
@ George Wolberg, 2020 1

CSC212

Data Structure

Lecture 5

Pointers and Dynamic Arrays

Instructor: George Wolberg

Department of Computer Science

City College of New York

@ George Wolberg, 2020 2

Why Pointers and Dynamic Memory

Limitation of our bag class

bag::CAPACITY constant determines the capacity of every bag

wasteful (if too big) and hard to reuse (if too small)

need to change source code and recompile

Solution:

provide control over size in running time

<= dynamic arrays

<= pointers and dynamic memory

@ George Wolberg, 2020 3

Outline (Reading Ch 4.1 – 4.2)

Pointers

*(asterisk) and &(ampersand) operators

Dynamic Variables and new Operator

Dynamic Arrays and Dynamic Objects

Stack (local) vs. heap (dynamic) memory

Garbage Collection and delete Operator

Parameters revisited

Pointers and Arrays as Parameters

@ George Wolberg, 2020 4

Pointer Variable

First let’s have a look at local variables

Q: What’s the value of i?

?900

904

908

912

916

…

int i; i

By this declaration, a cell of

4 adjacent bytes (in some

machines) are allocated in

the local memory (called

stack memory) Address 9## is just for

illustration.

Real address may have

64 bits

@ George Wolberg, 2020 5

Pointer Variable

First let’s have a look at local variables

Q: How to get the address?

42900

904

908

912

916

…

int i;

i = 42;

i

The assignment put number

42 in the cell. The memory

address of the 1st byte is the

address of the variable i

– the pointer to i

@ George Wolberg, 2020 6

Pointer Variable

First let’s have a look at local variables

Q: Where can we store &i?

42900

904

908

912

916

…

int i;

i = 42;

cout << &i;

i

& (ampersand) operator

- “address of ” operator

- &i is 900 !

-Note: two meanings of &

@ George Wolberg, 2020 7

Pointer Variable

The memory address can be stored in a special
pointer variable

Q: How to point i_ptr to i?

42

?

900

904

908

912

916

…

int i=42;

int *i_ptr;

i

i_ptr

1. the type of the data that

the pointer points to: int

2. an asterisk (*)

3. the name of the newly

declared pointer: i_ptr

@ George Wolberg, 2020 8

Pointer Variable

Assign the address of i to i_ptr

42

?

900

904

908

912

916

…

int i=42;

int *i_ptr;

i_ptr = &i;

i

i_ptr

What are the results of

- cout << i;

- cout << i_ptr;

- cout << &i_ptr;

@ George Wolberg, 2020 9

Pointer Variable

The i_ptr holds the address of an integer,

not the integer itself 42

900

900

904

908

912

916

…

int i=42;

int *i_ptr;

i_ptr = &i;

i

i_ptr

Two ways to refer to i

- cout << i;

- cout << *i_ptr;

- dereferencing operator *

- two meanings of *

@ George Wolberg, 2020 10

Operators * and &

Operator *

Pointer declaration

int *i_ptr;

dereferencing operator

cout << *i_ptr;

Two different

meanings!

Operator &

Reference parameter

void funct(int& i);

“address of ” operator

i_ptr = &i;

Just coincidence?

Will see in parameter

passing

@ George Wolberg, 2020 11

Syntax and Naming Issues

How to declare two pointers in a line

char *c1_ptr, *c2_ptr;

instead of

char* c1_ptr, c2_ptr;

For clarity, use _ptr or cursor for pointer

variables

@ George Wolberg, 2020 12

Assignment Operators with Pointers

p2 = p1

int i = 42;

int *p1, *p2;

p1 = &i;

p2 = p1;

42 i900

address value name

? p1904 ? p2908

Both p1 and p2 point to the same integer

900 p1904 900 p2908

42

?

?

900

904

908

912

916

…

i

p1

p2

900

900

@ George Wolberg, 2020 13

Assignment Operators with Pointers

*p2 = *p1

int i = 42;

int *p1, *p2;

p1 = &i;

*p2 = *p1;

42 i900

address value name

? p1904 ? p2908

p2 doesn’t point to anywhere, so assigning

value to *p2 will cause a running time error!

900 p1904

42

?

?

900

904

908

912

916

…

i

p1

p2

900

X

@ George Wolberg, 2020 14

? p1908 900 p1908 ? p2912 904 p2912

Assignment Operators with Pointers

*p2 = *p1

int i = 42;

int j = 20;

int *p1, *p2;

p1 = &i;

p2 = &j;

*p2 = *p1;

42 i900

Both i (*p1) and j (*p2) will have the same

integer values

42

20

?

?

900

904

908

912

916

…

i

j

p1

p2

900

90420 j904 42 j904

42

@ George Wolberg, 2020 15

Outline (Reading Ch 4.1 – 4.2)

Pointers

*(asterisk) and &(ampersand) operators

Dynamic Variables and new Operator

Dynamic Arrays and Dynamic Objects

Stack (local) vs. heap (dynamic) memory

Garbage Collection and delete Operator

Parameters revisited

Pointers and Arrays as Parameters

@ George Wolberg, 2020 16

Dynamic Variables

We cannot use a pointer if not initialized

need to point to a declared variable

How to use a pointer without connecting
with a declared ordinary variable?

Solution: Dynamic (allocated) variables

not declared, therefore no identifier

created during execution

Real power of pointers is with dynamic
variables

@ George Wolberg, 2020 17

The new Operator

allocates memory and returns a pointer

? p1900int *p1;

p1 = new int;

*p1 = 20;

? ?10500

- p1 points to a dynamic integer variable

without any identifier (name)

- dynamic memory comes from the

programs’ heap (free store)

20 ?10500

?900

904

908

…

…

10492

10496

10500

p1

?

10500

20

@ George Wolberg, 2020 18

Dynamic Arrays

new can allocate an entire array all at once

? p1900
int *p1;

p1 = new int[4];

p1[2] = 20;

cout<<*(p1+2);
10488

- p1 points to 1st entry of dynamic array

- number of entries in a pair of sq. brackets

- two ways to access p1 (array or pointer)

?900

904

908

…

…

10488

10492

10496

10500

p1

?

10488

20

20

@ George Wolberg, 2020 19

Accessing Dynamic Array

Use array notation

the 1st entry

p1[0] = 18;

the 3rd entry

p1[2] = 20;

the ith entry

p1[i-1] = 19;

Use pointer notation

the 1st entry

*p1 = 18;

the 3rd entry

*(p1+2) = 20;

the ith entry

*(p1+i-1) = 19;

A demo for pointers and dynamic arrays:

test_pointer.cpp

@ George Wolberg, 2020 20

Dynamic Array Example:Quiz

A program reads ages

of each of CCNY

classes, with varying

sizes, calculate the

average, and then print

out the average.

size_t size;

int *ages;

float average;

cin >> size;

ages = new int[size];

// input ages of all students

// calculate average

// print average

…

@ George Wolberg, 2020 21

Dynamic Objects of a class

new can also allocate a dynamic object

? p1900point *p1;

p1 = new point(1.0, 2.0);

cout<< (*p1).x();

cout<< p1->x();

- p1 points to dynamic object without name

- parameters can be used as in declaration

- two ways to access p1 (* and ->)

?900

904

908

…

…

10488

10492

10496

10500

p1

?

10496

1.0

2.0

10496 1.0 2.0

@ George Wolberg, 2020 22

Dynamic Object Arrays of a class

Q: Are the following correct? point3 demo

Ten points with default coordinates?

p1 = new point[10];

Ten points with the same coordinates?

p1 = new point(1.0, 2.0)[10];

Ten points on the x axis with interval 1?

p1 = new point[10];

for (i=0; i<10; i++) p1[i].set(i, 0);

Assume we have a member function

void point::set(double x_init, double y_init);

V

X

V

point3/point3-ppt.html

@ George Wolberg, 2020 23

Failure of the new Operator

Dynamic memory via new operator comes from
heap of a program

Heap size from several K to 1GB, however fixed

Could run out of room therefore cause a
bad_alloc exception

error message and program halts

Good practice 1: document which functions uses
new

Good practice 2: garbage collection by delete
operator

@ George Wolberg, 2020 24

Outline (Reading Ch 4.1 – 4.2)

Pointers

*(asterisk) and &(ampersand) operators

Dynamic Variables and new Operator

Dynamic Arrays and Dynamic Objects

Stack (local) vs. heap (dynamic) memory

Garbage Collection and delete Operator

Parameters revisited

Pointers and Arrays as Parameters

@ George Wolberg, 2020 25

The delete Operator

Release any dynamic memory (heap

memory) that is no longer needed

int *i_ptr;

double *d_ptr;

point *p_ptr;

i_ptr = new int;

d_ptr = new double[20];

p_ptr = new point(1.0, 2.0);

… …

…

delete i_ptr;

delete [] d_ptr; // empty brackets

delete p_ptr;

Questions(true or false):

1. delete resets these pointers

2. delete removes dynamic

objects pointed by the pointers

3. nothing happens to the

pointers themselves

X

V

V

@ George Wolberg, 2020 26

Outline (Reading Ch 4.1 – 4.2)

Pointers

*(asterisk) and &(ampersand) operators

Dynamic Variables and new Operator

Dynamic Arrays and Dynamic Objects

Stack (local) vs. heap (dynamic) memory

Garbage Collection and delete Operator

Parameters revisited

Pointers and Arrays as Parameters

@ George Wolberg, 2020 27

Pointers and Arrays as Parameters

Value parameters that are pointers

Array parameters

Pointers and arrays as const parameters

Reference parameters that are pointers

@ George Wolberg, 2020 28

Value parameters that are pointers

Compare ordinary and pointer variables
void print_int_42(int i)

{

cout << i<<endl ;

i = 42 ;

cout << i <<endl;

}

void set_int_42(int* i_ptr)

{

cout << *i_ptr <<endl;

*i_ptr = 42 ;

cout << *i_ptr <<endl;

}

Calling program:

int m = 80;

print_int_42(m); cout << m<<endl<<endl;

set_int_42(&m); cout << m<<endl<<endl;

80

42

80

80

42

42

@ George Wolberg, 2020 29

Array Parameters

Compare ordinary and Dynamic arrays

Calling program:

int ages[30];

make_all_20(ages, 30);

void make_all_20(int data[], size_t size)

{

for (int i = 0 ; i< size; i++)

{

data[i] = 20;

}

}

- An array parameter automatically treated as

pointer to the first entry (– value or reference?)

- In the function prototype and implementation, size

of the array is not specified inside bracket but by

another parameter

Calling program:

int *ages;

ages = new int[30]

make_all_20(ages, 30);

@ George Wolberg, 2020 30

Pointers or Array as const Parameters

to make sure they will not be changed

Calling program:

int *ages, *i_ptr;

double aver_age;

ages = new int [30];

...

aver_age = average(ages, 30);

i_ptr = &ages[12]; // i_ptr = (ages+12);

if (is_20(i_ptr)) cout <<“Student No. 13 is 20!”<<endl;

Protoptyes:

bool is_20(const int* i_ptr);

double average(const int data[], size_t size);

@ George Wolberg, 2020 31

Reference Parameters that are Pointers

if we want to change the pointer to a new location

Calling program:

int *ages;

int jone = 20; // assume &jone is 904 now

ages = &jone;

cout << “address that ages points to is ”<< ages<<endl;

allocate_int_array(ages, 30);

cout << “address that ages points to is ”<< ages<<endl;

void allocate_int_arrary(int* i_ptr, size_t size)

{

i_ptr = new int[size];

}

X

@ George Wolberg, 2020 32

Reference Parameters that are Pointers

if we want to change the pointer to a new location

Calling program:

int *ages;

int jone = 20; // assume &jone is 904 now

ages = &jone;

cout << “address that ages points to is ”<< ages<<endl;

allocate_int_array(ages, 30);

cout << “address that ages points to is ”<< ages<<endl;

void allocate_int_arrary(int*& i_ptr, size_t size)

{

i_ptr = new int[size];

}

V

@ George Wolberg, 2020 33

Reference Parameters that are Pointers

if we want to change the pointer to a new location

Calling program:

int *ages;

int jone = 20; // assume &jone is 904 now

ages = &jone;

cout << “address that ages points to is ”<< ages<<endl;

allocate_int_array(ages, 30);

cout << “address that ages points to is ”<< ages<<endl;

typedef int* integer_ptr;

void allocate_int_arrary(integer_ptr& i_ptr, size_t size)

{

i_ptr = new int[size];

}

V

@ George Wolberg, 2020 34

Reading and Programming

Assignments

Reading before the next lecture

Chapter 4. Sections 4.3-4.4

Programming Assignment 2

Detailed guidelines online!

