1] [2] [3] [4]

Consequence: Change to x’ array will also change y’s array

lost memory

@ George Wolberg, 2020 13

If we want y to have its own

dynamic array

x

bag x(4), y(5);

x.insert(18);

x.insert(19);

y=x;

x.insert(20);

4 2 984

capacity used data

y 5 0 964

18 19 ? ?

? ? ? ? ?

[0] [1] [2] [3]

[0] [1] [2] [3] [4]

@ George Wolberg, 2020 14

Dynamic memory allocation is

needed

x

bag x(4), y(5);

x.insert(18);

x.insert(19);

y=x;

x.insert(20);

4 2 984

capacity used data

y 4 2 964

18 19 ? ?

? ? ? ? ?

[0] [1] [2] [3]

[0] [1] [2] [3] [4]

Answer: overloading the assignment operator =

memory de-allocated

18 19 ? ?

@ George Wolberg, 2020 15

Dynamic memory allocation is

needed

x

bag x(4), y(5);

x.insert(18);

x.insert(19);

y=x;

x.insert(20);

4 2 984

capacity used data

y 4 2 964

18 19 20 ?

? ? ? ? ?

[0] [1] [2] [3]

[0] [1] [2] [3] [4]

Answer: overloading the assignment operator =

memory de-allocated

18 19 ? ?

@ George Wolberg, 2020 16

Solution: overloading assignment operator

Your own assignment operator

C++ Requires the overloaded assignment

operator to be a member function

bag x, y; // OR bag x(4), y(5); // OR....

y=x; // y.operator=(x);

void bag::operator=(const bag& source)

// Postcondition: The bag that activated this function

has the same items and capacity as source

A 5-minute Quiz: write your own implementation - turn in

// From bag2.h in Section 4.3

class bag

{

public:

static const size_t DEFAULT_CAPACITY = 20;

bag(size_type init_cap = DEFAULT_CAPACITY);

...

private:

value_type *data;

size_type used;

size_type capacity;

};

// From implementation file bag2.cpp

bag::bag(size_type init_cap)

{

data = new value_type[init_cap];

capacity = init_cap;

used = 0;

}

@ George Wolberg, 2020 17

Implementation of operator=

y = x;

y  *this

x  source

void bag::operator =(const bag& source)

// Library facilities used: algorithm

{

value_type *new_data;

// Check for possible self-assignment:

if (this == &source)

return;

// If needed, allocate an array with a different size:

if (capacity != source.capacity)

{

new_data = new value_type[source.capacity];

delete [] data; // make sure all valid before delete!!!

data = new_data;

capacity = source.capacity;

}

// Copy the data from the source array:

used = source.used;

copy(source.data, source.data + used, data);

}

@ George Wolberg, 2020 18

The 2nd part of the value semantics

copy constructor

@ George Wolberg, 2020 19

Auto Copy Constructor: shallow copy

x

bag x(4)

bag y(x);

x.insert(18);

x.insert(19);

4 0 984

capacity used data

y 4 0 984

? ? ? ?

[0] [1] [2] [3]

The only difference with auto assignment is:

y does not have its own data

@ George Wolberg, 2020 20

Failure in auto copy constructor

x

bag x(4);

bag y(x);

x.insert(18);

x.insert(19);

4 2 984

capacity used data

y 4 0 984

18 19 ? ?

[0] [1] [2] [3]

change to x also changes y

@ George Wolberg, 2020 21

Deep copy: providing your own copy constructor

Questions on Implementation (homework!)

do you need to check self-copy

bag y(x); // never have bag y(y);

do you need to delete old bag?

Questions on Usage

4 different ways that copy constructor is used

bag::bag(const bag& source)

// Postcondition: The bag that has been constructed

has the same items and capacity as source

@ George Wolberg, 2020 22

Four common situations

Declaration

bag y(x);

Declaration with Alternate Syntax

bag y = x ;

Returning an object from a function

bag union(const bag& s1, const bag& s2);

Value parameter is an object

void temp_bag_copy(bag clone);

@ George Wolberg, 2020 23

What’s missing?

allocate dynamic memory via new,

take care of the value semantics,

....?

@ George Wolberg, 2020 24

De-allocation of dynamic memory

Return an object’s dynamic memory to the

heap when the object is no longer in use

Where and How? – Two ways

Take care of it yourself

delete dynamic data of an object after you’re done

with it

let the program do it automatically

destructor

@ George Wolberg, 2020 25

Destructor

The primary purpose is to return an object’s
dynamic memory to the heap, and to do other
“cleanup”

Three unique features of the destructor

The name of the destructor is always ~ followed by the
class name;

No parameters, no return values;

Activated automatically whenever an object becomes
inaccessible

Question: when this happens?

bag::~bag()

{

delete [] data;

}

@ George Wolberg, 2020 26

Destructor

Some common situations causing automatic

destructor activation

Upon function return, objects as local variables

destroyed;

Upon function return, objects as value parameters

destroyed;

when an object is explicitly deleted

Question: shall we put destructor in how-to-use-a-

bag documentation?

bag::~bag()

{

delete [] data;

}

@ George Wolberg, 2020 27

The Law of the Big Three

Using dynamic memory requires the following

three things all together

a destructor

a copy constructor (and of course an ordinary one)

an overloaded assignment operator

In other words, the three functions come in a set –

either you need to write all three yourself, or you

can rely on the compiler-supplied automatic

versions of all the three.

@ George Wolberg, 2020 28

What will happen if not?

If we only have a constructor and a

destructor, but do not provide a copy

constructor and an overloaded

assignment operator

@ George Wolberg, 2020 29

Importance of the Law of Big-3

bag *x, *y;

x = new bag(4);

y = new bag(5);

x->insert(18);

x->insert(19);

*y = *x;

delete x;

y->insert(20);

Question: What will happen after executing lines 1 – 8?

// destructor

bag::~bag()

{

delete [] data;

}

// constructor

bag::bag(size_type init_cap)

{

data = new value_type[init_cap];

capacity = init_cap;

used = 0;

}

@ George Wolberg, 2020 30

Importance of the Law of Big-3

*x
bag *x, *y;

x = new bag(4);

y = new bag(5);

x->insert(18);

x->insert(19);

*y = *x;

delete x;

y->insert(20);

4 0 984

capacity used data

*y 5 0 964

? ? ? ?

? ? ? ? ?

[0] [1] [2] [3]

[0] [1] [2] [3] [4]

allocate memory for objects (*x, *y)

and their dynamic arrays

// From implementation file bag2.cpp

bag::bag(size_type init_cap)

{

data = new value_type[init_cap];

capacity = init_cap;

used = 0;

}

@ George Wolberg, 2020 31

Importance of the Law of Big-3

bag *x, *y;

x = new bag(4);

y = new bag(5);

x->insert(18);

x->insert(19);

*y = *x;

delete x;

y->insert(20);

4 2 984

capacity used data

5 0 964

18 19 ? ?

? ? ? ? ?

[0] [1] [2] [3]

[0] [1] [2] [3] [4]

Insert two items in the dynamic array of object *x

*x

*y

@ George Wolberg, 2020 32

Importance of the Law of Big-3

4 2 984

capacity used data

4 2 984

18 19 ? ?

? ? ? ? ?

[0] [1] [2] [3]

[0] [1] [2] [3] [4]

automatic assignment only copies three variables

(capacity, used and data) from *x to *y

lost memory

bag *x, *y;

x = new bag(4);

y = new bag(5);

x->insert(18);

x->insert(19);

*y = *x;

delete x;

y->insert(20);

*x

*y

@ George Wolberg, 2020 33

Importance of the Law of Big-3

4 2 984 ? ? ? ? ?

[0] [1] [2] [3] [4]

Deleting x will also delete the dynamic

array of *x by calling the destructor

dangling pointer

lost memory

bag *x, *y;

x = new bag(4);

y = new bag(5);

x->insert(18);

x->insert(19);

*y = *x;

delete x;

y->insert(20);
bag::~bag()

{

delete [] data;

}

*y

@ George Wolberg, 2020 34

Importance of the Law of Big-3

*y 4 2 984 ? ? ? ? ?

[0] [1] [2] [3] [4]

Your program crashes: *y needs its own copy of data !!!

dangling pointer

lost memory

bag *x, *y;

x = new bag(4);

y = new bag(5);

x->insert(18);

x->insert(19);

*y = *x;

delete x;

y->insert(20);

@ George Wolberg, 2020 35

Reading and Programming

Assignments

Putting pieces together
bag2.h, bag2.cpp both in textbook and online

Self-test exercises
16 - 23

After-class reading (string)
Section 4.5, Self-Test 26- 32 (within exam scope)

bag2-ppt.html

